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Existence and Uniqueness Results for a Neutral Erythropoiesis Model with Iterative

Production and Harvesting Terms

Marwa Khemis and Ahlème Bouakkaz

abstract: The main objective of this work is to study the existence, uniqueness and stability of positive
periodic solutions for a first-order neutral differential equation with iterative terms which models the regulation
of red blood cell production under a harvesting strategy. Benefiting from the Krasnoselskii’s fixed point
theorem as well as some properties of an obtained Green’s function, we establish the existence of the solutions
and taking advantage of the Banach fixed point theorem, we prove that the proposed equation has exactly one
solution that depends continuously on parameters. Finally, two examples are exhibited to show the efficiency
and application of our findings which are completely new and enrich the existing literature.
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1. Introduction

In 1977, the Canadian scientists Michael Mackey and Leon Glass [11] introduced the following
hematopoiesis model with a monotone production rate and a constant delay:

x′ (t) = −γx (t) +
δθn

θn + xn (t− τ)
,

for modeling and getting a better understanding of the erythropoiesis. In biological terms, x (t) (cells/kg)
denotes the density of mature circulating erythrocytes (red blood cells, RBCs) in the blood circulation
at time t, γx (t) (cells/day) is the mortality term, γ > 0 (days−1) is called the mortality rate of RBCs in
the circulation, δθn

θn+xn(t−τ) (cells/kg-day) which depends on the cell density at an earlier time, describes

the RBCs reproduction under erythropoietin control, δ > 0 (units cells/kg-day) is the maximal RBC
production rate that the body can approach when the density of RBCs in the circulation falls below
normal, θ > 0 (units cells/kg) is a shape parameter, n is a positive exponent and τ > 0 (days) stands for
the maturation delay.

By letting n = 1 and x (t) = θy (t), we can rewrite the above Mackey-Glass equation as follows:

y′ (t) = −γy (t) +
δ

1 + y (t− τ)
.

In this work, we revisit this equation by assuming that the mortality and maximal production rates are
time-varying parameters and taking into account the blood cell harvesting such as wet cupping, blood
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sampling or blood donation which plays a significant role in the blood cell population dynamics and
the management of biological renewable resources. So, we consider the following neutral Mackey-Glass
equation with iterative production and harvesting terms:

d

dt
y (t) − λ

d

dt
y (t− τ (t)) = −γ (t) y (t) +

n
∑

i=2

δ (t)

1 + y[i] (t)
− k

(

t, y (t) , ..., y[n] (t)
)

, (1.1)

where the nth iterate y[n] (t) denotes the composition of y (t) with itself n times, τ, γ, δ ∈ C(R, (0,∞)) are
common periodic functions, λ ∈ (0, 1), τ (t) stands for a transit time needed for the liberation of RBCs
into the bloodstream and k ∈ C

(

R
n+1, (0,∞)

)

is the harvesting function which is supposed globally
Lipschitz in y1, y2, ..., yn, that is to say there exist n positive constants ℓ1, ℓ2, ..., ℓn such that

|k (t, y1, ..., yn) − k (t, z1, ..., zn)| ≤
n
∑

i=1

ℓi |yi − zi| . (1.2)

It is worth noting here that the iterates y[i] (t) in equation (1.1) result from (n− 1) delays of the
form τ i (t, y (t)) that describe the time durations between the division of multipotent hematopoietic stem
cells (HSCs) in the bone marrow and the formation of mature RBCs. Actually, these delays depend on
both the time and the current density of mature erytrocytes y (t) and this is essentially a consequence
of the fact that some growth factors and hormones such as the renal erythropoietin (EPO), thyroid and
pituitary hormones and sex steroids control the division of the HSCs and stimulate RBC maturation. In
other words, when the number of mature erytrocytes is large, the aforementioned hormones with the aid
of other growth factors suppress the division of the HSCs and repress the RBC maturation, and in the
converse case, they will promote and stimulate them. So, equation (1.1) which is a first order iterative
differential equation originates from a neutral differential equation with two types of delays, the first
one is a time varying lag and the other ones depend on both the state and the time variables. Alas,
despite their applications in describing real phenomena especially in epidemiology, biology and classical
electrodynamics (see [1], [2], [3] and [12]) and despite the fact that the last decade showed a growing
interest towards such equations (see [1]- [10], [12] and [13]), they have been avoided by the majority of
scholars and hence their theory is not fully developed yet. The difficulty of studying them stems from
their iterative terms that are not generally easy to control and often hamper the use of the most known
methods.

We would like to mention that, as far as we know, up until now, there are no results in the literature
that addressed neutral Mackey-Glass equation with iterative monotone production and harvesting terms.
So, our work is the first to study the existence and uniqueness of positive periodic solutions for this
iterative model by means of the fixed point theory together with the Green’s functions method as well as
some useful functional analysis tools.

The organization of this manuscript is now briefly described. In the next section, we introduce some
preliminary results while our foremost concern in the third and fourth Sections is to investigate the
existence, uniqueness and stability of positive periodic solutions for equation (1.1). In the fifth Section,
we provide two examples to check the validity of the derived key results. Finally, the paper ends with a
brief conclusion recapitulating the main outlines of the technique used.

2. Mathematical background

For α ≥ 0 and β, µ, T > 0, we consider the following compact and convex subset:

E = {y ∈ Y, α ≤ y (t) ≤ β, |y(t2) − y(t1)| ≤ µ |t2 − t1| , ∀t1, t2 ∈ R} ,

of the Banach space

Y = {y ∈ C(R,R), y(t+ T ) = y(t), ∀t ∈ R} ,

furnished with the usual supremum norm.
The next lemma shows the equivalence between equation (1.1) and an integral equation.
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Lemma 2.1. There is an equivalence between the following two assertions:
(A1) y ∈ E ∩ C1(R,R) is a solution of (1.1) .
(A2) y ∈ E satisfies the following integral equation:

y (t) =

∫ t+T

t

G (t, σ)

{(

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

− k
(

σ, y (σ) , ..., y[n] (σ)
)

−λγ (σ) y (σ − τ (σ))} dσ + λy (t− τ (t)) , (2.1)

where

G (t, σ) =
exp

(∫ σ

t
γ (u) du

)

(

exp
(

∫ T

0 γ (u) du
))

− 1
. (2.2)

We will use in the sequel the following notations:

sup
t∈[0,T ]

γ (t) = a, inf
t∈[0,T ]

δ (t) = b0, sup
t∈[0,T ]

δ (t) = b1, sup
σ∈[0,T ]

|k (σ, 0, ..., 0)| = ℓ0,

ℓ0 + β

n
∑

i=1

ℓi

i−1
∑

j=0

µj = ℓ, λa+ b1

n
∑

i=2

i−1
∑

j=0

µj +

n
∑

i=1

ℓi

i−1
∑

j=0

µj = d,

exp
(

−
∫ T

0
γ (u)du

)

exp
(

∫ T

0
γ (u) du

)

− 1
= A,

exp
(

∫ T

0
γ (u) du

)

exp
(

∫ T

0
γ (u) du

)

− 1
= B.

We assume the following hypotheses that will be used throughout this paper:

(n− 1)BTb1 ≤ (1 − λ)β, (2.3)

(n− 1)AT
b0

1 + β
−BT (λaβ + ℓ) ≥ (1 − λ)α, (2.4)

and
B (2 + Ta) ((n− 1) b1 + λaβ + ℓ) ≤ µ− λµ (µ+ 1) . (2.5)

Remark 2.2. Let G be the Green’s function which is given by the expression (2.2). Then for all t, σ ∈ R,
we have

G (t+ T, σ + T ) = G (t, σ) , ∀t, σ ∈ R, (2.6)

0 < A ≤ G (t, σ) ≤ B, (2.7)

and it follows from the mean value theorem that
∫ t1+T

t1

|G (t2, σ) − G (t1, σ)| dσ ≤ TBa |t2 − t1| , ∀t1, t2 ∈ R. (2.8)

3. Existence of positive periodic solutions

Now, we will need to construct an operator Z satisfying the requirements of the Krasnoselskii’s fixed
point theorem. To this aim, let us denote the right hand side of equation (2.1) by (Zy) (t) where Z can
be written as Z = S1 + S2 such that S1, S2 : E → Y are given as follows:

(S1y) (t) =

∫ t+T

t

G (t, σ)

{(

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

− k
(

σ, y (σ) , ..., y[n] (σ)
)

−λγ (σ) y (σ − τ (σ))} dσ, (3.1)

and
(S2y) (t) = λy (t− τ (t)) . (3.2)

Thereby fixed points of Z are solutions of (1.1) and vice versa. So, we must show that S2 is a contraction,
S1 is continuous and compact and S1y + S2z ∈ E, for all y, z ∈ E.
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Remark 3.1. It follows from condition (1.2) and [ [13], Lemma 1] that

∣

∣

∣k
(

σ, ψ[1] (σ) , ψ[2] (σ) , ..., ψ[n] (σ)
)∣

∣

∣ ≤ ℓ. (3.3)

Lemma 3.2. Let τ ∈ E. Assume that conditions (1.2) , (2.3)-(2.5) hold. Then

S1y + S2z ∈ E, (3.4)

for all y, z ∈ E.

Proof. Let y, z ∈ E, t ∈ R. From (2.7) and (2.3) we have

(S1y) (t) + (S2z) (t) ≤

n
∑

i=2

∫ t+T

t

G (t, σ)
δ (σ)

1 + y[i] (σ)
dσ + λz (t− τ (t))

≤ (n− 1)BTb1 + λβ

≤ β. (3.5)

On the other hand, in view of (2.7) and (3.3) we obtain

(S1y) (t) + (S2z) (t) =

∫ t+T

t

G (t, σ)

((

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

− k
(

σ, y (σ) , ..., y[n] (σ)
)

−λγ (σ) y (σ − τ (σ))) dσ + λz (t− τ (t))

≥ (n− 1)AT
b0

1 + β
−BT (λaβ + ℓ) + λα.

Using (2.4), we obtain

(S1y) (t) + (S2z) (t) ≥ α, ∀y, z ∈ E, ∀t ∈ R. (3.6)

Let t1, t2 ∈ R (with t1 < t2), it follows from (2.7) , (2.8) and (3.3) that

|(S1y) (t2) − (S1y) (t1)|

≤

∫ t1

t2

G (t2, σ)

(

k
(

σ, y (σ) , ..., y[n] (σ)
)

+ λγ (σ) y (σ − τ (σ)) +

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

dσ

+

∫ t2+T

t1+T

G (t2, σ)

(

k
(

σ, y (σ) , ..., y[n] (σ)
)

+ λγ (σ) y (σ − τ (σ)) +

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

dσ

+

∫ t1+T

t1

(

k
(

σ, y (σ) , ..., y[n] (σ)
)

+ λγ (σ) y (σ − τ (σ)) +

n
∑

i=2

δ (σ)

1 + y[i] (σ)

)

× |G (t2, σ) − G (t1, σ)| dσ

≤ B (2 + Ta) ((n− 1) b1 + λaβ + ℓ) |t2 − t1| , (3.7)

and

|(S2z) (t2) − (S2z) (t1)| ≤ λµ (µ+ 1) |t2 − t1| . (3.8)

Using (2.5) , (3.7), (3.8) and [ [13], Lemma 4], we get

|(S1y + S2z) (t2) − (S1y + S2z) (t1)| ≤ µ |t2 − t1| . (3.9)

Finally, from (3.5) , (3.6) and (3.9) , we infer that (S1y) (t) + (S2z) (t) ∈ E, for all y, z ∈ E and t ∈ R. �

Lemma 3.3. If the hypothesis (1.2) is satisfied, operator S1 is continuous and compact.
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Proof. Let y, z ∈ E. In view of (1.2) and (2.7) we have

|(S1y) (t) − (S1z) (t)| ≤ Bb1

n
∑

i=2

∫ t+T

t

∣

∣

∣y
[i] (σ) − z[i] (σ)

∣

∣

∣ dσ

+B

n
∑

i=1

∫ t+T

t

ℓi

∣

∣

∣y[i] (σ) − z[i] (σ)
∣

∣

∣ dσ

+ λBaT ‖y − z‖ .

By using [ [13], Lemma 1], we get

‖S1y − S1z‖ ≤ BTd ‖y − z‖ ,

which shows that S1 is Lipschitz continuous and therefore it is continuous. Thanks to the compactness
of E, S1 is compact. �

Theorem 3.4. Let τ ∈ E and assume that the hypotheses (1.2) , (2.3)-(2.5) are fulfilled. Then equation
(1.1) has a positive periodic solution in E.

Proof. Since λ < 1, then S2 is a contraction. So, it follows from Lemmas 3.2 and 3.3 that all conditions
of the Krasnoselskii’s fixed point theorem are satisfied. Consequently, Z has a fixed point in E which is
a solution of equation (1.1). �

4. Uniqueness and Continuous dependence

Theorem 4.1. Let τ ∈ E. If conditions (1.2) , (2.3)-(2.5) and

BTd+ λ < 1, (4.1)

hold, then equation (1.1) has a unique solution that belongs to E.

Proof. Similarly as in the proof of Lemmas 3.2 and 3.3, we obtain that Z maps E into itself and

‖Zy − Zz‖ ≤ (BTd+ λ) ‖y − z‖ .

So, from (4.1) , Z is a contraction and hence equation (1.1) has a unique positive periodic solution in E.
�

Theorem 4.2. The unique solution obtained in Theorem 4.1 depends continuously on the functions γ, δ
and k.

Proof. Let y1 be the unique solution of equation (1.1), so y1 satisfies the integral equation (2.1) i.e.

y1 (t) =

∫ t+T

t

G1 (t, σ)

(

n
∑

i=2

δ1 (σ)

1 + y
[i]
1 (σ)

− k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)

−λγ1 (σ) y1 (σ − τ (σ))) dσ + λy1 (t− τ (t)) ,

and let y2 be a solution of the perturbed equation with a small perturbation in the harvesting term k,
the maximal production rate δ and the mortality rate γ, that satisfy all conditions of Theorem 4.1. So,
y2 satisfies the following integral equation:

y2 (t) =

∫ t+T

t

G2 (t, σ)

(

n
∑

i=2

δ2 (σ)

1 + y
[i]
2 (σ)

− k2

(

σ, y2 (σ) , ..., y
[n]
2 (σ)

)

−λγ2 (σ) y2 (σ − τ (σ))) dσ + λy2 (t− τ (t)) ,
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where

G1 (t, σ) =
exp

(∫ σ

t
γ1 (u) du

)

(

exp
(

∫ T

0 γ1 (u)du
))

− 1
and G2 (t, σ) =

exp
(∫ σ

t
γ2 (u) du

)

(

exp
(

∫ T

0 γ2 (u) du
))

− 1
,

and k2, γ2, δ2 are the perturbed parameters.
In view of (2.7) and [ [13], Lemma 1] we obtain

∣

∣

∣δ2 (σ) y
[i]
1 (σ) − δ1 (σ) y

[i]
2 (σ)

∣

∣

∣ ≤ β ‖δ2 − δ1‖ + ‖δ2‖

i−1
∑

j=0

µj ‖y2 − y1‖ , (4.2)

and the mean value theorem gives us the following estimate:
∫ t+T

t

|G2 (t, σ) − G1 (t, σ)| dσ ≤ ̺ ‖γ2 − γ1‖ , (4.3)

where

̺ =
T 2eT max{‖γ

1
‖,‖γ

2
‖}

exp
(

∫ T

0 γ2 (u)du
)

− 1



1 +
eT ‖γ

1
‖

exp
(

∫ T

0 γ1 (u)du
)

− 1



 .

We have

|y2 (t) − y1 (t)| ≤

∣

∣

∣

∣

∣

n
∑

i=2

(

∫ t+T

t

G2 (t, σ)
δ2 (σ)

1 + y
[i]
2 (σ)

dσ −

∫ t+T

t

G1 (t, σ)
δ1 (σ)

1 + y
[i]
1 (σ)

dσ

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t+T

t

G2 (t, σ) k2

(

σ, y2 (σ) , ..., y
[n]
2 (σ)

)

dσ

−

∫ t+T

t

G1 (t, σ) k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)

dσ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t+T

t

G2 (t, σ)λγ2 (σ) y2 (σ − τ (σ)) dσ

−

∫ t+T

t

G1 (t, σ)λγ1 (σ) y1 (σ − τ (σ)) dσ

∣

∣

∣

∣

∣

+ |λy2 (t− τ (t)) − λy1 (t− τ (t))| .

By using (2.7), (4.2) and (4.3) we get
∣

∣

∣

∣

∣

n
∑

i=2

(

∫ t+T

t

G2 (t, σ)
δ2 (σ)

1 + y
[i]
2 (σ)

dσ −

∫ t+T

t

G1 (t, σ)
δ1 (σ)

1 + y
[i]
1 (σ)

dσ

)∣

∣

∣

∣

∣

≤

n
∑

i=2

∫ t+T

t

G2 (t, σ)

∣

∣

∣

∣

∣

δ2 (σ)

1 + y
[i]
2 (σ)

−
δ1 (σ)

1 + y
[i]
1 (σ)

∣

∣

∣

∣

∣

dσ

+

n
∑

i=2

∫ t+T

t

δ1 (σ)

1 + y
[i]
1 (σ)

|G2 (t, σ) − G1 (t, σ)| dσ

≤

n
∑

i=2

∫ t+T

t

G2 (t, σ)
∣

∣

∣δ2 (σ) y
[i]
1 (σ) − δ1 (σ) y

[i]
2 (σ)

∣

∣

∣ dσ

+

n
∑

i=2

∫ t+T

t

G2 (t, σ) |δ2 (σ) − δ1 (σ)| dσ

+
n
∑

i=2

∫ t+T

t

δ1 (σ) |G2 (t, σ) − G1 (t, σ)| dσ.
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So
∣

∣

∣

∣

∣

n
∑

i=2

(

∫ t+T

t

G2 (t, σ)
δ2 (σ)

1 + y
[i]
2 (σ)

dσ −

∫ t+T

t

G1 (t, σ)
δ1 (σ)

1 + y
[i]
1 (σ)

dσ

)∣

∣

∣

∣

∣

≤ (n− 1)TB (1 + β) ‖δ2 − δ1‖ + TB ‖δ2‖

n
∑

i=2

i−1
∑

j=0

µj ‖y2 − y1‖

+ ̺ (n− 1) ‖δ1‖ ‖γ2 − γ1‖ . (4.4)

Thanks to (1.2) and [ [13], Lemma 1], we arrive at

∣

∣

∣k2

(

σ, ..., y
[n]
2 (σ)

)

− k1

(

σ, ..., y
[n]
1 (σ)

)∣

∣

∣ ≤ ‖k2 − k1‖ +

n
∑

i=1

ℓi

i−1
∑

j=0

µj ‖y2 − y1‖ . (4.5)

Since
∣

∣

∣

∣

∣

∫ t+T

t

G2 (t, σ) k2

(

σ, y2 (σ) , ..., y
[n]
2 (σ)

)

dσ −

∫ t+T

t

G1 (t, σ) k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)

dσ

∣

∣

∣

∣

∣

≤

∫ t+T

t

G2 (t, σ)
∣

∣

∣k2

(

σ, y2 (σ) , ..., y
[n]
2 (σ)

)

− k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)∣

∣

∣ dσ

+

∫ t+T

t

k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)

|G2 (t, σ) − G1 (t, σ)| dσ.

It results from (2.7), (3.3), (4.3) and (4.5) that

∣

∣

∣

∣

∣

∫ t+T

t

G2 (t, σ) k2

(

σ, y2 (σ) , ..., y
[n]
2 (σ)

)

dσ −

∫ t+T

t

G1 (t, σ) k1

(

σ, y1 (σ) , ..., y
[n]
1 (σ)

)

dσ

∣

∣

∣

∣

∣

≤ ̺ℓ ‖γ2 − γ1‖ + TB ‖k2 − k1‖ + TB

n
∑

i=1

ℓi

i−1
∑

j=0

µj ‖y2 − y1‖ . (4.6)

On the other hand, we have

∣

∣

∣

∣

∣

∫ t+T

t

λG2 (t, σ) γ2 (σ) y2 (σ − τ (σ)) dσ −

∫ t+T

t

λG1 (t, σ) γ1 (σ) y1 (σ − τ (σ)) dσ

∣

∣

∣

∣

∣

≤ λ

∫ t+T

t

G2 (t, σ) |γ2 (σ) y2 (σ − τ (σ)) − γ1 (σ) y1 (σ − τ (σ))| dσ

+ λ

∫ t+T

t

γ1 (σ) y1 (σ − τ (σ)) |G2 (t, σ) − G1 (t, σ)| dσ.

But,
|γ2 (σ) y2 (σ − τ (σ)) − γ1 (σ) y1 (σ − τ (σ))| ≤ ‖γ2‖ ‖y2 − y1‖ + β ‖γ2 − γ1‖ . (4.7)

So, by using (2.7), (4.3) and (4.7), we obtain

∣

∣

∣

∣

∣

∫ t+T

t

G2 (t, σ)λγ2 (σ) y2 (σ − τ (σ)) dσ −

∫ t+T

t

G1 (t, σ)λγ1 (σ) y1 (σ − τ (σ)) dσ

∣

∣

∣

∣

∣

≤ λBT ‖γ2‖ ‖y2 − y1‖ + βλ (̺ ‖γ1‖ +BT ) ‖γ2 − γ1‖ . (4.8)

We have also
|λy2 (t− τ (t)) − λy1 (t− τ (t))| ≤ λ ‖y2 − y1‖ . (4.9)



8 M. Khemis and A. Bouakkaz

Thus, it follows from (4.4), (4.6), (4.8) and (4.9) that

‖y2 − y1‖ ≤ BT



λ ‖a2‖ + ‖δ2‖

n
∑

i=2

i−1
∑

j=0

µj +

n
∑

i=1

ℓi

i−1
∑

j=0

µj



 ‖y2 − y1‖

+ (̺ (n− 1) ‖δ1‖ + ̺ℓ+ λβ (BT + ̺ ‖γ1‖)) ‖γ2 − γ1‖

+ (n− 1)TB (1 + β) ‖δ2 − δ1‖ + TB ‖k2 − k1‖ .

Finally, by virtue of the condition (4.1), we conclude that

‖y2 − y1‖ ≤
1

1 − (BTd+ λ)
{(̺ (n− 1) ‖δ1‖ + ̺ℓ+ λβ (BT + ̺ ‖γ1‖)) ‖γ2 − γ1‖

+ (n− 1)TB (1 + β) ‖δ2 − δ1‖ + TB ‖k2 − k1‖} .

This finishes the proof. �

5. Examples

Example 5.1. We consider the following neutral Mackey-Glass equation with iterative terms:

d

dt

[

y (t) − λy

(

t− 0.01 − 0.08 sin4 2π

11
t

)]

= −

(

1

20
+

1

20
cos4 2π

11
t

)

y (t) +
0.0027 + 0.0003 sin2 2π

11 t

1 + y[2] (t)

−

(

1

15π7
+

1

17π7

(

cos4 2π

11
t

)

y[1] (t) +
1

19π7

(

sin2 2π

11
t

)

y[2] (t)

)

, (5.1)

where E = P11 (8, 0.0025, 0.1), λ = 0.002, n = 2, ℓ0 =
1

15π7
, ℓ1 =

1

17π7
, ℓ2 =

1

19π7
, ℓ ≃ 3.9704 × 10−5,

a = 0.1, b0 = 0.0027, b1 = 0.003, A ≃ 0.41532, B ≃ 1.8847, d ≃ 2.737 6 × 10−2.
In this case, all conditions of Theorem 4.1 are satisfied, so (5.1) has a unique positive periodic solution

in P11

(

8, 0.0025,
1

10

)

that depends continuously on the functions γ, δ and k.

Example 5.2. We consider the following neutral Mackey-Glass equation with iterative terms:

d

dt

[

y (t) − λy

(

t− 0.3 − 0.05 sin4 2π

11
t

)]

= −

(

0.02 + 0.005 cos2 2π

11
t

)

y (t) +
0.027 + 0.003 sin2 2π

11 t

1 + y[2] (t)

−

(

1

5π7
+

1

7π7

(

cos4 2π

11
t

)

y[1] (t) +
1

9π7

(

sin2 2π

11
t

)

y[2] (t)

)

, (5.2)

where E = P11 (2, 0.2, 1.6), λ = 0.02, n = 2, ℓ0 =
1

5π7
, ℓ1 =

1

7π7
,

ℓ2 =
1

9π7
, ℓ ≃ 3.184 8×10−4, a = 0.025, b0 = 0.027, b1 = 0.03, A ≃ 2.780 3, B ≃ 4.561, d ≃ 9.0658×10−2.

So, the condition (4.1) in Theorem 4.1 is not fulfilled while all conditions of Theorem 3.4 are satisfied.
So the Mackey-Glass equation (5.2) in this case has a positive periodic solution in P11 (2, 0.2, 1.6) which
is not necessarily unique.

6. Conclusion

This work mainly dealt with a neutral erythropoiesis model involving iterative production and har-
vesting terms where we proved that the effect of the harvesting strategy does not go beyond reducing
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the density of red blood cells and, as such, it does not lead to their extinction. Under some sufficient
criteria and by virtue of a technique based on Banach and Krasnoselskii’s fixed point theorems as well
as the Green’s functions method, we derived the existence, uniqueness and stability results in where the
sought solutions were expressed as fixed points of a suitable integral operator fulfilling all conditions of
the chosen fixed point theorems. At first glance, this technique appears as if it does not require too much
effort to achieve the desired results, but in fact it needs to undertake an important preparatory work
before applying our fixed point theorems. For instance, one of the key preparatory steps is to choose a
suitable subset of an appropriate Banach space which on the one hand will enable us to control the iter-
ative terms and, on the other hand, will guarantee, for the biological realism, the periodicity, positivity
and boundedness of the solutions. Another preparatory step lies in establishing some useful properties
of the obtained Green’s kernel which is not always an easy task but not an impossible one.
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