

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) v. 2023 (41) : 1-6. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.53027

New Spaces Over Modulus Function

Abdul Hamid Ganie

ABSTRACT: Our main aim of this paper is to introduce some new techniques of spaces using modulus function. Some of basic inclusion properties will be taken care of.

Key Words: Modulus function, paranormed sequence, infinite matrices.

Contents

1 Introduction

The space $s^q_{\infty}(\mathcal{F},p)$, $s^q_c(\mathcal{F},p)$ and $s^q_0(\mathcal{F},p)$ 2

1 $\mathbf{2}$

1. Introduction

We represent the set of all sequences with complex terms by \mho . By a sequence space we define a linear subspace of \mathcal{V} i.e., the sequence space is the set of scalar sequences (real or complex) which is closed under co-ordinate wise addition and scalar multiplication. Here we symbolize \mathbf{N} and \mathbf{C} to represent the set of non-negative integers and the set of complex numbers, respectively. By ℓ_{∞} , c and c_0 , respectively, we shall mean the set of all bounded sequences, the set of all convergent sequences and those sequences having limit as zero. Note that ℓ_1 , $\ell(p)$, cs and bs will specify the spaces of all absolutely, p-absolutely convergent, convergent and bounded series, respectively [10], [14]-[17], [32].

For an infinite matrix $\Lambda = (w_{i,j})$ and $\eta = (\eta_k) \in \Psi$, the Λ -transform of η is $\Lambda \eta = \{(\Lambda \eta)_i\}$ provided it exists $\forall i \in \mathbb{N}$, where $(\Lambda \eta)_i = \sum_{j=0}^{\infty} w_{i,j} \eta_j$. For the matrix $\Lambda = (w_{i,j})$, the set G_{Λ} , where

$$G_{\Lambda} = \{ \eta = (\eta_j) \in \Psi : \Lambda \eta \in G \}, \tag{1.1}$$

is known as the matrix domain of Λ in G (see, [18], [21], [27]-[29]).

Consider the sequence of positive numbers (q_k) and write $S_n = \sum_{k=0}^n q_k$ for $n \in \mathbb{N}$.

Then the matrix $S^q = (s_{nk}^q)$ of the Riesz mean (S, q_n) is given by

$$s_{nk}^{q} = \begin{cases} \frac{q_{k}}{S_{n}}, & \text{if } 0 \le k \le n, \\ \\ 0 & \text{if } k > n \end{cases}$$

The Riesz mean (S, q_n) is regular if and only if $S_n \to \infty$ as $n \to \infty$ (see, [24], [30]).

In [22], the author introduced the concept of modulus function. We call a function $\mathcal{G}: [0,\infty) \to [0,\infty)$ to be modulus function if

(i) $\mathcal{G}(\zeta) = 0$ if and only if $\zeta = 0$,

 $(ii) \ \mathfrak{G}(\zeta + \eta) \le \{(\zeta) + \{(\eta) \ \forall \ \zeta \ge 0, \eta \ge 0\}$

(iii) 9 is increasing, and

(iv) \mathcal{G} is continuous from the right at 0.

One can easily see that if \mathcal{G}_1 and \mathcal{G}_2 are modulus functions then so is $\mathcal{G}_1 + \mathcal{G}_2$; and the function \mathcal{G}^j $(j \in \mathbf{N})$, the composition of a modulus function \mathcal{G} with itself j times is also modulus function. It has also been studied in [11].

²⁰¹⁰ Mathematics Subject Classification: 46A45, 40C05.

Submitted April 07, 2020. Published August 25, 2020

A. H. GANIE

Recently, in [25] the new space was introduced by using notion of modulus function as follows:

$$L(\mathcal{F}) = \left\{ \zeta = (\zeta_r) : \sum_r |\mathcal{F}(\zeta_r|)| < \infty \right\}$$

In this direction of forming a new sequence space by virtue of matrix domain method has been given by several authors viz., $(\ell_p)_{R^t} = r_p^t$ (see, [2]), $[c_0(u,p)]_{A^r} = a_0^r(u,p)$ and $[c(u,p)]_{A^r} = a_c^r(u,p)$ (see, [3], $(\ell_{\infty})_{R^t} = r_{\infty}^t$, $(c)_{R^t} = r_c^t$ and $(c_o)_{R^t} = r_0^t$ (see, [19]), $(\ell_p)_{C_1} = X_p$ and $(\ell_{\infty})_{C_1} = X_{\infty}$ (see, [23]), $r^q(u,p) = \{l(p)\}_{R_u^u}$ (see, [27]), $(\ell_{\infty})_{N_q}$ and c_{N_q} (see, [31]), and etc.

2. The space $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$

In this section, we shall introduce the space $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$ of Riesz type and show that they are complete.

Let Λ be a real or complex linear space, define the function $\tau : \Lambda \to \mathbb{R}$ with \mathbb{R} as set of real numbers. Then, the paranormed space is a pair $(\Lambda; \tau)$ and τ is a paranorm for Λ , if the following axioms are satisfied for all ζ , $\eta \in \Lambda$ and for all scalars β :

- (i) $\tau(\theta) = 0,$ (ii) $\tau(-\zeta) = \tau(\zeta),$
- $(vv) \land (-\zeta) = \land (\zeta),$
- (iii) $\tau(\zeta + \eta) \le \tau(\zeta) + \tau(\eta)$, and
- (iv) scalar multiplication is continuous, that is,

 $|\beta_n - \beta| \to 0$ and $h(\zeta_n - \zeta) \to 0$ imply $\tau(\beta_n \zeta_n - \beta \zeta) \to 0$ for all $\beta's$ in \mathbb{R} and $\zeta's$ in Λ , where θ is a zero vector in the linear space Λ . Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup_k p_k = H$ and $M = max\{1, H\}$. Then, the linear space $\ell_{\infty}(p)$ was defined by Maddox [18] as follows:

$$\ell_{\infty}(p) = \{\zeta = (\zeta_k) : \sup_k |\zeta_k|^{p_k} < \infty\}$$

which is complete space paranormed by

$$\tau_1(\zeta) = \left[\sup_k |\zeta_k|^{p_k}\right]^{1/M}.$$

We shall assume throughout that $p_k^{-1} + \{p_k'\}^{-1}$ provided $1 < infp_k \le H < \infty$, and we denote the collection of all finite subsets of N by F, where $N = \{0, 1, 2, ... \}$.

Following Altay (see, [2]), Başarir and Öztürk (see, [6]), Choudhary and Mishra (see, [5]), Ganie et al. (see, [6]-[13], Mursaleen (see, [20]), Ruckle [25], Sengönül [26], we define the spaces $s_{\infty}^{q}(\mathcal{F}, p)$, $s_{c}^{q}(\mathcal{F}, p)$ and $s_{0}^{q}(\mathcal{F}, p)$ as the set of all sequences whose $R_{\mathcal{F}}^{q}$ -transform are in the spaces c(p) and $c_{0}(p)$, respectively i.e.,

$$s_{\infty}^{q}(\mathcal{F},p) = \left\{ x \in \omega : \sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}}\sum_{j=0}^{k}q_{j}x_{j}\right) \right|^{p_{k}} < \infty \right\},$$
$$s_{c}^{q}(\mathcal{F},p) = \left\{ x \in \omega : \lim_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}}\sum_{j=0}^{k}q_{j}x_{j}-l\right) \right|^{p_{k}} = 0 \text{ for some } l \in \mathbf{R} \right\},$$
$$s_{0}^{q}(\mathcal{F},p) = \left\{ x \in \omega : \lim_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}}\sum_{j=0}^{k}q_{j}x_{j}\right) \right|^{p_{k}} = 0 \right\}.$$

These spaces can be written with the help of (2) as follows:

$$s_{\infty}^{q}(\mathcal{F},p) = \{l_{\infty}(p)\}_{S_{\mathcal{F}}^{q}}, \ s_{c}^{q}(\mathcal{F},p) = \{c(p)\}_{S_{\mathcal{F}}^{q}} \text{ and } s_{0}^{q}(\mathcal{F},p) = \{c_{0}(p)\}_{S_{\mathcal{F}}^{q}},$$

where, $0 < p_k \leq H < \infty$.

Define the sequence $y = (y_k)$, which will be used, by the S_T^q -transform of a sequence $x = (x_k)$, i.e.,

$$y_k = \mathcal{F} \frac{1}{Q_k} \sum_{j=0}^k q_j x_j \text{ for all } k \in \mathbb{N}.$$
(2.1)

Theorem 2.1. The spaces $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$ are complete linear metric space paranormed by \mathcal{G} defined

$$\mathcal{G}(x) = \sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^{k} q_j x_j\right) \right|^{\frac{P_k}{M}}$$

Proof. We only prove the theorem for the space $s^q_{\infty}(\mathcal{F}, p)$. The linearity of $s^q_{\infty}(\mathcal{F}, p)$ with respect to the co-ordinate wise addition and scalar multiplication follows from the inequalities which are satisfied for $z, x \in s^q_{\infty}(\mathcal{F}, p)$ (see [18], p.30])

$$\sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}} \sum_{j=0}^{k} q_{j}(z_{j}+x_{j})\right) \right|^{\frac{p_{k}}{M}} \leq \sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}} \sum_{j=0}^{k} q_{j}z_{j}\right) \right|^{\frac{p_{k}}{M}} + \sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_{k}} \sum_{j=0}^{k} q_{j}x_{j}\right) \right|^{\frac{p_{k}}{M}}$$

$$(2.2)$$

and for any $\alpha \in \mathbb{R}$ (see, [17])

$$|\alpha|^{p_k} \le max\{1, |\alpha|^M\}.$$
 (2.3)

It is clear that, $\mathfrak{G}(\theta)=0$ and $\mathfrak{G}(x)=\mathfrak{G}(-x)$ for all $x \in s_0^q(\mathcal{F},p)$. Again the inequality (4) and (5), yield the subadditivity of g and

$$\mathfrak{G}(\alpha x) \le \max\{1, |\alpha|\} \mathfrak{G}(x).$$

Let $\{x^n\}$ be any sequence of points of the space $s_0^q(\mathcal{F}, p)$ such that $g(x^n - x) \to 0$ and (α_n) is a sequence of scalars such that $\alpha_n \to \alpha$. Then, since the inequality,

$$\mathfrak{G}(x^n) \le \mathfrak{G}(x) + \mathfrak{G}(x^n - x)$$

holds by subadditivity of \mathcal{G} , $\{\mathcal{G}(x^n)\}$ is bounded and we thus have

$$g(\alpha_n x^n - \alpha x) = \sup_k \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^k q_j(\alpha_n x_j^n - \alpha x_j)\right) \right|^{\frac{p_k}{M}} \\ \leq |\alpha_n - \alpha| g(x^n) + |\alpha| g(x^n - x)$$

which tends to zero as $n \to \infty$. That is to say that the scalar multiplication is continuous. Hence, g is paranorm on the space $s^q_{\infty}(\mathcal{F}, p)$.

It remains to prove the completeness of the space $s^q_{\infty}(\mathcal{F}, p)$. Let $\{x^i\}$ be any Cauchy sequence in the space $s^q_{\infty}(\mathcal{F}, p)$, where $x^i = \{x^i_0, x^i_2, ...\}$. Then, for a given $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that

$$\mathcal{G}(x^i - x^j) < \epsilon \tag{2.4}$$

A. H. GANIE

for all $i, j \ge n_0(\epsilon)$. Using definition of \mathcal{G} and for each fixed $k \in \mathbb{N}$ that

$$\left| (S_{\mathcal{F}}^q x^i)_k - (S_{\mathcal{F}}^q x^j)_k \right| \le \sup_k \left| (S_{\mathcal{F}}^q x^i)_k - (S_{\mathcal{F}}^q x^j)_k \right|^{\frac{p_k}{M}} < \epsilon$$

for $i, j \geq n_0(\epsilon)$, which leads us to the fact that $\{(S^q_{\mathcal{F}}x^0)_k, (S^q_{\mathcal{F}}x^1)_k, \ldots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say, $(S^q_{\mathcal{F}}x^i)_k \to ((S^q_{\mathcal{F}}x)_k \text{ as } i \to \infty)$. Using these infinitely many limits $(S^q_{\mathcal{F}}x)_0, (S^q_{\mathcal{F}}x)_1, \ldots)$ we define the sequence $\{(S^q_{\mathcal{F}}x)_0, (S^q_{\mathcal{F}}x)_1, \ldots\}$. From (6) for with $j \to \infty$ we have

$$\left| (S^q_{\mathcal{F}} x^i)_k - (S^q_{\mathcal{F}} x)_k \right| \le \epsilon, \tag{2.5}$$

for all k, i.e.,

$$\mathfrak{G}(x^i - x) \le \epsilon \ (i \ge n_0(\epsilon)).$$

Finally, taking $\epsilon = 1$ in (7) and letting $i \ge n_0(1)$. we have by Minkowski's inequality for each $m \in \mathbb{N}$ that

$$\left|(S_{\mathcal{F}}^q x)_k\right|^{\frac{p_k}{M}} \leq \mathfrak{G}(x^i - x) + \mathfrak{G}(x^i) \leq 1 + \mathfrak{G}(x^i)$$

which implies that $x \in s_{\infty}^{q}(\mathcal{F}, p)$. Since $\mathcal{G}(x - x^{i}) \leq \epsilon$ for all $i \geq n_{0}(\epsilon)$, it follows that $x^{i} \to x$ as $i \to \infty$, hence we have shown that $s_{\infty}^{q}(\mathcal{F}, p)$ is complete, hence the proof.

Remark 2.2. One can easily see the absolute property does not hold on the spaces $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$, that is $\mathfrak{G}(x) \neq \mathfrak{G}(|x|)$ for atleast one sequence in the spaces $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$ and this says that the spaces $s^q_{\infty}(\mathcal{F}, p)$, $s^q_c(\mathcal{F}, p)$ and $s^q_0(\mathcal{F}, p)$ are sequence spaces of non-absolute type.

Theorem 2.3. If p_k and t_k are bounded sequences of positive real numbers with $0 < p_k \le t_k < \infty$ for each $k \in \mathbf{N}$, then for any modulus function \mathfrak{F} , we have (i) $s_c^q(\mathfrak{F}, p) \subseteq s_c^q(\mathfrak{F}, t)$. (ii) $s_c^q(\mathfrak{F}, p) \subseteq s_c^q(\mathfrak{F}, t)$. (iii) $s_{c_0}^q(\mathfrak{F}, p) \subseteq s_{c_0}^q(\mathfrak{F}, t)$.

Proof. We only prove (i) and the rest can be proven similarly. For $\zeta \in s^q_{\infty}(\mathcal{F}, p)$ it is obvious that

$$\sup_{k} \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^k q_j x_j \right) \right| < \infty.$$

Consequently, for sufficiently large values of k say $k \ge k_0$ for some fixed $k_0 \in \mathbf{N}$, we have

$$\left|\mathcal{F}\left(\frac{1}{Q_k}\sum_{j=0}^k q_j x_j\right)\right| < \infty.$$

But \mathcal{F} being increasing and $p_k \leq t_k$, we have

$$\sup_{k \ge k_0} \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^k q_j x_j\right) \right|^{t_k} \le \sup_{k \ge k_0} \left| \mathcal{F}\left(\frac{1}{Q_k} \sum_{j=0}^k q_j x_j\right) \right|^{p_k} < \infty$$

From this, it is clear that $\zeta \in s^q_{\infty}(\mathcal{F}, t)$ and the result follows.

Acknowledgments

The author is very grateful to the reviewers for their appropriate suggestions that improved the presentation of the paper.

References

- 1. B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., 26, 701-715, (2002).
- 2. B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., 26, 701-715, (2002).
- 3. C. Aydin and F. Başar, Some new paranormed sequence spaces, Inf. Sci., 160, 27-40, (2004).
- M. Başarir and M. Öztürk, On the Riesz difference sequence space, Rendiconti del Cirocolo di Palermo, 57, 377-389, (2008).
- B. Choudhary and S. K. Mishra, On Köthe Toeplitz Duals of certain sequence spaces and matrix Transformations, Indian, J. Pure Appl. Math., 24(4), 291-301, (1993).
- 6. A. H. Ganie, Some new approach of spaces of non-integral order, J. Nonlinear Sci, Appl., 14(2), 89-96, (2021).
- 7. A. H. Ganie, Riesz spaces using modulus function, Int. jour. Math. Mod. Meth. Appl. Sci., 14, 20-23, (2020).
- A. H. Ganie and A. Antesar, Certain spaces using △- operator, Adv. Stud. Contemp. Math. (Kyungshang), 30(1)(2020), 17-27.
- 9. A. H. Ganie and S. A. Lone, Some sequence spaces of sigma means defined by Orlicz function, Appl. Math. Inf. Sci., (accepted 2020).
- A. H. Ganie and N. A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, J. Egyptain Math. Soc., 21, 34-40, (2013).
- A. H. Ganie, N. A. Sheikh and T. Jalal, On some new spaces of invariant means with respect to modulus function, The inter. Jou. Modern Math. Sciences, USA, 13(3), 210-216, (2015).
- A. H. Ganie, A. Mobin N. A. Sheikh and T. Jalal, New type of Riesz sequence space of non-absolute type, J. Appl. Comput. Math., 5(1), 1-4, (2016).
- A. H. Ganie, Mobin Ahmad, N. A. Sheikh, T.Jalal and S. A. Gupkari, Some new type of difference sequence space of non-absolute type, Int. J. Modern Math.Sci., 14(1), 116-122, (2016).
- K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1993), 223-238.
- T. Jalal, S. A. Gupkari and A. H. Ganie, *Infinite matrices and sigma convergent sequences*, Southeast Asian Bull. Math., 36, 825-830, (2012).
- C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68, 99-104, (1970).
- 17. I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64, 335-340, (1968).
- 18. I. J. Maddox, *Elements of Functional Analysis*, 2nded., The University Press, Cambridge, (1988).
- 19. E. Malkowsky, Matrix transformations between spaces of absolutely and strongly summable sequences, Habilitationsschrift, Giessen (1988).
- M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces l_p and l_∞-II, Nonlinear Anal., 65, 707-717, (2006).
- M. Mursaleen, A. H. Ganie and N. A. Sheikh, New type of difference sequence space and matrix transformation, FILOMAT, 28(7), 1381-1392, (2014).
- 22. N. Nakano, Cancave modulars, J. Math. Soc. Japan, 5, 29-49, (1953).
- P.-N. Ng and P.-Y. Lee, Cesàro sequences spaces of non-absolute type, Comment. Math. Prace Mat. 20(2), 429-433, (1978).
- 24. G. M. Petersen, Regular matrix transformations, Mc Graw-Hill, London, (1966).
- 25. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canand. J. Math., 25, 973-978, (1973).
- M. Sengönül and F. Başar, Some new Cesàro sequences spaces of non-absolute type, which include the spaces c_o and c, Soochow J. Math., 1, 107-119, (2005).
- N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedago. Nygr., 28, 47-58, (2012).
- N. A. Sheikh and A. H. Ganie, New paranormed sequence space and some matrix transformations, WSEAS Transaction of Math., 8(12), 852-859, (2013).
- N. A. Sheikh, T. Jalal and A. H. Ganie, New type of sequence spaces of non-absolute type and some matrix transformations, Acta Math. Acad. Paedago. Nygr., 29, 51-66, (2013).
- 30. Ö. Toeplitz, Über allegemeine Lineare mittelbildungen, Prace Math. Fiz., 22, 113-119, (1991).

A. H. GANIE

- 31. C.-S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 9, 269-274, (1978).
- 32. A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, Amsterdam New York Oxford, (1984).

Abdul Hamid Ganie, Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Saudi Arabia. E-mail address: a.ganie@seu.edu.sa

6