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Flexible Modules and Graded Rings
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abstract: A G−graded R−module is called flexible if Mg = RgMe for every g ∈ G. In this paper, we
study the relationship between a flexible module and the graded ring R through different aspects. On one
hand, we distinguish the flexible modules from other graded modules by characterizing the influence of the
e-component of a flexible module on the graded module itself. On the other hand, we extend the class covered
by flexible graded modules to include free and protective modules in a comparatively simple manner.
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1. Introduction

Graded Ring and Module Theory is very connected to Homology and Cohomology Theory. Actually,
it was born there. It drew the attention of many mathematicians who engaged serious research on the
application of this branch of mathematics to other branches, especially Homology and Cohomology The-
ory, or on the extension of the results of the ordinary abstract algebra to the graded type of Algebra,
which is the approach adopted mostly in this paper. We tickle the first approach in the final part of this
article.

Let G be a group with identity e. A G−graded ring R is a ring R such that R =
⊕

g∈G

Rg where Rg is

an additive abelian subgroup of R (called the g-component of R) for every g ∈ G such that RgRh ⊆ Rgh,
for every g, h ∈ G. A left module M over a G−graded ring R is said to be a G−graded left R−module
if M =

⊕

g∈G

Mg where Mg is an additive abelian subgroup of M (called the g-component of M) for every

g ∈ G such that RgMh ⊆ Mgh for every g, h ∈ G. If we replace ”⊆” with ”=” we obtain strongly graded
rings and modules. The identity component Re is a subring of R, and if R has unity 1, then 1 ∈ Re.
Notice that we can consider R as a G−graded R−module. An element belonging to a g-component is
called a homogeneous element of degree g. Each element x ∈ M can be written uniquely in the form

x =
∑

g∈G

xg, where xg ∈ Mg, and all xg’s are zeros except finitely many. An R−submodule N of M is

described to be G−graded if N =
⊕

g∈G

(N ∩Mg), or equivalently, If x ∈ N , then xg ∈ N , for every g ∈ G.

In the case where M = R, N becomes a graded left ideal.
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A G−graded R−module is said to be flexible if Mg = RgMe, for all g ∈ G or equivalently if M = RMe.
The e−component Me is expected to have a great impact on M when it is flexible. Actually, it does.
Which means, we can connect the graded modules properties of a flexible module to similar properties
known in ordinary abstract algebra. This fact is what makes flexible modules important. It was proved in
[5], [11], and other articles that the class of flexible modules includes many types of graded modules such
as strongly graded modules, graded modules over crossed product rings, first strongly graded modules
with equal supports (the support of R equals the support of M), augmented graded modules. We show
in the final part of this paper that free modules, graded free modules, projective modules, and graded
projective modules are also parts of the class of flexible graded modules, when equipped with a particular
gradation by G. Further, flexible injective graded modules are contained only in flexible modules. Also,
we prove that any graded module, if not flexible, includes a maximal flexible submodule and itself is
included in a flexible module as its e−component.

In another part of the paper, we investigate several properties of flexible graded modules. Some of
these properties are related to the graded ring R and its graded ideals. For example we prove that ”For
M being a flexible G−graded R−module such that R is a crossed product on the support, and N a
G−graded R−submodule of M , then N is gr-prime if and only if Ne is a prime Re−submodule of Me”.
Also, we prove that ” For R being a commutative graded ring, A a gr-maximal ideal, and M a flexible
R−module, if M is not a flexible A−module, then AM is a gr-prime R−module. Moreover, if M is
gr-multiplication R−module, then M is a gr-local R−module with AM being the unique gr-maximal
R−submodule of M”. Besides, other properties in this paper explain the relationship between the flexible
modules and other graded modules.

In the first part of the paper, we introduce and study a new but necessary class of graded modules
under the name of ”gr-faithful modules on the supports”. The motivation behind this introductory is
that the property of ”faithfulness” from abstract algebra is not enough to serve our results, and we need
a stronger condition which is more concerned with the gradation by the group G and has the flavor of
faithful modules.

The necessary background that helps understand our argument in the paper is given in the second
section. While the new results exist in the third section.

2. Preliminaries

This section presents some background of graded rings and graded modules necessary to this paper.
More details can be found in the references. Throughout this article, unless otherwise stated:

• G and G′ are groups with identity e and e′, respectively;

• R =
⊕

g∈G

Rg and R′ =
⊕

g′∈G′

R′

g′ are G−graded and G′−graded rings with unities 1 and 1′, respec-

tively;

• M =
⊕

g∈G

Mg and M ′ =
⊕

g′∈G′

M ′

g′ are G−graded left R−module and G′−graded left R′−module,

respectively;

• The set supp(R,G) = {g ∈ G : Rg 6= 0} is called the support of R. The support of M , supp(M,G),
is defined similarly.

• The set h(R) =
⋃

g∈G

Rg is the set of homogeneous elements of R. Similar definition stands for h(M).

• The subring CR(Re) = {r ∈ R : rx = xr, for all x ∈ Re} is the commutant of Re in R.
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To avoid repetition, we assume that all underlying rings and modules are non-trivial, and all modules
are left modules.

Definition 2.1. [12] A G−graded ring R is first strong, if 1 ∈ RgRg−1 , for all g ∈ supp(R,G), or
equivalently, if supp(R,G) is a subgroup of G, and RgRh = Rgh, for all g, h ∈ supp(R,G)
If supp(R,G) = G and R is first strong, then R is strong [7].

Definition 2.2. [9] A G−graded ring R is said to be augmented if the following conditions hold:

1. Re =
⊕

g∈G

Re−g is a G−graded ring.

2. For each g ∈ G, there exists rg ∈ Rg such that Rg = Rerg. We assume re = 1.

3. If rg 6= 0 and rh 6= 0 are as in (2), then rgrh = rgh.

4. If rg 6= 0 and rh 6= 0 are as in (2), and x, y ∈ Re, then (xrg)(yrh) = xyrgh.

An rg that appears in condition (2) of Definition 2.2 is called a g−representative. The set of all se-
lected nonzero homogeneous representatives is denoted by Λ(R,G) (or simply Λ). Thus, the set Λ(R,G)
varies as the representatives vary. However, once an augmented graded ring is under consideration, we fix
Λ. We denote an augmented graded ring with a selected homogeneous-representatives set Λ by (R,G,Λ).

Proposition 2.3. [5] If (R,G,Λ) is an augmented graded ring, then R is first strong. In particular,
supp(R,G) is a subgroup of G.

Proposition 2.4. [5] If (R,G,Λ) is an augmented graded ring, then

1. Λ is a multiplicative subgroup of R, with identity 1.

2. Λ is group isomorphic to supp(R,G).

3. Λ ⊆ CR(Re).

Definition 2.5. [8] Let (R,G,Λ) be an augmented G−graded ring. A G−graded R−module M is said
to be augmented if the following conditions hold:

1. Mg =
⊕

h∈G

Mg−h is a G−graded Re−module.

2. Rg−hMg′−h′ ⊆ Mgg′−hh′ , for every g, h, g′, h′ ∈ G.

Definition 2.6. [1] A G−graded ring R is called a crossed product over the support if Rg ∩ U(R) 6= ∅,
for every g ∈ supp(R,G), where U(R) is the set of units of R.

Lemma 2.7. [1] If R is a crossed product over the support, then R is first strong. In particular,
supp(R,G) is a subgroup of G.

Definition 2.8. [12] Let R be a G−graded ring and R′ a G′−graded ring. A ring homomorphism
η : R → R′ is said to be an almost equivalence between R and R′ if for every g′ ∈ G′ there exists g ∈ G
such that η(Rg) = R′

g′ .

Lemma 2.9. [12] Let R be a G−graded ring, R′ a G′−graded ring, and η : R → R′ an almost equivalence
between R and R′. Then

1. For each g ∈ G and g′ ∈ G′, if rg ∈ h(R) then η(rg) ∈ h(R′), and if r′

g′ ∈ h(R′) then η−1(r′

g′ ) ∈
h(R).

2. If 0 6= rg ∈ Rg and η(rg) ∈ R′

g′ , then η(Rg) = R′

g′ .

3. if η(Rg) = R′

g′ and either RgRg−1 6= 0 or Rg−1Rg 6= 0, then η(Rg−1 ) = R′

g′−1 .
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4. supp(R,G) and supp(R′, G′) have the same cardinality.

Remark 2.1. The original version of Lemma 2.9 that exists in [12] assumes R = R′. In addition,
item 3 assumes only that RgRg−1 6= 0 and omits the case Rg−1Rg 6= 0. We rewrote the lemma in
the current form - the proof is the same - to fit our notations and to be harmonic with our sequel
work.

Remark 2.2. [11] Let M be a flexible G−graded R−module. Then

1. M 6= 0 iff Me 6= 0 iff e ∈ spp(M,G).

2. supp(M,G) ⊆ supp(R,G).

Theorem 2.10. [11] Let R be an augmented G−graded ring, and M a G−graded R−module such that
Me is a G−graded Re−module. Then M is flexible if and only if M is an augmented G−graded R−module
and supp(R,G) = supp(M,G).

Definition 2.11. [10] Let R be a G−graded ring. A graded R−module M is called first strong if
supp(R,G) is a subgroup of G and RgMh = Mgh, for every g ∈ supp(R,G) and h ∈ G.

Theorem 2.12. [10] Let R be a G−graded ring. R is first strong if and only if every G−graded R−module
is first strong.

Lemma 2.13. [10] Suppose R is a G−graded ring, and M a first strongly graded R−module. If
supp(R,G) ∩ supp(M,G) 6= ∅, then e ∈ supp(R,G) ∩ supp(M,G).

Theorem 2.14. [10] If R is a first strongly graded ring and M a graded R−module such that supp(R,G)∩
supp(M,G) 6= ∅. Then supp(R,G) ⊆ supp(M,G).

Definition 2.15. [11] Let R be a G−graded ring, and M a flexible R−module. A G−graded R−sub-
module N of M is said to be flexible, if N is itself a flexible R–module.

Theorem 2.16. [11] Let R be a G−graded ring, and M a graded R−module. If X is an Re−submodule
of Me, then RX is a flexible R-submodule of M .

The following theorem informs that on first strongly graded rings, flexibility of a graded module is
completely determined by the behavior of the supports of the ring and the module.

Theorem 2.17. [10] Let R be a first strongly graded ring, and M a graded R−module. Then, M is
flexible if and only if supp(M,G) = supp(R,G).

Theorem 2.18. [11] If R is a first strongly graded ring, and M a flexible R−module, then every
G−graded R−submodule of M is also flexible.

Theorem 2.19. [11] Let R be a G−graded ring and M a graded R−module. Then any two of the
following conditions together imply the third condition:

1. supp(R,G) = supp(M,G).

2. M is flexible.

3. M is first strong.

Definition 2.20. [3] Let M be a G−graded R−module and N a G−graded R−submodule of M . We
call N a graded direct summand (or gr-direct summand) of M if there exists a G−graded R−submodule
K of M such that M = N ⊕K.

Theorem 2.21. [5] Let R be a G−graded ring, and M a free R−module. Then there exists a graduation
of M by G that transforms M into a flexible G−graded R−module.

The following definitions are well known in the literature. Each definition exists in non-graded sense.
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Definition 2.22. Let R be a G−graded ring and M a G−graded R−module. Then

• If N is a G−graded R−submodule of M , then (N :R M) = {r ∈ R : rM ⊆ N} is a G−graded ideal
of R.

• Assume R is commutative. A proper G−graded ideal I is gr-prime, if ab ∈ I implies either a ∈ I
or b ∈ I, where a, b ∈ h(R).

• A proper G−graded R−submodule N of M is gr-prime, if rm ∈ N implies either m ∈ N or
r ∈ (N :R M), where r ∈ h(R) and m ∈ h(M).

• M is a gr-multiplication R−module if for every graded R−submodule N of M , there exists a graded
ideal I of R such that N = IM .

• A proper G−graded R−submodule N of M is gr-maximal, if it is not a subset of another proper
graded R−submodule of M .

• M is gr-local (or sometimes gr-quasi-local) if it has unique graded maximal R−submodule.

• M is gr-free if it is a free R−module with homogeneous basis.

• M is a gr-projective R−module if for every exact sequence N
f
→ L → 0 of G−graded R−modules

and gr-homomorphisms, and a gr-homomorphism g : M → L there exists a gr-homomorphism
h : M → N such that f = gh.

• M is a gr-injective R−module if for every exact sequence 0 → N
f
→ L of G−graded R−modules

and gr-homomorphisms, and a gr-homomorphism g : N → M there exists a gr-homomorphism
h : L → M such that g = hf .

Theorem 2.23. [4] A G−graded R−module is gr-projective if and only if it is a gr-direct summand of a
gr-free R−module. While, A G−graded R−module is gr-injective if and only if it is a gr-direct summand
of a G−graded R−module containing it.

3. Main Results

In this section, we exhibit the results of this article. We start by introducing the concept of a gr-
faithful module on the supports which is a special case of faithful modules. Their properties and nexus
to other graded modules are investigated. We shall see that the ”gr-faithful on the supports” property
combined with other properties produce a well-structured graded modules such as augmented graded
modules, first strong modules, flexible modules, and so on. Furthermore, we prove that ”gr-faithful on
the supports” property is preserved under certain isomorphisms between graded modules, called fittings
(see Definition 3.3). Afterward, we give different results of flexible modules. Mainly, we show that we
can provide free modules and projective modules (graded or not) with a suitable gradation that turns
them into flexible modules.

3.1. The gr-Faithful Modules on The Supports

Definition 3.1. A G−graded R−module is said to be gr-faithful on the supports if supp(R,G) is a
subgroup of G and rgMh 6= 0, for every rg ∈ h(R) − 0, g ∈ supp(R,G), and h ∈ supp(M,G).

If M = R in Definition 3.1, we obtain the definition of a gr-faithful graded ring on the support.

Example 3.2. Let G = Z4, R = Z, and M = Z⊕ iZ. Then, R has the trivial gradation by G and M is a
G−graded R−module with a gradation M0 = Z, M2 = iZ and M1 = M3 = 0. We have M is a gr-faithful
on the supports graded module.
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It is clear that a left (right) gr-faithful module on the supports is left (right) gr-faithful if and only if
supp(R,G)=G.

Analogous to many properties in graded ring and graded module theories, a question rises up about
the ”gr-faithful on the supports” property whether it can be preserved by a suitable isomorphism between
graded modules that preserves the gradation of modules or fits them together. Moving in this route we
start with a definition that generalizes the notion of almost equivalence between graded rings (Definition
2.8) to graded modules.

Definition 3.3. Let M be a G−graded R−module and M ′ a G′−graded R′−module. A 4-tuple
(η, f,M,M ′) is said to be fitting M in M ′ (or fitting for short) if

1. the mapping η : R → R′ is a ring isomorphism such that for each g′ ∈ G′ there exists g ∈ G such
that η(Rg) = Rg′ . That is, R is almost equivalent to R′ by η [12].

2. the mapping f : M → M ′ is a group isomorphism such that f(rm) = η(r)f(m), for every r ∈ R
and m ∈ M ; and for each g′ ∈ G′, there exists g ∈ G such that f(Mg) = Mg′ .

We say that M is gr-equivalent to M ′ if there exists a fitting (η, f,M,M ′). Notice that (η−1, f−1,M ′,M)
is a fitting.

It is not difficult to prove that the gr-equivalence is an equivalence relation on the category of graded
modules. In Definition 3.3, the group isomorphism f : M → M ′ exists in the literature and is described
by an η−isomorphism [6].

The proof of the next lemma partially follows the similar argument of the proof of Lemma 2.9.

Lemma 3.4. Let M be a G−graded R−module, M ′ a G′−graded R′−module, and (η, f,M,M ′) a fitting.
Then

1. If f(Mg) ∩M ′

g′ 6= 0, then f(Mg) = M ′

g′ , where g ∈ G and g′ ∈ G′.

2. Let m′ and x′ be homogeneous elements of M ′. Then f−1(m′) and f−1(x′) are homogeneous ele-
ments of M of the same degree if and only if m′ and x′ have the same degree in M ′.

3. f(mg) ∈ h(M ′) and f−1(mg′) ∈ h(M), for every mg ∈ Mg, m
′

g′ ∈ M ′

g′ , g ∈ G, and g′ ∈ G′.
Moreover, for every g ∈ G, there exists g′ ∈ G′ such that f(Mg) = M ′

g′ .

4. Suppose for some g ∈ G that

(a) either RgRg−1 6= 0 or Rg−1Rg 6= 0;

(b) RgMg−1 6= 0 and Rg−1Mg 6= 0; and

(c) f(Me) = M ′

e′ ,

then the equality f(Mg) = M ′

g′ implies the equality f(Mg−1) = M ′

g′−1 .

5. supp(M,G) and supp(M ′, G′) have the same cardinality.

Proof. 1. Suppose f(Mg) ∩ M ′

g′ 6= 0, for some g ∈ G and g′ ∈ G′. There exists h ∈ G such that
f(Mh) = M ′

g′ . We get that f(Mg ∩ Mh) 6= 0. Since f is an isomorphism, Mg ∩ Mh 6= 0. Thus,
g = h and f(Mg) = M ′

g′ .

2. Assume f−1(m′) and f−1(x′) are homogeneous elements of M of the same degree. Let m′ ∈ M ′

g′

and x′ ∈ M ′

h′ , where g′, h′ ∈ G′. There exist g ∈ G and m,x ∈ Mg such that m′ = f(m) and
x′ = f(x). By part 1, f(Mg) = M ′

g′ = M ′

h′ which yields g′ = h′. The converse is an immediate
consequence of the definition of f .
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3. Firstly, it follows by the definition of f that if m′

g′ ∈ h(M ′), then f−1(m′

g′) ∈ h(M). Secondly,

if mg ∈ Mg, then f(mg) =
∑

g′∈G′

m′

g′ . Thus mg =
∑

g′∈G′

f−1(m′

g′). Since f−1(m′

g′) ∈ h(M), for

all g′ ∈ G′, part 2 implies m′

g′ = 0 for all g′ ∈ G′ except one element g′ ∈ G′. This means that
f(mg) = m′

g′ ∈ h(M ′). By part (1), for every g ∈ G, there exists g′ ∈ G′ such that f(Mg) = M ′

g′ .

4. Assume f(Mg) = M ′

g′ . Let f(Mg−1 ) = M ′

h′ . we have

0 6= f(RgMg−1) = η(Rg)f(Mg−1 ) = R′

k′M ′

h′ ⊆ M ′

k′h′ ,

where η(Rg) = R′

k′ for some k′ ∈ G′ by Lemma 2.9. From the fact that RgMg−1 ⊆ Me and the
assumption f(Me) = M ′

e′ we deduce that M ′

e′ = M ′

k′h′ or k′h′ = e′. On the other hand,

0 6= f(Rg−1Mg) = η(Rg−1 )f(Mg) = R′

k′−1M ′

g′ ⊆ M ′

k′−1g′ ,

where η(Rg−1 ) = R′

k′−1 by Lemma 2.9. Again, the fact that Rg−1Mg ⊆ Me and the assumption
f(Me) = M ′

e′ yield M ′

k′−1g′ = M ′

e′ or k′−1g′ = e′.

Now, from the equalities k′h′ = e′ and k′−1g′ = e′ we obtain that h′ = g′−1, and the proof is
complete.

5. Define the function ϕ : supp(M,G) → supp(M ′, G′) by ϕ(g) = g′, where f(Mg) = M ′

g′ . The
definition of f and parts 1, 2 and 3 ensure that ϕ is a well-defined bijection.

�

Consider the function ψ : supp(R,G) → supp(R′, G′) defined by ψ(g) is the unique element in G′

such that η(Rg) = Rψ(g). This function is the one used in Lemma 2.9 to show that the cardinality of
supp(R,G) is equal to the cardinality of supp(R′, G′). We now study the functions ϕ and ψ and discover
the relationship between them. In the next work, R, R′, G, G′, ϕ, ψ, η and f are as mentioned above.

Lemma 3.5. If R is a gr-faithful graded ring on the support, then ψ : supp(R,G) → supp(R′, G′) is a
group isomorphism. Further, supp(R′, G′) is a subgroup of G′.

Proof. We have supp(R,G) is a subgroup of G. In the definition of ψ, replace supp(R′, G′) by G′ to
obtain the function ψ : supp(R,G) → G′ between two groups defined in the same way as above. To show
that the new ψ is a group homomorphism, let g, h ∈ supp(R,G). By assumptions

0 6= η(RgRh) ⊆ η(Rgh) = R′

ψ(gh). (3.1)

On the other hand,
0 6= η(RgRh) = η(Rg)η(Rh) = R′

ψ(g)R
′

ψ(h) ⊆ R′

ψ(g)ψ(h). (3.2)

From Equations 3.1 and 3.2, we obtain ψ(gh) = ψ(g)ψ(h).
Since ψ is one to one and Imψ = supp(R′, G′), we conclude that the original ψ is a group isomorphism.
Consequently, Imψ = supp(R′, G′) is a subgroup of G′. �

Lemma 3.6. Let g ∈ G such that RgMe 6= 0. Then ϕ(g) = ψ(g)ϕ(e). Moreover, if f(Me) = Me′ , then
ϕ(g) = ψ(g).

Proof. Since RgMe 6= 0, g ∈ supp(R,G) ∩ supp(M,G). Hence

0 6= f(RgMe) ⊆ f(Mg) = M ′

ϕ(g). (3.3)

Also,
0 6= f(RgMe) = η(Rg)f(Me) ⊆ R′

ψ(g)M
′

ϕ(e) ⊆ M ′

ψ(g)ϕ(e). (3.4)

Equations 3.3 and 3.4 yield ϕ(g) = ψ(g)ϕ(e).
In addition, if f(Me) = M ′

e′ , we get that ϕ(e) = e′ and hence ϕ(g) = ψ(g). �
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Corollary 3.7. If both R and M are gr-faithful on the supports and f(Me) = M ′

e′ 6= 0, then

1. supp(R,G) ⊆ supp(M,G).

2. ϕ|supp(R,G) = ψ, where ϕ|supp(R,G) is the restriction of ϕ on supp(R,G).

Proof. The proof is easy by applying Lemmas 3.4, 3.5, and 3.6. �

The next theorem asserts that the gr-equivalence between graded modules preserves the ”gr-faithful
on the supports” property under certain conditions.

Theorem 3.8. Let R be a gr-faithful G−graded ring on the support, M a gr-faithful module on the
supports, M ′ a G′−graded R′−module, and (η, f,M,M ′) a fitting. Then M ′ is gr-faithful on the supports.

Proof. By Lemma 3.5, supp(R′, G′) is a subgroup of G′. Let r′

g′ ∈ h(R) − 0, and h′ ∈ supp(M ′, G′).
Set g′ = ψ(g) with g ∈ supp(R,G) and h′ = ϕ(h) with h ∈ supp(M,G). Then r′

g′ = η(rg) for some
rg ∈ Rg − 0 and M ′

h′ = f(Mh). Then, r′

g′M ′

h′ = η(rg)f(Mh) = f(rgMh) 6= 0. Consequently, M ′ is
gr-faithful on the supports. �

Theorem 3.9. If M is gr-faithful on the supports such that Me 6= 0, then AnnR(M) = (0 :R M) = 0,
and hence M is faithful R−module.

Proof. Assume M is gr-faithful on the supports. Let g ∈ G and rg ∈ (0 :R M)g. Then rgM = 0 and
hence rgMe = 0. Since e ∈ supp(M,G) and M is gr-faithful on the supports, we obtain rg = 0. Thus
(0 :R M)g = 0 for every g ∈ G. So, (0 :R M) = 0. �

Theorem 3.10. Let R be a first strongly G−graded ring and M a G−graded R−module such that
supp(R,G) = supp(M,G). Then M is gr-faithful on the supports if and only if (0 :R Me) = 0.

Proof. Suppose (0 :R Me) = 0. Let rg ∈ h(R) and h ∈ supp(M,G) such that rgMh = 0. Then

Rh−1rgMh = 0 ⇒ rgMe = 0 ⇒ rg = 0.

We deduce that M is gr-faithful on the supports.
Conversely, Suppose that M is gr-faithful on the supports. Let rg ∈ h(R) such that rgMe = 0. Since
Me 6= 0, rg = 0. This implies (0 :R Me) = 0. �

Proposition 3.11. If M is a gr-faithful module on the supports and J a G−graded ideal of R such that
JM = 0, then J = 0.

Proof. Suppose that J 6= 0. Then there exists r ∈ J such that r 6= 0, and then rg 6= 0 for some g ∈ G.
Since J is a graded ideal, rg ∈ J , and then rgM = 0. Let h ∈ supp(M,G). Then rgMh = 0, and hence
rg = 0 as M is graded faithful on the supports, which is a contradiction. Hence, J = 0. �

Theorem 3.12. If M is a gr-faithful module on the supports such that supp(R,G) = supp(M,G) and
Mg is simple Re−module for every g in G, then M is first strongly graded module.

Proof. By the definition of gr-faithful modules on the supports, supp(R,G) is a subgroup of G. Let
g ∈ supp(R,G) and h ∈ G. If h ∈ supp(R,G), then 0 6= RgMh is an Re−submodule of Mgh. Thus
RgMh = Mgh. If h /∈ supp(M,G), then gh /∈ supp(R,G) and hence RgMh = Mgh = 0. This proves that
M is first strong. �
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3.2. Flexible Modules

From this point, we assume R is a commutative G-graded ring with unity, unless otherwise stated.
The following theorem gives the first characterization of flexible modules through the graded ring.

Theorem 3.13. Let M be a G−graded R−module. Then M is flexible if and only if
⋂

g∈G

(Ng :Re
Mg) =

(Ne :Re
Me), for every graded submodule N of M .

Proof. Suppose M is a flexible module. Let a ∈ (Ne :Re
Me) and g ∈ G. Then

aMe ⊆ Ne ⇒ Rg(aMe) ⊆ RgNe ⊆ Ng ⇒ a(RgMe) ⊆ Ng ⇒ aMg ⊆ Ng.

Thus, a ∈ (Ng :Re
Mg), for each g ∈ G. Therefore, (Ne :Re

Me) ⊆
⋂

g∈G

(Ng :Re
Mg), which implies

⋂

g∈G

(Ng :Re
Mg) = (Ne :Re

Me).

For the converse, Suppose
⋂

g∈G

(Ng :Re
Mg) = (Ne :Re

Me) for every graded R−submodule N of

M , or equivalently (Ne :Re
Me) ⊆ (Ng :Re

Mg), for every g ∈ G and every graded R−submodule
N of M . Let N = RMe and fix g ∈ G. Then the inclusion (Ne :Re

Me) ⊆ (Ng :Re
Mg) induces

Re = (Me :Re
Me) ⊆ (RgMe :Re

Mg) ⊆ Re. That is (RgMe :Re
Mg) = Re which gives Mg = RgMe, for

each g ∈ G. We conclude that M is flexible. �

Theorem 3.14. Let R be a first strongly G−graded ring and M a G−graded R−module. Then M is
flexible if and only if (N :R M) is a flexible ideal, for every G−graded R−submodule N of M .

Proof. Suppose M is flexible. By Theorem 2.12, (N :R M)g = Rg(N :R M)e, for every g ∈ G, which
means that (N :R M) is a flexible R−module.
For the converse, assume (N :R M) is a flexible ideal of R, for every G−graded R−submodule N of M .
Set N = RMe. Then (RMe :R M) = R(RMe :R M)e = R(Me :Re

Me) = RRe = R. Hence, M = RMe

which means that M is a flexible R−module. �

Theorem 3.15. The sum of flexible R−submodules is a flexible R−submodule.

Proof. Let N =
∑

i∈I

Ni where Ni is a flexible R−submodule of a graded R−module M with e−component

Ne
i , for each i ∈ I. Obviously, N is a graded R−submodule of M . Further,

N =
∑

i∈I

RNe
i ⊆ R

∑

i∈I

Ne
i = R

(

∑

i∈I

Ni

)

e

= RNe.

This yields N is flexible. �

Definition 3.16. [2] Let R be a G−graded ring. The ideal θgr(M) is defined by θgr(M) =
∑

x∈h(M)

(Rx :R

M).

It is easy to prove that θgr(M) is a graded ideal.

Theorem 3.17. Let R be a first strongly graded ring and M a flexible graded R−module. Then the
graded ideal θgr(M) is a flexible ideal.

Proof. The proof follows from Theorems 3.14 and 3.15. �
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Theorem 3.18. Let R be a crossed product on the support, M a flexible G−graded R−module, and N a
G−graded R−submodule of M . Then N is gr-prime if and only if Ne is a prime Re−submodule of Me.

Proof. Assume N is gr-prime. Let a ∈ Re and m ∈ Me such that am ∈ Ne. Then am ∈ N . Hence, either
m ∈ N or a ∈ (N :R M). It follows that either m ∈ N ∩Me = Ne or a ∈ (N :R M) ∩Re = (N :R M)e =
(Ne :Re

Me). Thus, Ne is a prime Re−submodule of Me.
For the converse, assume Ne is a prime Re−submodule of Me. Let rg ∈ Rg and mh ∈ Mh such that
rgmh ∈ N . Let ug ∈ U(R)∩Rg for each g ∈ supp(R,G). Since M is flexible and R is a crossed product on
the support, Rg = Reug for every g ∈ supp(R,G), and hence Mh = uhMe. Set rg = tug and mh = uhme

for some t ∈ Re and me ∈ Me. We have

tuguhme ∈ N ⇒ uguhtme ∈ Ngh ⇒ tme ∈ u−1
h u−1

g Ngh ⊆ Ne.

Since Ne is prime, either me ∈ Ne or t ∈ (Ne :Re
Me). Therefore, either uhme ∈ uhNe = Nh ⊆ N or

tug = (Ne :Re
Me)ug = (N :R M)g ⊆ (N :R M). This proves that N is gr-prime. �

Theorem 3.19. Let R be a first strongly G−graded ring and M a flexible R−module. Then M is
gr-faithful on the supports if and only if Me is faithful Re−module.

Proof. Suppose Me is a faithful Re−module. Let rg 6= 0 and Mh 6= 0, where g ∈ supp(R,G) and
h ∈ supp(M,G). By Theorem 3.10, R is a gr-faithful ring on the supports. Thus rgRf 6= 0 for every
g, f ∈ supp(R,G). If we let f = g−1, we obtain that rgRg−1Me 6= 0 which implies rgMg−1 6= 0. Now

rgMg−1 6= 0 ⇒ rgReMg−1 6= 0 ⇒ rgRhRh−1Mg−1 6= 0 ⇒ rgRhRh−1Rg−1Me 6= 0

⇒ rgRh−1Rg−1RhMe 6= 0 ⇒ rgRh−1Rg−1Mh 6= 0 ⇒ Rh−1g−1 (rgMh) 6= 0

⇒ rgMh 6= 0.

Consequently, M is gr-faithful on the supports.
The converse is straightforward from the definition of the gr-faithful module on the supports. �

Recall that if R is a G−graded ring, then the group ring R[G] is G−graded by (R[G])σ =
⊕

g∈G

Rσg g
−1

with e−component (R[G])e = R (up to gr-isomorphism). Furthermore, the group ring R[G] is strongly
graded. Similarly, if M is a G−graded R−module, then the R[G]−module M [G], defined like R[G], is
G−graded by (M [G])σ =

⊕

g∈G

Mσg g
−1 with e−component (M [G])e = M (up to isomorphism). More

details can be found in [6].

Theorem 3.20. Every graded R−module contains a flexible R−submodule, and is included in a flexible
module as its e−component.

Proof. Assume M is a G−graded R−module such that Me 6= ∅. Then RMe is a flexible R−submodule
of M . On the other hand, since R[G] is strongly graded, then the R[G]−module M [G] is also a strongly
graded R[G]−module and therefore M [G] is a flexible graded R[G]−module. �

Theorem 3.21. Let f : M −→ N be a gr-epimorphism of degree e between G−graded R−modules such
that M is flexible. Then N is flexible.

Proof. Assume M is a flexible R−module. Then N = f(M) = f(RMe) = Rf(Me) = RNe. Thus N is
flexible. �

The previous theorem will yield many results. We list some below.

Theorem 3.22. Let M be a G−graded R−module. The following statements are true:
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1. If Me = R, then M is flexible if and only if the gradation of M by G is trivial.

2. If M is flexible and N is an R−submodule, then M/N is a flexible R−module.

3. If M is flexible then, every graded direct summand of M is a flexible R−module.

4. If
⊕

λ∈Λ

Mλ is a flexible R−module, where Mλ = M for each λ ∈ Λ, then M is a flexible R-module,

where Λ is an indexing set.

5. Assume M = N ⊕ K, where N and K are G−graded R−submodules of M , if either of M , N , or
K is flexible, then the other two are flexible.

Proof. 1. Assume M is flexible with Me = R. We have M = RMe = RR = R = Me, which implies
supp(M,G) = {e} and hence M has the trivial gradation by G. Conversely, if M has the trivial
gradation with Me = R, then M = R which is obviously flexible.

2. Apply Theorem 3.21 to the gr-epimorphism of degree e, f : M → M/N defined by f(m) = m+N .

3. Assume N is a gr-direct summand R−submodule of M , then M = N ⊕ K, where K is a graded
R−submodule of M . The function f : M → N defined by f(n + k) = n is a gr-epimorphism of
degree e. By Theorem 3.21, N is flexible.

4. Apply Theorem 3.21 on the projection gr-epimorphismf :
⊕

λ∈Λ

Mλ → M .

5. Firstly, assume M is flexible. Then both N and K are flexible modules since the projection maps
πN : M → N defined by πN (n + k) = n and πK : M → K defined by πK(n + k) = k are gr-
epimorphisms of degree e. Secondly, without loss of generality, assume N is flexible. Since M/N is
gr-isomorphic to K of degree e, by (2), we get K is flexible. Now, by Theorem 3.15 , M is flexible.

�

Lemma 3.23. Let R be a G−graded ring, I a G−graded right ideal, and M a G−graded R−module, and
N a flexible R−submodule of M . Then IN is a flexible I−module.

Proof. If N = RNe, then IN = IRNe = INe. �

Proposition 3.24. [3] Let R be a G− graded ring, M a graded R−module, and N a graded R−submodule
of M . The following hold:

1. If (N :R M) is a graded maximal ideal of R, then N is a graded prime submodule of M .

2. If Q is a graded maximal ideal of R with QM 6= M , then QM is graded prime.

Theorem 3.25. Let R be a graded ring, A a gr-maximal ideal, and M a flexible R−module. If M is not
flexible a A−module, then AM = AMe is a gr-prime R−module.

Proof. We have AM = ARMe = AMe. Also, M 6= AMe. Thus AM 6= M . By Proposition 3.24,
AM = AMe is a graded prime submodule. �

Proposition 3.26. Let R be a G−graded ring, A a maximal graded ideal, and M a flexible R−submodule.
Then each of the conditions below makes M a non-flexible A−module.

1. AgMe 6= Mg for some g ∈ G,

2. Me is a finitely generated faithful Re−module.

3. M is gr-faithful on the supports and Me is finitely generated Re−module.



12 F. Moh’d, M. Ahmed and M. Refai

4. There exists a graded A−submodule N of M and g ∈ supp(R,G) such that (Ne :Ae
Me) ( (Ng :Ae

Mg).

Proof. 1. Follows from the definition of flexible modules.
2. By Nakayama’s Lemma, we get AeMe 6= Me. Then apply (1).
3. Follows by Theorem 3.9 and (2).
4. Apply Theorem 3.13. �

Corollary 3.27. Let R be a gr-local ring with A being the unique gr-maximal ideal of R, and M be a gr-
multiplication flexible R−module. If M is not a flexible A−module, then AMe is the unique gr-maximal
R−submodule of M which yields M is gr-local.

Proof. We have AM = AMe. Let N be a G−graded R−submodule of M such that AM ( N ⊆ M . .
Assume N = JM where J is a graded ideal of R. Then, there exists rg ∈ J and me ∈ Me such that
rgme /∈ AMe. Thus, rg /∈ A and hence rg is a unit. This implies J = R and N = M , which means that
AMe is a maximal graded R-submodule of M. To prove that AM is the unique gr-maximal R−submodule
of M , assume N 6= M is a graded R−submodule of M . Then N = (N :R M)M and (N :R M) 6= R.
So, (N :R M) ⊆ A. Thus, N ⊆ AM . We deduce that all the proper graded R−submodules of M are
contained in the gr-maximal submodule AM . Therefore, AM is the unique gr-maximal R−submodule of
M and hence M is gr-local. �

3.3. Flexible Modules and Other Graded Modules

In this section, we investigate the relationship between flexible graded modules and other types of
graded modules. The main result in this section states that the protective and free modules can be ac-
commodated with a gradation by G that transforms them into flexible graded module, and this gradation
is trivial if and only if the gradation of the ring R is trivial.

Theorem 3.28. Let M be a flexible gr-faithful R−module on the supports. Then

supp(R,G) = supp(M,G)

and M is first strong.

Proof. Assume M is gr-faithful on the supports. Let g ∈ supp(R,G), we have RgMe = Mg. Since M is
gr-faithful on the supports, and e ∈ supp(M,G), then g ∈ supp(M,G). So supp(R,G) ⊆ supp(M,G).
By Remark 2.2 supp(M,G) ⊆ supp(R,G). Thus, supp(R,G) = supp(M,G). �

The following theorem states that the flexible gr-faithful modules on the supports are augmented
graded modules.

Theorem 3.29. Let R be an augmented G−graded ring, and M a flexible gr-faithful R−module on the
supports such that Me is a G−graded Re−module. Then M is an augmented G−graded R−module.

Proof. Combine Theorem 2.10 and Theorem 3.28. �

A partial converse of Theorem 3.29 is given next.

Theorem 3.30. Let M be an augmented G−graded R−module such that supp(R,G) = supp(M,G) and
AnnRe

(Me) = 0. Then, M is gr-faithful on the supports.

Proof. We have supp(R,G) is a subgroup of G by Proposition 2.3. Suppose for contrary that rgMh = 0
for some 0 6= rg ∈ h(R) and g, h ∈ supp(R,G). Let tg ∈ Λ(R,G). Then rg = retg = tgre, for some
re ∈ Re. So, tgreMh = 0. Since M is flexible, Mh = thMe, where th ∈ Λ(R,G). Thus, tgthreMe = 0 or
tghreMe = 0. Since tgh is invertible, we have reMe = 0. By assumptions, re = 0 which yields rg = 0, a
contradiction. Consequently, rgMh 6= 0 for every 0 6= rg ∈ h(R) and g, h ∈ supp(R,G) = supp(M,G).
That is, M is gr-faithful on the supports. �
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The final part of the article is related to Homology and Cohomology Theory.

Theorem 3.31. Given a G−graded free R−module M , the gradation of R by G induces a gradation by
G on M that turns it into a flexible R−module. This gradation is trivial if and only if R is trivially
graded.

Proof. By applying Theorem 2.21, the proof is straightforward since every G−graded free module is a
free module. According to Theorem 2.21, the desired gradation is defined by Mg = RgT , for all g ∈ G,
where T is a basis of M . It is obvious that this gradation is trivial if and only if the gradation of R is
trivial. �

Since every graded module is the gr-homomorphic image of a gr-free module, the reader may think
by combining Theorem 3.21 and Theorem 3.31 that every graded module is flexible, which is of course
not true. We should be careful that not every gr-free module is flexible, but we can change the gradation
of the module to make it flexible. Even with the new gradation, we are not sure that the graded module
is still a gr-homomorphic image of degree e of the new gr-free module. For example, If G = Z and K is
a graded field with the trivial gradation and M = K[1, x, x2, . . .] is graded by Mn = Kxn for n ≥ 0 and
Mn = 0 for n < 0. Then M is a gr-free module but not flexible. However, if we change the gradation of
M to the trivial gradation, i.e., M0 = K[1, x, x2, . . .] and Mn = 0 for n 6= 0, the resulting gr-free module
is flexible.

Proposition 3.32. [4] Let R be a G−graded ring and P a G−graded R−module. The following state-
ments are equivalent:

1. P is gr- projective.

2. P is graded and projective.

3. P is gr-isomorphic of a direct summand of gr-free module.

Theorem 3.33. Let R be a G−graded ring. Every G−graded projective (or projective) R−module has a
gradation by G that turns it into a flexible R−module.

Proof. Let P be a projective or G−graded projective R−module. By Proposition 3.32, P is a direct
summand of a free R−module M . By Theorem 3.31, M possesses a gradation by G that makes it a
graded flexible R−module. This gradation is induced to P from the fact that P is isomorphic to M/K,
where M = P ⊕ K. Equipped with this gradation by G, this isomorphism becomes a gr-isomorphism of
degree e. Since the graded module P is a direct summand of the flexible graded module M , by Theorem
3.22 P is flexible. �

Theorem 3.34. Let R be a G−graded ring, M a G−graded R−module, and N a gr-injective R−sub-
module of M . Then M is flexible if and only if N is flexible.

Proof. The proof follows easily by Theorems 2.23 and 3.22. �
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