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Results on Various Derivations and Posner’s Theorem in Prime Ideals of Rings

Abdelkarim Boua and Gurninder Singh Sandhu

abstract: Let R be a ring and P be a prime ideal of R. In this work, we study the structure of the quotient
ring R/P in a new and more general way by discussing various algebraic identities on appropriate subsets of
R involving multiplicative (generalized)-(α, β)-derivations, multiplicative generalized (α, β)-derivations, mul-
tiplicative generalized derivations and generalized derivations. In addition, we give examples exhibiting the
crucially of the hypothesis of our results.
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1. Introduction

In all that follows, unless specially stated, R always denotes an associative ring with centre Z(R),
extended centroid C, central closure RC and Qr(R) is the right Matindale ring of quotients of R. As usual,
the symbols s ◦ t and [s, t] will denote the anti-commutator st + ts and commutator st − ts, respectively.
The usual commutator and anti-commutator identities, which will be used extensively in the forthcoming
sections, are given as follows:

(i) [x, yz] = y[x, z] + [x, y]z.

(ii) [xy, z] = [x, z]y + x[y, z].

(iii) xy ◦ z = (x ◦ z)y + x[y, z] = x(y ◦ z) − [x, z]y.

(vi) x ◦ yz = y(x ◦ z) + [x, y]z = (x ◦ y)z + y[z, x].

Recall that an ideal P of R is said to be prime if P 6= R and for x, y ∈ R, xRy ⊆ P implies that x ∈ P
or y ∈ P. A prime ideal P of R is minimal if P does not properly include any prime ideals of R. The
ring R is a prime ring if and only if {0} is the only minimal prime ideal of R. A ring R is semiprime if
xRx = {0} implies x = 0. If α and β are automorphisms of R, then an additive mapping d from R to R
is called an (α, β)-derivation of R if d(xy) = d(x)β(y) + α(x)d(y) holds for all x, y ∈ R. For example, let

R =

{(

a b
0 c

)

| a, b, c ∈ R

}

, be a ring and

d

(

a b
0 c

)

=

(

0 b
0 0

)

, α

(

a b
0 c

)

=

(

a a + 2b − c
0 c

)

,

β

(

a b
0 c

)

=

(

a 2a + b − 2c
0 c

)

.
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Then it can be verified that d is an (α, β)-derivation of R, with associated automorphisms α and β of R.
For α = β = IR, d is an ordinary derivation of R. The notion of (α, β)-derivation has been extended to
generalized (α, β)-derivation and many interesting results has been established with generalized (α, β)-
derivations such as [2], [25]. Generalized (α, β)-derivation is defined as follows: An additive mapping
F : R → R is said to be a (right) generalized (α, β)-derivation of R if there exists a (α, β)-derivation d
of R with associated automorphisms α, β such that F (xy) = F (x)β(y) + α(x)d(y) holds for all x, y ∈ R,
d is called an associated (α, β)-derivation of F. For α = β = IR, F is called a generalized derivation of
R. According to the definition of [10], an additive mapping F : R → R satisfying F (xy) = F (x)α(y) for
all x, y ∈ R is called a multiplicative α-left centralizer of R. For α = IR, F is called a left multiplier (or
centralizer) of R.
For a ring R with identity, a multiplicative α-left centralizer is just a map F (x) = kα(x), where k ∈ R
is a fixed element. The same it is with generalized (α, β)-derivation, which is just a map of the form
d(x) + kβ(x), where d is a derivation. By the way, if the ring R does not contain identity, then with
the help of a regular representation (left multiplications of right regular modules RR), one can embed
a semiprime ring in a semiprime ring with identity and then extend derivations and automorphisms.
A mapping d : R → R (not necessarily additive) is called a multiplicative (α, β)-derivation of R, if
d(xy) = d(x)β(y) + α(x)d(y) holds for all x, y ∈ R, where α, β : R → R are automorphisms. A mapping
G : R → R (not necessarily additive) is called a multiplicative right (generalized)-(α, β)-derivation (resp.
multiplicative left (generalized)-(α, β)-derivation) of R, if there exists a multiplicative (α, β)-derivation
d : R → R such that G(xy) = G(x)β(y) + α(x)d(y) (resp. G(xy) = α(x)G(y) + d(x)β(y)) holds for all
x, y ∈ R, where α, β : R → R are automorphisms. Now G is said to be a multiplicative (generalized)-
(α, β)-derivation with associated multiplicative (α, β)-derivation d if it is both a multiplicative left and
right (generalized)-(α, β)-derivation. In case d is additive, G is called multiplicative generalized (α, β)-
derivation.

2. SCP multiplicative (generalized)-(α, β)-derivations

We say that a map F : R → R preserves commutativity if [F (x), F (y)] = 0 whenever [x, y] = 0 for all
x, y ∈ R. The study of commutativity preserving mappings has been an active research area in matrix
theory, operator theory and ring theory (see [11], [30] for references). According to [4], let S be a subset
of R, a map F : R → R is said to be strong commutativity preserving (SCP) on S if [F (x), F (y)] = [x, y]
for all x, y ∈ S. In [5], Bell and Daif investigated the commutativity in rings admitting a derivation which
is SCP on a nonzero right ideal. Precisely, they proved that if a semiprime ring R admits a derivation
d satisfying [d(x), d(y)] = [x, y] for all x, y in a right ideal I of R, then I ⊆ Z(R). In particular, R
is commutative if I = R. Later, Deng and Ashraf [12] proved that if there exists a derivation d of a
semiprime ring R and a map F : I → R defined on a nonzero ideal I of R such that [F (x), d(y)] = [x, y]
for all x, y ∈ I, then R contains a nonzero central ideal. In particular, they showed that R is commutative
if I = R. Recently, this result was extended to Lie ideals and symmetric elements of prime rings by Lin
and Liu in [17] and [18], respectively, and to the case of generalized derivations by Ma, Xu and Niu in
[21]. There is also a growing literature on strong commutativity preserving (SCP) maps and derivations
(for reference see [5], [11], [22], etc.) In [3], Ali et al. showed that if R is a semiprime ring and f is an
endomorphism which is a strong commutativity preserving (simply, SCP) map on a nonzero ideal U of R,
then f is commuting on U . In [28], Samman proved that an epimorphism of a semiprime ring is strong
commutativity preserving if and only if it is centralizing. Derivations as well as SCP mappings have been
extensively studied by researchers in the context of operator algebras, prime rings and semiprime rings
too. Many related generalizations of these results can be found in the literature (see for instance [11],
[16], [19], [20], [26]).

In this section, we study the concept of multiplicative (generalized)-(α, β)-derivation, and for more
information about multiplicative (generalized)-(α, β)-derivations see [27]. More specifically, we investigate
the following identities:
(i) [G(x), G(y)] = [x, y] for all x, y ∈ U ;
(ii) G(x) ◦ G(y) = x ◦ y for all x, y ∈ U ;
(iii) [G1(x), y] + [x, G2(y)] ∈ P for all x, y ∈ R;
(iv) G1(x) ◦ y + x ◦ G2(y) ∈ P for all x, y ∈ R;
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involving multiplicative (generalized)-(α, β)-derivations in prime rings. Finally, an example is given to
demonstrate that the restrictions imposed on the hypothesis of our result are not superfluous.

Lemma 2.1. Let R be a semiprime ring and α, β : R → R are automorphisms. Suppose that R admits
a multiplicative (generalized)-(α, β)-derivation G associated with a nonzero map d and automorphisms α
and β, then G 6= 0.

Proof: Assume on the contrary that G(x) = 0 for all x ∈ R, then 0 = G(xy) = G(x)β(y) + α(x)d(y) for
all x, y ∈ R. So by using hypothesis 0 = α(x)d(y) for all x, y ∈ R. Left-multiplying the last relation by
d(y) and using semiprimenes of R, we obtain d = 0 which is a contradiction. �

Note that the following result is a generalization of Lemma 2.3 of [15].

Theorem 2.2. Let R be a semiprime ring with automorphisms α, β : R → R. Suppose that R admits
a multiplicative (generalized)-(α, β)-derivation G associated with a map d. Then d is a multiplicative
(α, β)-derivation.

Proof: First let us assume that G is a multiplicative right (generalized)-(α, β)-derivation, for all x, y, z ∈
R

G((xy)z) = G(xy)β(z) + α(xy)d(z)

= G(x)β(yz) + α(x)d(y)β(z) + α(xy)d(z).

But G(x(yz)) = G(x)β(yz) + α(x)d(yz) for all x, y, z ∈ R. So by subtracting two last equations, we get

α(x)(d(yz) − d(y)β(z) − α(y)d(z)) = 0 for all x, y, z ∈ R. (2.1)

Left-multiplying Eq. (2.1) by (d(yz) − d(y)β(z) − α(y)d(z)), we obtain

(d(yz) − d(y)β(z) − α(y)d(z))α(x)(d(yz) − d(y)β(z) − α(y)d(z)) = 0 for all x, y, z ∈ R.

But α is an automorphism of R, so the last equation means that

(d(yz) − d(y)β(z) − α(y)d(z))R(d(yz) − d(y)β(z) − α(y)d(z)) = {0}. (2.2)

Using semi-primeness of R, we find that d(yz) = d(y)β(z) + α(y)d(z) for all y, z ∈ R. Which shows that
d is a multiplicative (α, β)-derivation associated with the automorphisms α and β.

In the same way, we see that the associated mapping of a multiplicative left (generalized) -(α, β)-
derivation is a multiplicative (α, β)-derivation. �

Letting α = β = IR in Theorem 2.2, we obtain [15, Lemma 2.3].

Theorem 2.3. Let R be a prime ring, α, β : R → R be automorphisms and U a nonzero ideal of R. Sup-
pose that R admits a multiplicative right (generalized)-(α, β)-derivation G associated with a multiplicative
(α, β)-derivation d. If G is SCP on U and d(Z(R)) 6= {0}, then R is commutative.

Proof: Suppose that

[G(x), G(y)] = [x, y] for all x, y ∈ U. (2.3)

Replacing x by xh in (2.3), where h ∈ Z(R), and using it with definition of G, it follows immediately
that

[x, y](β(h) − h) + [α(x), G(y)]d(h) + α(x)[d(h), G(y)] = 0. (2.4)

Letting xh′ in place of x in (2.4), where h′ ∈ Z(R) and using it again, we arrive at

[x, y](β(h) − h)(α(h′) − h′) = 0 for all x, y ∈ U, h, h′ ∈ Z(R). (2.5)



4 A. Boua and G. S. Sandhu

It implies that

(β(h) − h)R[x, y]R(α(h′) − h′) = {0} for all x, y ∈ U, h, h′ ∈ Z(R). (2.6)

By primeness of R, we obtain [x, y] = 0 for all x, y ∈ U or β = IZ(R) or α = IZ(R) . [x, y] = 0 for all
x, y ∈ U means that I is a commutative ideal, by primeness of R and U 6= {0}, we get commutativity of
R.

Let us assume that β = IZ(R). It follows from (2.4) that U satisfies [α(x), G(y)]d(h)+α(x)[d(h), G(y)] =
0. Taking tx instead of x in the last expression, we get

[α(t), G(y)]α(x)d(h) = 0 for all t, x, y ∈ U.

Since d(Z(R)) 6= {0}, it forces that [α(t), G(y)] = 0 for all t, y ∈ U. For any r ∈ R, replace t by tr in the
last equation in order to obtain α(U)[R, G(U)] = {0}. It yields that G(U) ⊂ Z(R). In view of our initial
hypothesis, we get [U, U ] = {0}, i.e., U is commutative, and hence R is commutative.

Finally, we consider the case α = IZ(R). Substituting hx for x in (2.3), where h ∈ Z(R), we get

d(h)[β(x), G(y)] + [d(h), G(y)]β(x) + α(h)[G(x), G(y)] = h[x, y]

Using (2.3), we get d(h)[β(x), G(y)] + [d(h), G(y)]β(x) = 0 for all x, y ∈ U. Applying a similar technique
as given above, we get the conclusion. �

Theorem 2.4. Let R be a prime ring with α, β : R → R be automorphisms and U a nonzero ideal of R.
Suppose that R admits a multiplicative (generalized)-(α, β)-derivation G associated with a multiplicative
(α, β)-derivation d. If G(x) ◦ G(y) = x ◦ y for all x, y ∈ R and d(Z(R)) 6= {0}, then R is commutative
and one of the following holds true:

(i) char(R) = 2,

(ii) there exists λ ∈ C such that G(x) = λx for all x ∈ R with λ2 = 1.

Proof: To avoid repetition, we rely on proof of Theorem 2.3 with some slight changes, we find that R is
commutative. Therefore our initial hypothesis yields that

2G(x)G(y) = 2xy, for all x, y ∈ R. (2.7)

Replacing y by yt in (2.7) to get

2G(x)G(yt) = 2xyt, for all x, y, t ∈ R. (2.8)

Also we have
2G(x)G(y)t = 2xyt, for all x, y, t ∈ R. (2.9)

Comparing (2.8) and (2.9), we obtain 2G(x)(G(yt) − G(y)t) = 0 for all x, y, t ∈ R. Taking ux instead of
x in the last relation and using it, we find 2d(u)β(x)(G(yt) − G(y)t) = 0 for all u, x, y, t ∈ R. That is
2d(u)R(G(yt) − G(y)t) = {0} for all u, y, t ∈ R. It implies that either 2d(u) = 0 or G(yt) = G(y)t for all
u, y, t ∈ R. Now, we have the following two cases:
Case 1. Let 2d(u) = 0 for all u ∈ R. Replacing u by ur, we get d(u)(2β(r)) + α(u)(2d(r)) = 0 for all
u, r ∈ R. It gives that d(u)β(2r) = 0 for all u, r ∈ R. Taking sr in place of r, we find that d(u)β(s)β(2r) = 0
for all u, r, s ∈ R. Since β is an automorphism of R and R is prime, we conclude that either d = 0 or
2r = 0 for all r ∈ R. But 0 6= d, thus R is of characteristic 2.
Case 2. Now, we assume that

G(yt) = G(y)t, for all y, t ∈ R. (2.10)

Polarizing (2.10) in t, we get

G(yt + yx) = G(y(t + x))

= G(y)(t + x)

= G(y)t + G(y)x,
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which implies that

G(yt + yx) = G(yt) + G(yx), for all x, y, t ∈ R. (2.11)

Polarizing (2.10) in y and using 2.11, we get

G(y + x)t = G((y + x)t)

= G(yt + xt)

= G(yt) + G(xt)

which gives

G(y)t + G(x)t = G(y + x)t, for all x, y, t ∈ R.

Therefore, we find (G(y +x)−G(y)−G(x))R = {0} for all x, y ∈ R. It forces that G is additive. Invoking
a classical result of Hvala [14, Lemma 2], there exists some λ ∈ Qr(RC) such that G(x) = λx for all
x ∈ R. Since R is already commutative, so λ ∈ C. In this view Eq. (2.7) implies that λ2xy = xy for all
x, y ∈ R. Thus we conclude that λ2 = 1. It completes the proof. �

The following example shows that the restrictions imposed in the hypotheses of Theorems 2.3, Theo-
rem 2.4 cannot be omitted.

Example 2.5. Let us defined R, U and G, d, α, β : R → R as follow:

R =











0 x y
0 0 z
0 0 0



 | x, y, z ∈ R







, U =











0 x y
0 0 0
0 0 0



 | x, y ∈ R







,

G





0 x y
0 0 z
0 0 0



 =





0 0 xz
0 0 0
0 0 0



 , d





0 x y
0 0 z
0 0 0



 =





0 0 yz
0 0 0
0 0 0



 ,

α





0 x y
0 0 z
0 0 0



 =





0 2x y
0 0 1

2 z
0 0 0



 , and β = IR.

It is easy to see that R is not prime and d(Z(R)) = {0}, U is a nonzero ideal of R, G is a multiplicative
(generalized)-(α, β)-derivation such that

(i) [G(x), G(y)] = [x, y] for all x, y ∈ U,

(ii) G(x) ◦ G(y) = x ◦ y for all x, y ∈ U,

but R not commutative.

3. Identities in prime ideal of a ring

It is a common fact of ring theory that the rings in which the only prime ideal is {0} is called a prime
ring. Now, if P is a prime ideal of an arbitrary ring R, then obviously the prime ideal of the quotient ring
R/P is {0} only, and hence a prime ring. By keeping this fact in mind, recently, Almahdi et al. [1] gave
a generalization of well known Posner’s Second theorem, and proved that: Let R be an arbitrary ring,
P be a prime ideal of R, and d be a derivation of R. If [[x, d(x)], y] ∈ P (i.e., [x, d(x)] ∈ Z(R/P )) for all
x, y ∈ R, then d(R) ⊆ P or R/P is a commutative integral domain. Moreover, in two consecutive paper
[23] and [24], Mamouni et al. proved many results involving derivations and generalized derivations in
this direction. More specifically, they established the connection between the structure of the quotient
ring R/P and behaviour of derivations and generalized derivations that satisfy certain algebraic identities
in prime ideals.

In this section, we first prove some more general results in this line of investigation and then we
extend some results of [23] and [24]. In the end of this section, we proved Posner’s second theorem with
generalized derivation and consequently extend [1, Theorem 2.2].
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3.1. Results on multiplicative generalized (α, β)−derivations

Theorem 3.1. Let R be a ring, P be a prime ideal of R, and G be a multiplicative left generalized
(α, β)-derivation of R associated with (α, β)-derivation d, where α, β are the automorphisms of R. If
[α(x), G(y)] ∈ P for all x, y ∈ R, then d(R) ⊆ P or R/P is a commutative integral domain.

Proof: Let us consider
[α(x), G(y)] ∈ P for all x, y ∈ R. (3.1)

Replacing y by xy in (3.1) and using it to find

[α(x), d(x)]β(y) + d(x)[α(x), β(y)] ∈ P for all x, y ∈ R. (3.2)

Changing y by yt in (3.2) and using it, we obtain d(x)β(y)[α(x), β(t)] ∈ P for all x, y, t ∈ R. Since β is
an automorphism of R, it may be rewritten as

d(x)R[α(x), β(R)] ⊆ P for all x ∈ R.

It implies that for each x ∈ R either d(x) ∈ P or [α(x), β(R)] ⊆ P. Therefore, R is a set-theoretic union of
the additive subgroups A = {x ∈ R : [α(x), β(R)] ⊆ P } and B = {x ∈ R : d(x) ∈ P }. Using a well-known
fact (Brauer’s trick) that a group cannot be written as union of two of its proper subgroups, we are forced
to conclude that either R = A or R = B. That means, either [α(R), β(R)] ⊆ P implying [R, R] ⊆ P or
d(R) ⊆ P. Consequently, we have either R/P is a commutative integral domain or d(R) ⊆ P. Thus the
proof is completed. �

Corollary 3.2. Let R be a prime ring and G be a multiplicative left generalized (α, β)-derivation of R
associated with (α, β)-derivation d, where α, β are the automorphisms of R. If [α(x), G(y)] = 0 for all
x, y ∈ R, then R is commutative.

Proof: Let us consider [α(x), G(y)] = 0 for all x, y ∈ R. Since R is a prime ring, there exits a family P of
prime ideal of R such that ∩P ∈PP = {0}. In view of Theorem 3.1 it follows that [R, R] ⊆ P or d(R) ⊆ P
for all P ∈ P. Therefore, we conclude that either [R, R] = {0} or d(R) = {0}, but our assumption 0 6= d
forces that R is commutative. �

Theorem 3.3. Let R be a ring with char(R) 6= 2, P be a prime ideal of R, and G be a multiplicative left
generalized (α, β)-derivation of R associated with (α, β)-derivation d, where α, β are the automorphisms
of R. If α(x) ◦ G(y) ∈ P for all x ∈ R, then G(R) ⊆ P.

Proof: Let us consider α(x) ◦ G(y) ∈ P for all x, y ∈ R. Replacing x by rx, where r ∈ R, we find
(α(r)◦G(y))α(x)+[α(r), G(y)]α(x) ∈ P. In view of the given condition, it reduces to [α(r), G(y)]α(x) ∈ P
for all x, y, r ∈ R. It implies that either α(r) ⊆ P for all r ∈ R or [α(x), G(y)] ∈ P for all x, y ∈ R.
Comparing the last relation with our initial hypothesis, we find 2α(x)G(y) ∈ P for all x, y ∈ R. It forces
G(R) ⊆ P. �

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let R be a prime ring and G be a multiplicative left generalized (α, β)-derivation of R
associated with (α, β)-derivation d where α, β are the automorphisms of R. If α(x) ◦ G(y) = 0 for all
x, y ∈ R, then one of the following holds true:

(i) R is commutative of characteristic 2,

(ii) G = 0.

Theorem 3.5. Let R be a ring, P be a prime ideal of R and where α2, β2 are the automorphisms of R.
If G2 is a multiplicative generalized (α2, β2)-derivation of R associated with (α2, β2)-derivation d2 and
G1 is any mapping of R such that [G1(x), y]+ [x, G2(y)] ∈ P for all x, y ∈ R, then R/P is a commutative
integral domain provided d2(Z(R)) * P.
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Proof: Let us consider
[G1(x), y] + [x, G2(y)] ∈ P for all x, y ∈ R. (3.3)

Taking yz in place of y in (3.3), where z ∈ Z(R), we get

[G1(x), y]z + [x, G2(y)]β2(z) + α2(y)[x, d2(z)] + [x, α2(y)]d2(z) ∈ P for all x, y ∈ R. (3.4)

Right multiplying (3.3) by z, we get

[G1(x), y]z + [x, G2(y)]z ∈ P for all x, y ∈ R. (3.5)

Combining (3.4) and (3.5) to find

[x, G2(y)](β2(z) − z) + α2(y)[x, d2(z)] + [x, α2(y)]d2(z) ∈ P for all x, y ∈ R.

For x = G2(y), we can easily arrive at

α2(y)[G2(y), d2(z)] + [G2(y), α2(y)]d2(z) ∈ P for all y ∈ R.

Polarizing this equation in y, we find

α2(y)[G2(u), d2(z)] + α2(u)[G2(y), d2(z)] + [G2(y), α2(u)]d2(z)

+[G2(u), α2(y)]d2(z) ∈ P for all u, y ∈ R.
(3.6)

Replacing y by yz = zy in (3.6), where z ∈ Z(R), and using it to get

α2(z)α2(y)[G2(u), d2(z)] + α2(z)α2(u)[G2(y), d2(z)] + α2(u)[d2(z)β2(y), d2(z)]

+α2(z)[G2(y), α2(u)]d2(z) + [d2(z)β2(y), α2(u)]d2(z) + α2(z)[G2(u), α2(y)]d2(z) ∈ P

Combining (3.6) with the last relation, we find

α2(u)[d2(z)β2(y), d2(z)] + [d2(z)β2(y), α2(u)]d2(z) ∈ P for all u, y ∈ R. (3.7)

Taking tu in place of u in (3.7) and using it, we obtain

[d2(z)β2(y), α2(t)]α2(u)d2(z) ∈ P for all t, u, y ∈ R.

It implies that
[d2(z)β2(y), α2(t)]α2(u)[d2(z)β2(y), α2(t)] ∈ P.

In other words, we have
[d2(z)β2(y), α2(t)]R[d2(z)β2(y), α2(t)] ⊆ P.

Since P is a prime ideal, it forces that [d2(z)β2(y), α2(t)] ∈ P for all y, t ∈ R. Replacing y by yr,
where r ∈ R, we get d2(z)β2(y)[β2(r), α2(t)] ∈ P. Since α2 and β2 are automorphisms of R, it implies
that d2(Z(R))R[R, R] ⊆ P. In view of our assumption, it follows that [R, R] ⊆ P. Hence R/P is a
commutative integral domain. �

3.2. Results on multiplicative generalized derivations

Lemma 3.6. Let R be a ring and P be a prime ideal of R. If char(R/P ) 6= 2 and for some fixed a, b ∈ R,
axb + bxa ∈ P for all x ∈ R, then either axb ∈ P or bxa ∈ P for all x ∈ R.

Proof: Our assumption gives that

axb + bxa = 0, for all x ∈ R/P. (3.8)

Now by applying the same computations of Bell [8, Lemma 3.1], we find that either axb = 0 or bxa = 0.
Hence, we have axb ∈ P and bxa ∈ P for all x ∈ R. �

The following theorem extends Theorem 1 of Mamouni et al. [23].
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Theorem 3.7. Let R be a ring, P be a prime ideal of R, and G be a multiplicative right generalized
derivation with associated derivation d such that [G(x), y] ∈ P for all x, y ∈ R, then R/P is commutative
or G(R) ⊆ P.

Proof: Let us consider that
[G(x), y] ∈ P, for all x, y ∈ R. (3.9)

Taking xu in place of x in (3.9) and utilizing it, we get

G(x)[u, y] + [x, y]d(u) + x[d(u), y] ∈ P, for all x, y, u ∈ R. (3.10)

Putting u = y in the above expression, we get [x, u]d(u) + x[d(u), u] ∈ P for all x, u ∈ R. Replacing x by
rx in the last relation and using it, we get

[r, u]xd(u) ∈ P, for all x, u, r ∈ R.

It forces that for each u ∈ R, either d(u) ∈ P or [R, u] ⊆ P. Applying Brauer’s trick we find that either
d(R) ⊆ P or [R, R] ⊆ P. In the second case, we are done. We assume that d(R) ⊆ P. In this view, it
follows from (3.10) that G(R)[R, R] ⊆ P. It assures that G(R) ⊆ P. It completes the proof. �

In case R is a prime ring, then we know that P = {0}. With these settings, the above theorem gives
a commutativity criterion, which is a refinement of [23, Corollary 1] and stated as follows:

Corollary 3.8. Let R be a prime ring and G be a multiplicative right generalized derivation associated
with a nonzero derivation d. Then the following assertions are equivalent:

(i) G(R) ⊆ Z(R),

(ii) R is commutative.

The following result is a complete generalization of [24, Theorem 1] to the class of generalized deriva-
tions.

Theorem 3.9. Let R be a ring, P be a prime ideal of R, and G1, G2 are multiplicative generalized
derivations with associated derivations d1, d2 respectively. If [G1(x), G2(y)] ∈ P for all x, y ∈ R, then one
of the following assertion holds true:

(i) char(R/P ) = 2,

(ii) R/P is commutative integral domain,

(iii) G1(R) ⊆ P,

(iv) G2(R) ⊆ P.

Proof: Let us consider
[G1(x), G2(y)] ∈ P, for all x, y ∈ R. (3.11)

Replacing y by yr in (3.11) and using it, we find

G2(y)[G1(x), r] + y[G1(x), d2(r)] + [G1(x), y]d2(r) ∈ P, for all x, y, r ∈ R. (3.12)

Replacing y by ry in (3.12) and using it to get

d2(r)y[G1(x), r] + [G1(x), r]yd2(r) ∈ P, for all x, y, r ∈ R. (3.13)

Now if char(R/P ) = 2, then we are done. Therefore now onwards we suppose that char(R/P ) 6= 2. From
Lemma 3.6, we obtain d2(r)y[G1(x), r] ⊆ P or [G1(x), r]yd2(r) ∈ P for all x, y, r ∈ R. Primeness of P
yields that for each r ∈ R, either d2(r) ⊆ P or [G1(R), r] ⊆ P. An application of Brauer’s trick implies
that either d2(r) ∈ P for all r ∈ R or [G1(x), t] ∈ P for all x, r, t ∈ R.
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First, we consider d2(r) ∈ P for all r ∈ R. Then from (3.12), we get G2(y)[G1(x), r] ∈ P for all
x, y, r ∈ R. Replacing y by ys, we get G2(R)R[G1(R), R] ⊆ P. In view of primeness of P and our
assumption, it follows that G2(R) ⊆ P.

On the other hand, we have [G1(x), r] ∈ P for all x, r ∈ R. In light of Theorem 3.7, we get the
conclusion. �

Consequently, we have obtained the following generalization of a classical theorem of Herstein [13,
Theorem 2].

Corollary 3.10. Let R be a 2−torsion free prime ring. If R admits generalized derivations G1 and G2

associated with nonzero derivations d1 and d2 respectively such that [G1(x), G2(y)] = 0 for all x, y ∈ R,
then R is a commutative integral domain.

Theorem 3.11. Let R be a ring, P be a prime ideal of R, and G1, G2 are multiplicative generalized
derivations with associated derivations d1, d2 respectively. If G1(x) ◦ G2(y) ∈ P for all x, y ∈ R, then one
of the following assertion holds true:

(i) char(R/P ) = 2,

(ii) G1(R) ⊆ P,

(iii) G2(R) ⊆ P.

Proof: By hypothesis, we have

G1(x) ◦ G2(y) ∈ P, for all x, y ∈ R. (3.14)

Substituting yr for y in (3.14) and utilizing it, we get

−G2(y)[G1(x), r] + y(G1(x) ◦ d2(r)) + [G1(x), y]d2(r) ∈ P, for all x, y ∈ R. (3.15)

Replacing y by ry in (3.15) and using it to find

−d2(r)y[G1(x), r] + [G1(x), r]yd2(r) ∈ P, for all x, y, r ∈ R. (3.16)

It implies that R satisfies
[[G1(x), r], yd2(r)] ∈ P. (3.17)

Substituting wy in place of y in (3.17) and using it to find [[G1(x), r], w]Rd2(r) ⊆ P for all x, w, r ∈ R. In
view of primeness of P, it follows that for each r ∈ R, either [[G1(R), r], R] ⊆ P or d2(r) ∈ P. Recalling
Brauer’s trick, we obtain that either [[G1(R), R], R] ⊆ P or d2(R) ⊆ P. In the former case, we have

[[G1(u), v], t] ∈ P, for all u, v, t ∈ R.

Replacing v by tv in the above expression, we arrive at [G1(u), t][v, t] ∈ P for all u, v, t ∈ R. A simple
calculation gives that [G1(u), t]R[G1(u), t] ⊆ P for all u, t ∈ R. It implies that [G1(R), R] ⊆ P. In the
light of Theorem 3.7, we get either R/P is a commutative integral domain or G1(R) ⊆ P. Let us assume
that R/P is commutative. By our initial hypothesis, we find that 2G1(x)G2(y) ∈ P for all x, y ∈ R. Our
assumption on characteristic of R forces that

G1(x)G2(y) ∈ P, for all x, y ∈ R. (3.18)

Replacing x by rx in (3.18) and using it, we find d1(R)RG2(R) ∈ P. It implies that either d1(R) ⊆ P or
G2(R) ⊆ P. In the latter case, we are done. Assume that d1(R) ⊆ P. Replacing x by xr in (3.18), where
r ∈ R, we get G1(R)RG2(R) ⊆ P for all x, y ∈ R. It forces that G1(R) ⊆ P.

On the other hand if d2(R) ⊆ P, then from (3.15), we find that G2(y)[G1(x), r] ∈ P for all x, y, r ∈ R.
It implies that G2(R)R[G1(R), R] ⊆ P. By primeness of P, we have either G2(R) ⊆ P or [G1(R), R] ⊆ P.
The latter case has already discussed, so we get G2(R) ⊆ P, as required. It completes the proof. �
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Corollary 3.12. [24, Theorem 2] Let R be a ring, P be a prime ideal of R, and d1, d2 be derivations of
R. If d1(x) ◦ d2(y) ∈ P for all x, y ∈ R, then one of the following assertion holds true:

(i) char(R/P ) = 2,

(ii) d1(R) ⊆ P,

(iii) d2(R) ⊆ P.

Corollary 3.13. Let R be a 2−torsion free prime ring. If R admits generalized derivations G1 and G2

associated with derivations d1 and d2 respectively such that G1(x)◦G2(y) = 0 for all x, y ∈ R, then either
G1 = 0 or G2 = 0.

The following example shows that the condition “primeness of P ” in Theorems 3.9, 3.11 cannot be
omitted.

Example 3.14. Let S be any ring, and R and P are defined as follows:

R =











0 a b
0 a c
0 0 0



 | a, b, c ∈ S







, P =











0 0 a
0 0 a
0 0 0



 | a ∈ S







. One can easily check that P is

not a prime ideal of R. Now we define G1, G2 : R → R as G1





0 a b
0 a c
0 0 0



 =





0 0 b2 − c2

0 0 0
0 0 0



,

G2





0 a b
0 a c
0 0 0



 =





0 0 bc
0 0 0
0 0 0



. Then it is verified that G1, G2 are multiplicative generalized deriva-

tions of R associated with d1 = d2 = 0 and satisfying the following identities:

a) [G1(x), G2(y)] ∈ P for all x, y ∈ R,

b) G1(x) ◦ G2(y) ∈ P for all x, y ∈ R.

But none of the following assertions hold:

(i) char(R) = 2,

(ii) R/P is a commutative integral domain,

(iii) G1(R) ⊆ P,

(iv) G2(R) ⊆ P.

It shows that the assumption of “primeness of P ” in Theorem 3.9 and Theorem 3.11 is not superfluous.

3.3. A more general version of Posner’s second theorem

Theorem 3.15. Let R be a ring and P a prime ideal of R. If char(R/P ) 6= 2 and R admits a right
generalized derivation F with associated a derivation d such that [F (x), x] ∈ Z(R/P ) for all x ∈ R, then
either R/P is a commutative integral domain or there exists λ ∈ C such that F (x) = λx.

Proof: Let us consider
[F (x), x] ∈ Z(R/P ), for all x ∈ R. (3.19)

Polarizing (3.19), we get

[F (x), y] + [F (y), x] ∈ Z(R/P ), for all x, y ∈ R. (3.20)

In particular, putting y = x2 in (3.20), we find that

[F (x), x2] + [F (x2), x] ∈ Z(R/P ), for all x ∈ R.
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In view of (3.19), it implies that

3x[F (x), x] + x[d(x), x] ∈ Z(R/P ), for all x ∈ R.

Commuting with x to find
[3x[F (x), x], x] + [x[d(x), x], x] = 0.

Simplifying it, we conclude that

x[d(x), x]x = x2[d(x), x], for all x ∈ R. (3.21)

Again replacing x by x2 in (3.19), we get

[F (x2), x2] = [F (x)x + xd(x), x]x + x[F (x)x + xd(x), x]

= [F (x), x]x2 + x[d(x), x]x + x[F (x), x]x + x2[d(x), x]

= 2[F (x), x]x2 + x[d(x), x]x + x2[d(x), x] ∈ Z(R/P ).

In view of (3.21), it follows that

2[F (x), x]x2 + 2x2[d(x), x] = [F (x2), x2] ∈ Z(R/P ). (3.22)

Once again we go back to our initial hypothesis (3.20) and substitute xy for y and utilize it in order to
obtain

2[F (x), x]y + x[F (x), y] + F (x)[y, x] + x[d(y), x] ∈ Z(R/P ), for all x, y ∈ R.

In particular, taking y = x2 in the above expression and solving, we get

4[F (x), x]x2 + x[d(x), x]x + x2[d(x), x] ∈ Z(R/P ).

Using (3.21), we obtain
4[F (x), x]x2 + 2x2[d(x), x] ∈ Z(R/P ).

With the aid of (3.22), we conclude that 2[F (x), x]x2 ∈ Z(R/P ) for all x ∈ R. Since char(R/P ) 6= 2, it
gives [F (x), x]x2 ∈ Z(R/P ) for all x ∈ R. Commuting this expression with F (x), we find that

0 = [[F (x), x]x2, F (x)]

= [F (x), x2][F (x), x]

= 2x[F (x), x]
2
,

which implies that

0 = x[F (x), x]
2
. (3.23)

Left multiplying (3.23) with F (x), we get

F (x)x[F (x), x]
2

= 0. (3.24)

Right multiplying (3.23) with F (x) and using (3.19), we obtain

xF (x)[F (x), x]
2

= 0. (3.25)

Subtracting (3.25) form (3.24) to conclude that [F (x), x]
3

= 0 for all x ∈ R. Since R/P is a prime ring
and center of a prime ring contains no nilpotent elements, thus we conclude that [F (x), x] = 0 for all
x ∈ R. For convention purpose, we write it as

[F (x), x] ≡ 0 (modP ), for all x ∈ R.
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It gives that
[F (x), y] + [F (y), x] ≡ 0 (modP ), for all x, y ∈ R. (3.26)

Replacing y by yx in the above relation in order to obtain

[y, x]d(x) + y[d(x), x] ≡ 0 (modP ), for all x, y ∈ R. (3.27)

Replacing y by ty in (3.27), we get [t, x]yd(x) ≡ 0 (modP ) for all x, y, t ∈ R. It forces that for each
x ∈ R, either [t, x] ≡ 0 (modP ) or d(x) ≡ 0 (modP ). Invoking Brauer’s trick, we find that either
[R, R] ≡ {0} (modP ) or d(R) ≡ {0} (modP ). In other words, we have either R/P commutative or
d(R) ⊆ P.

Now, let us assume that d(x) ≡ 0 (modP ) for all x ∈ R. In the light of this fact, replace y by yt in
(3.26), we find

y[F (x), t] + F (y)[t, x] ≡ 0 (modP ), for all x, y, t ∈ R.

Replacing y by sy in the above relation, it implies

(F (s)y − sF (y))[t, x] ≡ 0 (modP ), for all x, y, t, s ∈ R.

Now, replacing s by su and x by xr in order to find

(F (s)uId(y) − Id(s)uF (y))x[t, r] ≡ 0 (modP ), for all x, y, t, s, u, r ∈ R.

It forces that F (s)uId(y) − Id(s)uF (y) ≡ 0 (modP ) for all x, y, t, s, u, r ∈ R. It can also be written as
F (s)uId(y) = Id(s)uF ((y)) for all s, u, y ∈ R/P, where R/P is a prime ring. In view of a result of Brešar
[9, Lemma], there exists λ ∈ C such that F (x) = λx for all x ∈ R. It completes the proof. �

Corollary 3.16. [1, Theorem 2.2] Let R be a ring and P a prime ideal of R. If char(R/P ) 6= 2 and
R admits a derivation d such that [d(x), x] ∈ Z(R/P ) for all x ∈ R, then either R/P is a commutative
integral domain or d(R) ⊆ P.
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