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A Mathematical Model and Optimal Control Analysis for Scholar Drop Out
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abstract: In this paper, we proposed and analyzed a non-linear mathematical model for scholar Drop out
and we advanced an optimal control policy for this model by considering three variables namely the numbers
of school-age children who are in school, school-age children who are out of school, and school-age children in
non-formal education. The model is examined using the stability theory of differential equations. The optimal
control analysis for the proposed scholar Drop out model is performed using Pontryagin’s maximum principle.
The conditions for optimal control of the problem with effective use of implemented policies to counter this
scourge are derived and analyzed.
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1. Introduction

Dropping out of school is a significant scale in developing countries, as mentioned by several UNESCO
reports (2005, 2008, 2009, 2011, etc.). The literature review also indicates various consequences of the
phenomenon on the social level, in particular the increase in the illiteracy rate, the achievement of
universal primary education, as well as economically, including high unemployment rate. The majority
of studies that have looked at this phenomenon are mainly of an economic nature, dealing little with
the question from the point of view of families who are however the first to be affected by their child
dropping out of school. In addition, most of these research papers are primarily quantitative. The figures
obtained indicating the importance of risk factors, leaving in the shade an in-depth explanation of the
phenomenon. At the theoretical level, the present study is informed by the social representations theory
developed by Moscovici (1989), a theory that is mainly concerned with investigating the relationships that
a social actor or group maintain with regard to social objects such as education. Dropping out of school
deprives children of their right to equitable and quality education, as well as of their right to obtain a
certification or diploma which is supposed to help them flourish, build their future and participate in the
full development of their country. For exemple in Morocco, dropping out of school threatens thousands
of students and forces them to leave school way before graduation time and in certain cases even before
the completion of the cycles of compulsory education (primary and secondary college). Indeed, in 2018,
around 431,876 students dropped out of public education without having obtained their certification, of
which 78% were primary and college cycles, cycles which are supposed to retain children in class at least
until the age of 15 [1]. Aware of the seriousness of this phenomenon and its harmful effects on students
and their families and on the future of next generations, the 2015-2030 Strategic Vision called, in its lever
1, to implement the principle of equal access to education and training and in particular to ”continued
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efforts targeting the fight against school dropouts and dropouts and to dry up their sources respectively ”.
In lever 3, promoting positive discrimination, it is even a question of giving priority in efforts to re-educte
school dropouts in rural and peri-urban areas and deficit areas, taking into account the high abandonment
rates which characterize these areas. However, it would not be fair to deny the efforts and devices set
up by the state to reduce losses in the system of education and in particular in compulsory education
cycles. With various social support programs, the public authorities are doing their best to reduce
dropout by improving learning conditions for students from disadvantaged backgrounds. However, there
are several efforts and devices set up by the Moroccan state to reduce losses in the system of education
and in particular in compulsory education cycles. With various social support programs (e.g., canteens,
scholarships, boarding schools, Tayssir), the public authorities are trying their best to reduce dropout by
improving learning conditions for students from disadvantaged backgrounds. The search for solutions to
two problems affecting the Moroccan education system, namely non-schooling and dropping out of school
are at the origin of non-formal education. It was a question of ensuring alternative educational offers to
children outside the school system, whatever the reason, aims to reintegrate young people aged 9 to 15 into
formal education, training professional or prepare them for a more suitable integration into working life.
In this paper we will deal with a social problem. We will model the problem of scholar drop out through
non-linear ordinary differential equations, and will attempt to propose an optimal control policy for this
model, a similar work is already being done for the social problem of unemployment [2]. The optimal
control analysis for Scholar drop out model using Pontryagins maximum principle [3] is considered. The
conditions were derived and analyzed for optimal control of the school dropout problem with effective use
of the policies implemented by the government to reintegrate children who have dropped out of school into
formal education and create new opportunities in non-formal education. We will consider the following
three major variables in the above problem:

(1) S: the number of school-age children who are in school,
(2) D: the number of school-age children who are out of school,
(3) R: the number of school-age children in non-formal education.

The paper is organized as follows. Section 2 describes the basic model, Section 3 describes the exis-
tence of equilibria, Section 4 describes the stability, Section 5 describes the formulation of mathematical
model and the derivation of optimal control pair, and Section 6 deals with numerical simulation results.
Conclusions are outlined in Section 7.

2. A Mathematical model for scholar drop out

Variables and parametres of the model are described in Table I. The assumptions we make are as
follows:

(i)The school-age children who are out of school can enter in non-formal education program,

(ii) any child of school age who is not in school must go through non-formal education to return to
school,

(iii) rate of migration of school-age children who are in school is assumed to be proportional to their
number,

(iiii) rate of movement from children who are in non-formal education class to children who are in
school class is jointly proportional to R(t) and D(t).

α0R(t)D(t) represent the number of school-age children return to school after going to non-formal
education. Flow diagram of the model for scholar drop out problem considered in this study is given in
fig1.

In view of the aforementioned considerations, the following system of equations that captures the
problem of scholar drop out in a region is derived.

dD(t)
dt

= Λ − (β + δ) D(t) + αS(t)
dS(t)

dt
= α0R(t)D(t) − (β + α) S(t)

dR(t)
dt

= −α0R(t)D(t) − βR(t) + δD(t)

(1)
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tab 1. Variables and parameters.

Variables/parameters Explanation

S(t) The number of school-age children who are in school at time t

D(t) The number of school-age children who are out of school at time t

R(t) The number of school-age children in non-formal education at time t

Λ The constant rate at which the number of the school-age children

who are out of school is increasing continuously

α Represents the rate at which the school-age children drop out of school

α0 Represents the rate at which the school-age children who are out of school

return to school

β Represents the natural mortality rate of children at school age

δ Represents the rate at which the school-age children who are out of school

enter in non-formal education program

Figure 1: Model flow diagram with initial conditions D(0) = D0, S(0) = S0 and R(0) = R0.

The feasible set of system (1) that attracts all solutions initiation in the interior of positive octant is
given by

Ω =

{

(D(t), S(t), R(t)) : 0 ≤ D(t) ≤ D0 + Λ
β

+ α
β

‖S‖
∞

, 0 ≤ S(t) ≤ S0 + α0 ‖R‖
∞

‖D‖
∞

,

0 ≤ R(t) ≤ R0 + δ ‖D‖
∞

}

Lemma 2.1. The set

Ω =

{

(D(t), S(t), R(t)) : 0 ≤ D(t) ≤ D0 + Λ
β

+ α
β

‖S‖
∞

, 0 ≤ S(t) ≤ S0 + α0 ‖R‖
∞

‖D‖
∞

,

0 ≤ R(t) ≤ R0 + δ ‖D‖
∞

}

is a region of attraction for the model in system (1) and attracts all solutions initiation in the interior
of positive octant.

Proof. As
·

D = Λ − (β + δ) D(t) + αS(t) then d
dt

(

D(t)eβt
)

≤ Λeβt + αS(t)eβt

Hence D(t)eβt − D0 ≤ Λ
β

(

eβt − 1
)

+ α
∫ t

0
S(u)eβudu

so D(t) ≤ D0e−βt + Λ
β

− Λ
β

e−βt + αe−βt
∫ t

0 S(u)eβudu

⇒ D(t) ≤ D0 + Λ
β

+ αe−βt
∫ t

0
S(u)eβudu

⇒ D(t) ≤ D0 + Λ
β

+ α
β

‖S‖
∞

e−βt
(

eβt − 1
)

Hence D(t) ≤ D0 + Λ
β

+ α
β

‖S‖
∞

(

1 − e−βt
)

Or 0 ≤ 1 − e−βt ≤ 1
So D(t) ≤ D0 + Λ

β
+ α

β
‖S‖

∞

by Analogy, we prove that S(t) ≤ S0 + α0 ‖R‖
∞

‖D‖
∞

and R(t) ≤ R0 + δ ‖D‖
∞

�
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2.1. Equilibrium analysis

The model system (1) has one non negative equilibrium point E0(D∗, S∗, R∗) obtained by solving the
following set of algebraic equations.

Λ − (β + δ) D(t) + αS(t) = 0 (2)
α0R(t)D(t) − (β + α) S(t) = 0 (3)
−α0R(t)D(t) − βR(t) + δD(t) = 0 (4)

From Eq. (2), we get D = 1
β+δ

(Λ + αS)

Taking an addition of equation (3) and (4) δD − βR − (β + α) S = 0

by replacing this value of D we get R = 1
β

[ δ
β+δ

Λ + ( δα
β+δ

− (β + α))S]

Put values of D and R in (3) we get, −A0S2 − A1S + A2 = 0 (*)

Where,

A0 = α0α
β(β+δ)2 (β2 + (α + δ) β)

A1 = 1
β(β+δ)2

[

Λα0

(

β2 + (α + δ) β − δα
)

+ β (β + α) (β + δ)
2
]

A2 = α0δΛ2

β(β+δ)2

we can easily prove that β2 + (α + δ) β − δα ≥ 0 if β ≥
√

(α+δ)2+4αδ−(α+δ)

2

Since Ai, i = 0, 1, 2 all are positive and number of changes in signs of equation (*) is only one. So, by
Descart’s rule equation (*) has only one positive solution say S∗. So, we get the non-negative equilibrium
point of model with coordinates:

D∗ = 1
β+δ

(Λ + αS∗)

R∗ = 1
β

[ δ
β+δ

Λ + ( δα
β+δ

− (β + α))S∗]

So, E0(D∗, S∗, R∗) is required non negative solution of the Model.

2.2. Stability analysis

To check the local stability of equilibrium point E0(D∗, S∗, R∗) we calculate the variational matrix
M of the model system (1) corresponding to E0(D∗, S∗, R∗)

M =





−(β + δ α 0
α0R∗ −(α + β) α0D∗

−α0R∗ + δ 0 −α0D∗ − β





The characteristic equation of the above matrix M is λ3 + a1λ2 + a2λ + a3 = 0 (5)
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where

a1 = α0D∗ + 3β + α + δ

a2 = (α0D∗ + β)(2β + α + δ) + (α + β) (δ + β) − αα0R∗

a3 = (α0D∗ + β)
(

β2 + (α + δ) β − αα0

)

+ αα0D∗R∗

Since, a1, a2, a3 are all positive and a little algebraic manipulation yields that a1a2 − a3 > 0. So, by
Routh Hurwitz criteria all roots of equation (5) are negative or having a negative real part. Therefore
equilibrium point E0(D∗, S∗, R∗) is locally asymptotically stable.

3. A mathematical model for scholar drop out with control variables

3.1. The mathematical model

The dropping out situation has prompted educational decision-makers in Morocco to implement
projects and programs to counter this scourge. among these programs there is one based on condi-
tional cash transfer called Tayssir and was launched in October 2008. This program is managed by the
Moroccan Association for Support to Schooling (AMAS) in partnership with the Ministry of Education
and the Higher Education Council. It ”consists in bringing a financial contribution to poor families in
order to act on abandonment school by neutralizing certain factors affecting the demand for education
” (Permanent Mission of the Kingdom of Morocco in Geneva, 2009, p. 1). Thus, with its various part-
ners, AMAS provides grants to the families concerned. Those scholarships are given according to the
child’s educational level and the number children going to school for a family; this money transfer is
conditional on the presence of the child at school. Tayssir’s goal is to reduce wastage by encouraging
families to continue sending their children to school and, above all, to support them throughout their
primary school career.The search for solutions to two problems affecting the Moroccan education system,
namely non-schooling and dropping out, is at the origin of non-formal education, one of its objectives is
to reintegrate young people aged 9 to 15 into formal education.

we can have a optimal control of the school dropout problem. For effective control to be achievable in
finite time, time dependent controls [4] need to be considered. When the control is time dependent, the
Pontryagin’s maximum principle can be used to determine the conditions for effective control of scholar
drop out in finite time. The following control variables are introduced in the model described in Section
5.

- Control u1(t) ∈ [0, 1] is the implemented policy of government based on conditional cash transfer
called Tayssir.

- Control u2(t) ∈ [0, 1] is the implemented policy of government to integrate young people aged 9 to
15 into non-formal education.

Introducing the controls based on conditional cash transfer called Tayssir and on integrate young
people aged 9 to 15 into non-formal education, the model described in (1) becomes

dD(t)
dt

= Λ − (β + δ) D(t) + αu1S(t) − u2D(t)
dS(t)

dt
= α0R(t)D(t) − βS(t) − αu1S(t)

dR(t)
dt

= −α0R(t)D(t) − βR(t) + δD(t) + u2D(t)

(6)

On the whole, pre-selected objective involves minimization of the number of children who have dropped
out of school at minimum cost of policymaking based on conditional cash transfer called Tayssir and on
integrate young people aged 9 to 15 into non-formal education. The objective function J is given by
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J(u1(t), u2(t)) =
∫ tf

0

[

AD(t) + B
2 u2

1(t) + C
2 u2

2(t)
]

dt (7)

where tf is the final time and coefficients A, B and C are balancing cost factors. The terms B
2 u2

1(t)

and C
2 u2

2(t) are the costs associated with implemented policies of government based on conditional cash
transfer called Tayssir and on integrate young people aged 9 to 15 into non-formal education. A quadratic
costs on the controls with the given objective function J(u1(t), u2(t)) is chosen [4,5]. The goal is to
minimize the number of children who have dropped out of school, while minimizing the costs of controls
u1(t) and u2(t) such that

J(u∗

1(t), u∗

2(t)) = min {J(u1(t), u2(t))/u1(t), u2(t) ∈ w} (8)

where w = (u1(t), u2(t)) such that u1, u2 measurable with 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, for t ∈ [0, tf ],
is the control set. The necessary conditions that an optimal control problem must satisfy are obtained
using Pontryagin’s maximum principle [6]. This principle converts equations (7) and (8) into a problem
of minimizing pointwise Hamiltonian H with respect to u1(t) and u2(t).

H = AD(t) + B
2 u2

1(t) + C
2 u2

2(t) +λD[Λ − (β + δ) D(t) + αu1S(t) − u2D(t)]
+λS [α0R(t)D(t) − βS(t) − αu1S(t)] (9)
+λR[−α0R(t)D(t) − βR(t) + δD(t) + u2D(t)]

where λD, λS and λR are the associated adjoint variables or co-state variables for the states D, S and
R , respectively. By applying Pontryagian’s maximum principle [6] and the existing result for optimal
control from [3], the system of equations is obtained, taking the appropriate partial derivatives of the
Hamiltonian (9) with respect to the associated state variables.

Theorem 3.1. Given the optimal controls u1(t) and u2(t) and solutions D∗(t), S∗(t) and R∗(t) of the
corresponding state system (6) that minimizes J(u1(t), u2(t)) over w, there exist adjoint variables λD,
λS , and λR satisfying

− dλi

dt
= ∂H

∂i
(10)

with transversality condition

λD(tf ) = λS(tf ) = λR(tf ) = 0 where i = D, S, R (11)

Further,

u∗

1(t) = min
{

1, max
{

0, (λS−λD)αS(t)
B

}}

(12)

and u∗

2(t) = min
{

1, max
{

0, (λD−λR)D(t)
C

}}
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Proof. The existence of an optimal control follows from corollary 4.1 of Fleming and Rishel [3], because
the integrand J is a convex function of u1(t) and u2(t). A priori boundedness of the state solutions and
also the state system satisfies the Lipschitz property with respective to the state variables. The differential
equations governing the adjoint variables are obtained by differentiating the Hamiltonian function and
evaluating at the optimal control pair. Then the adjoint system can be written as

dλD

dt
= − ∂H

∂D(t)

= −A + α0R(t)(λR − λS) + λD(β + δ) + (λD − λR)u2(t) − λRδ
dλS

dt
= − ∂H

∂S(t)

= αu1(t)(λs − λD) + λsβ
dλR

dt
= − ∂H

∂R(t)

= α0D(t)(λR − λS) + λRβ
Therefore,

dλD

dt
= −A + α0R(t)(λR − λS) + λD(β + δ) + (λD − λR)u2(t) − λRδ

dλS

dt
= αu1(t)(λs − λD) + λsβ (13)

dλR

dt
= α0D(t)(λR − λS) + λRβ

with transversality conditions λD(tf ) = λS(tf ) = λR(tf ) = 0.
Because of the a priori boundedness of the state system, adjoint system, and the resulting Lipschitz

structure of the ordinary differential equations, the uniqueness of the optimal control for small tf is
obtained. The uniqueness of the optimal control follows from the uniqueness of optimality system, which
consists of (10) and (11) with characterization (12). There is a restriction on the length of time interval
in order to guarantee the uniqueness of the optimality system. This smallness restriction of the length
on the time is due to the opposite time operations of (10) and (11). The state problem has initial values,
whereas the adjoint problem has final values. This restriction is very common in control problems [4, 7,
8].

In order to minimize Hamiltonian H with respect to the controls at the optimal controls, H is differ-
entiated with respect to u1(t) and u2(t). on the set w, and equating to zero, the following solutions are
obtained.

Now, dH
u1(t) = 0 gives u∗

1(t) = (λS−λD)αS(t)
B

and dH
u2(t) = 0 gives u∗

2(t) = (λD−λR)D(t)
C

Then by standard control arguments involving the bands on the controls, it is concluded for u1(t):

u∗

1(t) =

0, (λS−λD)αS(t)
B

≤ 0
(λS−λD)αS(t)

B
, 0 < (λS−λD)αS(t)

B
< 1

1, (λS−λD)αS(t)
B

≥ 1
In compact form,

u∗

1(t) = min
{

1, max
{

0, D(t)(λD−λR)
B

}}

Similarly, for u2(t) in compact form, there is

u∗

2(t) = min
{

1, max
{

0, (λD−λR)D(t)
C

}}

�

3.2. Numerical simulations

This section discusses the numerical simulations of the optimality system and the corresponding results
of varying the optimal controls u1 and u2.according to official data in Morocco (”Ministry of National
Education”, and ”the High Planning Commission”) [9], α = 0.021, β = 0.05, the parameter values are
given in tab 2. Numerical solutions to the optimality system composing the state equation (6) and adjoint
equation (13) are carried out in MATLAB R2018a using parameters from the Table II together with the
following weight factors A = 20, B = 10 and C = 10 and initial conditions S(0) = 10000, D(0) = 1000
and R(0) = 100 ( the choice of these values is approximate to reality).

The algorithm is the forward–backward scheme, starting with an initial guess for the optimal controls
u1 and u2. The state variables are then solved forward in time from the dynamics (6) using a Runge–
Kutta method of the fourth order. Then, those state variables and initial guess for the controls u1 and
u2 are used to solve the adjoint equation (10) backward in time with given final conditions (9), again
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employing a fourth-order Runge–Kutta method. The controls u1 and u2 are updated and used to solve
the state and then the adjoint system. This iterative process terminates when current state, adjoint, and
control values converge sufficiently.

tab 2. Parameter values used in the optimal control simulation.

parameters Baseline value Reference
Λ 500 Assumed
α0 0.000009 Assumed
α 0.021 official data in Morocco
β 0.05 official data in Morocco
δ 0.7 Assumed

Numerical simulations are investigated when both controls on reintegrate children who have dropped
out of school into formal education and on creating new opportunities in non-formal education are opti-
mized. It is also compared with the model when controls are not used. When both controls are optimized,
the control profile is shown in Figure 2. It is observed that control u1 dropped gradually from the lower
bound to the upper bound after time t = 2 units and the control u2 dropped gradually from the lower
bound to the upper bound after time t = 3 units.

Figure 2: Simulation of the model showing the control profile of the intervention strategy
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Figure 3: Time series plot of the scholar Drop out model when control strategy is in use

Figure 3 shows the time series plot of the scholar Drop out model when both control strategies are
in use. With this strategy to optimize objective function J , in Figure 4, it is observed that this control
strategy results in a significant increase in the number of school-age children who are out of school
compared with the case of without control.

Figure 4: Simulation of the model showing the effect of control profile on D

Similarly, it can be observed from Figure 5 that control strategy results in a significant decrease in
the number of school-age children who are in school compared with the case without control, and also in
Figure 6, it is observed that control strategy results in a significant increase in the number of school-age
children in non-formal education compared with the case without control.
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Figure 5: Simulation of the model showing the effect of control profile on S

Figure 6: Simulation of the model showing the effect of control profile on R

4. Conclusion

With some simplifications, we built a mathematical model for a complex social situation. This is
because the purpose of the model is the description and prediction of the essential patterns of the process
and not the achievement of its complete analysis [5]. In this paper, optimal control analysis for scholar
Drop out model is performed using Pontryagins maximum principle. The conditions for optimal control
of the scholar Drop out problem were derived and analyzed with the effective use of government through
the implemented policies to reintegrate children who have dropped out of school into formal education
and to create new opportunities in non-formal education, it is observed from the numerical results that
this control strategy results in a significant increase in the number of school-age children who are out of
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school and decrease in the number of school-age children who are in school compared with the case of
without control. It is concluded that the successful policy of a government to create new opportunities in
non-formal education has significant impact in reducing scholar drop out. Control programs that follow
these strategies can effectively reduce the scholar drop out problem in the society. We can extend the
study of this social phenomenon of school dropout in spatiotemporal model, similar works has been done
in the field of biomathematics [10,11,12,13,14,15,16].
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