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abstract: This paper considers the existence of entropy solutions for some generalized elliptic p(u)-
Laplacian problems with Fourier boundary conditions, when the variable exponent p is a real continuous
function and we have dependency on the solution u. We get the results by assuming the right-hand side
function f to be an integrable function, and by using the regularization approach combined with the theory
of Sobolev spaces with variable exponents.
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1. Introduction

In this paper, the aim is to study the existence of entropy solutions for some variable exponent
problems with exponents p that may depends on the unknown solution u. We consider the case where
the dependency of p on u is a local quantity. Namely, we study the following nonlinear Fourier boundary
value problem







−div(|∇u − Θ(u)|p(u)−2 (∇u − Θ(u))) + |u|p(u)−2u + α(u) = f in Ω

(|∇u − Θ(u)|p(u)−2 (∇u − Θ(u))).η + λu = g on ∂Ω,
(1.1)

where Ω be a bounded domain of RN≥3 with Lipschitz boundary ∂Ω, λ > 0, η is the outer unit normal
vector on ∂Ω, α, Θ are real functions defined on R or R

N , f ∈ L1(Ω), g ∈ L1(∂Ω) and p : R → [p−, p+] is

a real continuous function such that, 1 < p− ≤ p+ < +∞ and p′(z) = p(z)
p(z)−1 is the conjugate exponent

of p(z), with
p− := ess inf

z∈R

p(z) and p+ := ess sup
z∈R

p(z).

Interest in general forms of differential problems, whose leading operator is of the generalized p(u)-
Laplacian type, has greatly increased over the last few decades. The main reason is that this kind
of nonlinear operator appears naturally in the study of several phenomena which appear in area of
oceanography, turbulent fluid flows, induction heating and electrochemical problems. We cite for example
the following parabolic model:
- Fluid flow through porous media: this model is governed by the following equation,

∂θ

∂t
− div

(

|∇ϕ(θ) − K(θ)e|p−2(∇ϕ(θ) − K(θ)e)
)

= 0,

where θ is the volumetric content of moisture, K(θ) the hydraulic conductivity, ϕ(θ) the hydro-static
potential and e is the unit vector in the vertical direction.
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We distinguish the case of constant exponents p (namely, isotropic equations) and the case of vari-
able exponents p(x) (namely, anisotropic equations). The authors developed the existing results in
the abstract settings of Lebesgue and Sobolev spaces with and without variable exponents, namely,
Lp(Ω), W 1,p(Ω), Lp(x)(Ω), W 1,p(x)(Ω). It is well-known that Lp(x)(Ω) is not invariant with respect to
translation (See [12]). This causes many difficulties about convolutions and continuity of functions in the
mean. Moreover, the spaces W 1,p(x)(Ω) presents difficulties about the density of smooth functions (See
[15]), the Sobolev inequality, and embedding theorems (for further details, we refer to [16] and [14]).
This means that the passage from the constant exponent setting to the variable exponent setting needs
attention to special cases, and thus, some challenging open problems remain (for further details, we refer
to [5] and [12], and the references therein).
Many authors have studied the problem (1.1) when p(u) = p(x) or p(u) = p by proving the existence and
the uniqueness of several types of solutions, and by different approaches ( [13,6,7]).

The novelty of this work is to study some problems involving the generalized p-Laplacian operator in
the case when the variable exponents p depend on the unknown solution u. Here, we consider a Fourier
boundary condition which bring some difficulties to treat the term at the boundary. The motivation to
study these kind of problems relies in the fact that, in reality the measurements of some physical quantities
are not made point-wise but through some local averages. The situation where the variable exponents
p depend on the unknown solution u is non-standard as in the classical case (see [1,2,3,4,13,6,7]). This
kind of problems appear in the applications of some numerical techniques for the total variation image
restoration method that have been used in some restoration problems of mathematical image processing
and computer vision [9,10,20]. Türola, J. in [20] have presented several numerical examples suggesting
that the consideration of exponents p = p(u) preserves the edges and reduces the noise of the restored
images u. A numerical example suggesting a reduction of noise in the restored images u when the exponent
of the regularization term is p = p(|∇u|) is presented in [9]. Many authors have considered the problem
(1.1) in the case when Θ = 0 and especially the study of existence and uniqueness for weak or entropy
solutions to the problem (1.1). M. Chipot and H. B. de Oliveira in [12] have proved the existence of
weak solutions for some p(u)−Laplacian problems, the existence proofs of [12] are based on the Schauder
fixed-point theorem. C. Allalou, K. Hilal and S. A. Temghart in [11], extended the results established in
[12] by proving some existence results for some local and nonlocal problems. Andreianov et al. [5], have
studied the following prototype problem







−div(|∇u|p(u)−2∇u) + u = f in Ω,

u = 0 on ∂Ω.

C. Zhang and X. Zhang in [21] have proved the existence of entropy solutions to problem (1.1) in the
case when Θ = 0 and they have provided some positive answers for the two questions proposed by Chipot
and de Oliveira in [12]. S. Ouaro and N. Sawadogo in [17] and [18] considered the following nonlinear
Fourier boundary value problem

{

b(u) − div a(x, u, ∇u) = f in Ω
a(x, u, ∇u) · η + λu = g on ∂Ω.

The existence and uniqueness results of entropy and weak solutions are established by an approximation
method and convergent sequences in terms of Young measure. Recently, C. Vetro in [19] considered a
local Dirichlet problem driven by the (r(u), s(u))-Laplacian operator, he proved the existence of nontrivial
weak solutions via variational methods and the critical point theory.
To study the existence of weak solutions for the nonlinear Fourier boundary value problem (1.1), we first
show that the approximate problems admits a sequence of weak solutions by applying the variational
method combined with a special type of operators. In the second step, we will prove that the sequence
of weak solutions converges to some function u and by using some a priori estimates, we will show that
this function u is an entropy solution of elliptic problem (1.1).

This paper is organized us follow. In Sec. 2 we introduce the basic assumptions and we recall some
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definitions, basic properties of generalized Sobolev spaces that we will use later. The Sec. 3 is devoted
to showing the existence of entropy solutions to the local problem (1.1).

2. Preliminaries

The exponent function p depends on the solution u and therefore it depends on the space variable x.
This allows us to look for the entropy solutions to the problem (1.1) in a Sobolev space with variable
exponents in the following sense,

h(x) = p(u(x)).

Let Ω be a bounded domain of RN , N ≥ 3, we say that a real-valued continuous function h(.) is log-Hölder
continuous in Ω if

∃C > 0 : |h(x) − h(y)| ≤
C

ln
(

1
|x−y|

) ∀x, y ∈ Ω, |x − y| <
1

2
. (2.1)

For any Lebesgue-measurable function h : Ω → [1, ∞), we define

h− := ess inf
x∈Ω

h(x) , h+ := ess sup
x∈Ω

h(x), (2.2)

and we introduce the variable exponent Lebesgue space by:

Lh(·)(Ω) = { u : Ω → R / ρh(·)(u) :=

∫

Ω

|u(x)|h(x)dx < ∞}. (2.3)

Equipped with the Luxembourg norm

‖u‖h(·) := inf
{

λ > 0 : ρh(·)

(u

λ

)

≤ 1
}

, (2.4)

Lh(·)(Ω) becomes a Banach space. If

1 < h− ≤ h+ < ∞, (2.5)

Lh(·)(Ω) is separable and reflexive. The dual space of Lh(·)(Ω) is Lh′(·)(Ω), where h′(x) is the generalized
Hölder conjugate of h(x),

1

h(x)
+

1

h′(x)
= 1.

From the definitions of the modular ρh(·)(u) and the norm (2.4), it can be proved that, if (2.5) holds,
then

min
{

‖u‖
h−

h(·), ‖u‖
h+

h(·)

}

≤ ρh(·)(u) ≤ max
{

‖u‖
h−

h(·), ‖u‖
h+

h(·)

}

. (2.6)

One consequence very useful of (2.6) is,

‖u‖
h−

h(·) − 1 ≤ ρh(·)(u) ≤ ‖u‖
h+

h(·) + 1. (2.7)

In particular, if (un)n∈N
is a sequence in Lh(.)(Ω), then ‖un‖Lh(.)(Ω) tends to zero (resp., to infinity) if

and only if ρh(.) (un) tends to zero (resp., to infinity), as n → +∞.

For any functions u ∈ Lh(·)(Ω) and v ∈ Lh′(·)(Ω), the generalized Hölder inequality holds:

∫

Ω

uvdx ≤ (
1

h−
+

1

h′
−

)‖u‖h(·)‖v‖h′(·) ≤ 2‖u‖h(·)‖v‖h′(·). (2.8)

We define also the generalized Sobolev space by

W 1,h(·)(Ω) := {u ∈ Lh(·)(Ω) : ∇u ∈ Lh(·)(Ω)},
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which is a Banach space for the norm

‖u‖1,h(·) := ‖u‖h(·) + ‖∇u‖h(·). (2.9)

The space W 1,h(·)(Ω) is separable and is reflexive when (2.5) is satisfied. We have also

W 1,h(·)(Ω) →֒ W 1,r(·)(Ω) whenever h(x) ≥ r(x) for a.e. x ∈ Ω. (2.10)

For a measurable function u ∈ W 1,h(.)(Ω) we introduce the following notation:

ρ1,h(.)(u) =

∫

Ω

|u|h(.)dx +

∫

Ω

|∇u|h(.)dx.

We have the following result that is fundamental in this paper.

Proposition 2.1. (See [17])
If u ∈ W 1,h(.)(Ω), the following properties hold:

i) ‖u‖W 1,h(·)(Ω) > 1 ⇒ ‖u‖
h−

W 1,h(.)(Ω)
< ρ1,h(.)(u) < ‖u‖

h+

W 1,h(.)(Ω)
;

ii) ‖u‖W 1,h(.)(Ω) < 1 ⇒ ‖u‖
h+

W 1,h(.)(Ω)
< ρ1,h(.)(u) < ‖u‖

h−

W 1,h(.)(Ω)
;

iii) ‖u‖W 1,h(.)(Ω) < 1 (respectively = 1; > 1) ⇔ ρ1,h(.)(u) < 1 (respectively = 1; > 1).

We give now some embedding results.

Proposition 2.2. (See [17])
Assume that h : Ω → [h−, h+] satisfying the log-Hölder continuity assumption (2.1).

i) Then, D(Ω) is dense in W 1,h(·)(Ω).
ii) W 1,h(·)(Ω) is embedded into Lh∗(.)(Ω), where h∗(.) is the Sobolev embedding exponent defined below.

If q is a measurable variable exponent such that ess infx∈Ω (h∗(.) − q(.)) > 0, then the embedding of
W 1,h(.)(Ω) into Lq(.)(Ω) is compact.
For a given h(.), a function taking values in [h−, h+] , h∗(.) denotes the optimal Sobolev embedding defined
for any x ∈ Ω by

h∗(x) =







Nh(x)
N−h(x) if h(x) < N

any real value if h(x) = N
+∞ if h(x) > N.

Put

h∂(x) := (h(x))∂ :=

{

(N−1)h(x)
N−h(x) if h(x) < N

∞ if h(x) ≥ N.

Proposition 2.3. (See [17], Proposition 4) Let h(.) ∈ C(Ω̄) and h− > 1. If q(x) ∈ C(∂Ω) satisfies the
condition:

1 ≤ q(x) < h∂(x), ∀x ∈ ∂Ω,

then, there is a compact embedding

W 1,h(.)(Ω) →֒ Lq(.)(∂Ω).

In particular there is compact embedding

W 1,h(.)(Ω) →֒ Lh(.)(∂Ω).

Let Tk denote the truncation function at height k > 0 :

Tk(r) = min{k, max{r, −k}} =







k if r > k
r if |r| < k,
−k if r 6 −k.
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For any u ∈ W 1,h(.)(Ω), we denote by τ (u) the trace of u on ∂Ω in the usual sense. We will identify at
boundary u and τ (u). Set

T
1,h(.)(Ω) =

{

u : Ω → R, measurable such that Tk(u) ∈ W 1,h(.)(Ω), for any k > 0
}

.

We define T
1,h(.)
tr (Ω) as the set of the functions u ∈ T1,h(.)(Ω) such that there exists a sequence

(un)n∈N
⊂ W 1,h+(Ω) satisfying the following conditions:

(i) un → u a.e. in Ω.

(ii) ∇Tk (un) → ∇Tk(u) in L1(Ω).

(iii) There exists a measurable function v on ∂Ω, such that un → v a.e. on ∂Ω.

In the sequel the trace of u ∈ T
1,h(.)
tr (Ω) on ∂Ω will be denoted tr(u). If u ∈ W 1,h(.)(Ω), tr(u) coincides

with τ (u) in the usual sense. Moreover, for u ∈ T
1,h(.)
tr (Ω) and for all k > 0, tr (Tk(u)) = Tk(tr(u)) and if

ϕ ∈ W 1,h(.)(Ω) then u − ϕ ∈ T
1,h(.)
tr (Ω) and tr(u − ϕ) = tr(u) − tr(ϕ).

Next we define the very weak gradient of a measurable function u with Tk(u) ∈ W
1,h(·)
0 (Ω). The proof

follows from Lemma 2.1 of [8] due to the fact that W
1,h(·)
0 (Ω) ⊂ W

1,h−

0 (Ω).

Proposition 2.4. For every measurable function u with Tk(u) ∈ W 1,h(·)(Ω), there exists a unique mea-
surable function v : Ω → R

N , which we call the very weak gradient of u and denote v = ∇u, such
that

∇Tk(u) = vχ{|u|<k} for a.e. x ∈ Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E.
Moreover, if u belongs to W h(·)(Ω), then v coincides with the weak gradient of u.

The following lemma prove that the space W 1,h(.)(Ω) is stable by truncation.

Lemma 2.5. If u ∈ W 1,h(.)(Ω) then Tk(u) ∈ W 1,h(.)(Ω).

Lemma 2.6. (See [6]) For ξ, η ∈ R
N and 1 < p < ∞, we have

1

p
|ξ|p −

1

p
|η|p ≤ |ξ|p−2ξ(ξ − η).

Lemma 2.7. For a ≥ 0, b ≥ 0 and 1 ≤ p < +∞, we have

(a + b)p ≤ 2p−1 (ap + bp) .

Lemma 2.8. (See[6]) Let (vn)n∈N be a sequence of measurable functions in Ω. If vn converges in measure

to v and is uniformly bounded in Lh(.)(Ω) for some 1 ≪ h(.) ∈ L∞(Ω), then vn strongly converges to v
in L1(Ω).

3. Main results

In this section, we prove the existence of entropy solutions of problem (1.1). Firstly, we state the
following assumptions:

(H0) α is continuous function defined on R such that α(x).x ≥ 0 for all x ∈ R.

(H1) f ∈ L1(Ω) and g ∈ L1(∂Ω).

(H2) Θ : R → R
N is a continuous function such that Θ(0) = 0 and |Θ(x) − Θ(y)| ≤ λ|x − y|, for all

x, y ∈ R, where λ is a positive constant such that λ <
1

2C0
, and C0 is the constant given by the

Poincaré’s inequality.
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Now, we give a definition of entropy solutions for the elliptic problem (1.1).

Definition 3.1. A measurable function u with u ∈ T
1,p(u(·))
tr (Ω) is said to be an entropy solution for the

problem (1.1), if |u|p(u)−2u ∈ L1(Ω), α(u) ∈ L1(Ω), u ∈ L1(∂Ω) and

∫

Ω

Φ (∇u − Θ(u)) ∇Tk(u − ϕ)dx +

∫

Ω

|u|p(u)−2uTk(u − ϕ)dx +

∫

Ω

α(u)Tk(u − ϕ)dx

+λ

∫

∂Ω

uTk(u − ϕ)dσ 6

∫

Ω

fTk(u − ϕ)dx +

∫

∂Ω

gTk(u − ϕ)dσ, (3.1)

for all ϕ ∈ W 1,p(u(·))(Ω) ∩ L∞(Ω) and for every k > 0, with

Φ (ξ) = |ξ|p(u)−2ξ ∀ξ ∈ R
N .

Theorem 3.2. Let (H0)-(H2) be satisfied. Then there exists at least one entropy solution of the problem
(1.1) in the sense of the Definition 3.1.

The proof of Theorem (3.2) is divided into into several steps.
Step 1: The approximate problem.

We consider the sequence of approximate problems

(Pn)







−div(Φ (∇un − Θ(un))) + |un|p(un)−2un + Tn(α(un)) − ε∆p+ + ε|un|p+−2un = Tn(f) in Ω

(

Φ (∇un − Θ(un)) + ε|∇un|p+−2∇un

)

.η + λTn(un) = Tn(g) on ∂Ω,

where
Φ (ξ) = |ξ|p(un)−2ξ ∀ξ ∈ R

N .

We define the following reflexive space

E = W 1,p+(Ω) × Lp+(∂Ω).

Let
X0 = {(u, v) ∈ E : v = τ (u)}.

In the sequel, we will identify an element (u, v) ∈ X0 with its representative u ∈ W 1,p+(Ω) (since
W 1,p+(Ω) →֒→֒ Lp+(∂Ω)

)

.
We define the operator An by

〈Anu, v〉 = 〈Au, v〉 +
∫

Ω
Tn(α(u))vdx + λ

∫

∂Ω
Tn(u)vdσ + ε

∫

Ω

[

|∇u|p+−2∇u∇v + |u|p+−2uv
]

dx, with u, v ∈ X0,

where

〈Au, v〉 =

∫

Ω

Φ(∇u − Θ(u))∇vdx +

∫

Ω

|u|p(u)−2uvdx.

Assertion 1. The operator An is coercive.
From Lemma 2.6, we obtain

〈Au, u〉 =

∫

Ω

Φ(∇u − Θ(u))∇udx +

∫

Ω

|u|p(u)dx

=

∫

Ω

|∇u − Θ(u)|p(u)−2(∇u − Θ(u))∇udx +

∫

Ω

|u|p(u)dx

≥

∫

Ω

1

p(u)
|∇u − Θ(u)|p(u)dx −

∫

Ω

1

p(u)
|Θ(u)|p(u)dx +

∫

Ω

|u|p(u)dx.

Since
(a + b)p ≤ 2p−1 (|a|p + |b|p) ,
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we have
1

2p+−1
|∇u|p(u) =

1

2p+−1
|∇u − Θ(u) + Θ(u)|p(u)

≤ |∇u − Θ(u)|p(u) + |Θ(u)|p(u),

then
1

2p+−1
|∇u|p(u) − |Θ(u)|p(u) ≤ |∇u − Θ(u)|p(u).

Therefore, from Poincaré’s inequality we get

〈Au, u〉 ≥

∫

Ω

1

p(u)

[

1

2p+−1
|∇u|p(u) − |Θ(u)|p(u)

]

dx −

∫

Ω

1

p(u)
|Θ(u)|p(u)dx +

∫

Ω

|u|p(u)dx

≥

∫

Ω

1

p(u)

1

2p+−1
|∇u|p(u)dx −

∫

Ω

2

p(u)
|Θ(u)|p(u)dx

≥

∫

Ω

1

p(u)

1

2p+−1
|∇u|p(u)dx −

∫

Ω

2

p(u)
λp(u)|u|p(u)dx

≥

∫

Ω

1

p+

1

2p+−1
|∇u|p(u)dx +

∫

Ω

(

1 −
2

p−
λp(u)

)

|u|p(u)dx.

So the choice of the constant λ in (H2) gives the existence of a positive constant M0 such that

〈Au, u〉 ≥ min{
1

p+

1

2p+−1
, M0}

(
∫

Ω

|∇u|p(u)dx +

∫

Ω

|u|p(u)dx

)

. (3.2)

On the other hand, we have

∫

Ω

Tn(α(u))udx + λ

∫

∂Ω

Tn(u)udσ ≥ 0. (3.3)

By (3.2) and (3.3), we get

〈Anu, u〉 ≥ ε

∫

Ω

[|∇u|p+ + |u|p+ ] dx

≥ ε‖∇u‖
p+

W 1,p+
.

Consequently

〈Anu, u〉

‖u‖W 1,p+ (Ω)

−→ +∞ as ‖u‖W 1,p+ (Ω) → +∞. (3.4)

We deduce that the operator An is coercive.
Assertion 2. The operator An is of type (M).
Let (uk)k be a sequence in X0 such that











uk ⇀ u in X0

Anuk ⇀ χ in X ′
0

lim sup
k→+∞

〈Anuk, uk〉 ≤ 〈χ, u〉.

We will prove that χ = Anu.
As

Tn(α(uk))uk ≥ 0 and λTn(uk)uk ≥ 0,

by Fatou’s Lemma, we deduce that

lim inf
k→∞

(
∫

Ω

Tn (α (uk)) ukdx + λ

∫

∂Ω

Tn (uk) ukdσ

)

≥

∫

Ω

Tn(α(u))udx + λ

∫

∂Ω

Tn(u)udσ.
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On the other hand, thanks to the Lebesgue dominated convergence Theorem, we have

lim
k→∞

(
∫

Ω

Tn (b (uk)) vdx + λ

∫

∂Ω

Tn (uk) vdσ + ε

∫

Ω

[

|uk|
p+−2

ukv + |∇uk|
p+−2

∇uk∇v
]

dx

)

=

∫

Ω

Tn(b(u))vdx + λ

∫

∂Ω

Tn(u)vdσ + ε

∫

Ω

[

|u|p+−2uv + |∇u|p+−2∇u∇v
]

dx,

for any v ∈ X0. Therefore, for k large enough,

Tn (b (uk)) + λTn (uk) + ε
[

|uk|
p+−2

uk + |∇uk|
p+−2

∇uk

]

⇀ Tn(b(u)) + λTn(u) + ε
[

|u|p+−2u + |∇u|p+−2∇u
]

in X ′
0.

Hence,

Auk ⇀ χ −
(

Tn(b(u)) + λTn(u) + ε
[

|u|p+−2u + |∇u|p+−2∇u
])

in X ′
0, as k → +∞.

As the operator A is of type (M), so we have immediately

Au = χ −
(

Tn(b(u)) + λTn(u) + ε
[

|u|p+−2u + |∇u|p+−2∇u
])

.

Therefore, we conclude that Anu = χ.
Besides, the operator A is bounded and hemi-continuous. Therefore, An is surjective. Thus, for any

Fn = 〈Tn(f), Tn(g)〉 ⊂ E′ ⊂ X ′
0, we can deduce the existence of a solution un ∈ X0 of the problem

〈Anu, v〉 = 〈Fnu, v〉 for all v ∈ X0.

i.e.
∫

Ω

|∇un − Θ(un)|p(un)−2 (∇un − Θ(un)))∇vdx +

∫

Ω

|u|p(un)−2unvdx +

∫

Ω

Tn (α(un)) vdx

+λ

∫

∂Ω

Tn (un) vdσ + ε

∫

Ω

[

|un|p+−2 unv + |∇un|p+−2 ∇un∇v
]

dx =

∫

Ω

Tn(f)vdx +

∫

∂Ω

Tn(g)vdσ.

(3.5)

Our aim is to prove that a subsequence of these approximate solutions {un} converges to a measurable
function u, which is an entropy solution to (1.1).
Step 2: a priori estimate.

Lemma 3.3. (∇Tk(un))n∈N
is bounded in Lp−(Ω).

Proof. We take ϕ = Tk(un) as a test function in (3.5), we obtain
∫

Ω

Φ (∇un − Θ(un)) ∇Tk(un)dx +

∫

Ω

|u|p(un)−2unTk(un)dx

+

∫

Ω

Tn (α(un)) Tk(un)dx + λ

∫

∂Ω

Tn (un) Tk(un)dσ

+ ε

∫

Ω

[

|u|p+−2 uTk(un) + |∇u|p+−2 ∇u∇Tk(un)
]

dx =

∫

Ω

Tn(f)Tk(un)dx +

∫

∂Ω

Tn(g)Tk(un)dσ.

Since the third, the fourth and the fifth terms in the left-hand side of equality above are nonnegative
then

∫

Ω

Φ (∇un − Θ(un)) ∇Tk(un)dx +

∫

Ω

|u|p(un)−2unTk(un)dx ≤ k
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

. (3.6)

We have
∫

Ω

|un|p(un)−2unTk(un)dx ≥

∫

{|un|≤k}

|Tk(un)|p(un)dx +

∫

{|un|>k}

kp(un)dx

≤

∫

Ω

|Tk(un)|p(un)dx.
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Then by (3.6), we get
∫

Ω

Φ (∇Tk(un) − Θ(un)) ∇Tk(un)dx +

∫

Ω

|Tk(un)|p(un)dx ≤ k
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

. (3.7)

By the same way as in the proof of the coerciveness, we get

ρ1,p(un)(Tk(un)) 6 Ck.

Therefore,

‖Tk(un)‖1,p(un) 6 1 + (Ck)
1

p
− ,

we deduce that for any k > 0, the sequence (Tk(un))n∈N
is uniformly bounded in W 1,p(un(·))(Ω) and also

in W 1,p− (Ω). Then, up to a subsequence still denoted Tk(un), we can assume that for any k > 0, Tk(un)
weakly converges to νk in W 1,p−(Ω) and also Tk(un) strongly converges to νk in Lp−(Ω).

Lemma 3.4. (un)n∈N
converges in measure to some measurable function u.

Proof. Firstly, we prove that (un)n∈N
is a Cauchy sequence in measure. For every fixed δ > 0, and

every positive integer k > 0, we know that

meas {|un − um| > δ} ≤ meas {|un| > k} + meas {|um| > k} + meas {|Tk (un) − Tk (um)| > δ} .

Choosing Tk (un) as a test function in (3.5), we get

ρ1,p(un)(Tk(un)) 6 k
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

. (3.8)

It follows that
∫

{|un|>k}

kp(un)dx 6 k
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

.

Therefore
meas {|un| > k} 6 k1−p−

(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

.

Hence
meas {|un| > k} → 0 as k → +∞.

Let ε > 0, we choose k = k(ε) such that

meas {|un| > k} 6
ε

3
and meas {|um| > k} 6

ε

3
.

Since {Tk (un)} converges strongly in Lp−(Ω), then it is a Cauchy sequence. Thus

meas {|Tk(un) − Tk(um)| > δ} 6
ε

3
,

for all n, m > n0(δ, ε).
Finally, we obtain

meas {|un − um| > δ} 6 ε,

for all n, m > n0(δ, ε).
Hence

lim sup
n,m→∞

meas {|un − um| > δ} = 0,

which proves that the sequence (un)n∈N
is a Cauchy sequence in measure and then converges almost

everywhere to some measurable function u.

un → u a.e in Ω. (3.9)

Therefore
Tk(un) ⇀ Tk(u) in W

1,p−

0 (Ω),

Tk(un) −→ Tk(u) in Lp−(Ω) and a.e. in Ω.
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Lemma 3.5. un converges almost everywhere in ∂Ω to some function v.

Proof. We have

Tk (un) → Tk(u) in W 1,p− (Ω) and W 1,p− (Ω) →֒ Lp−(∂Ω),

then
Tk (un) → Tk(u) in Lp−(∂Ω) and a.e. on ∂Ω,

hence
Tk (un) → Tk(u) in L1(∂Ω) and a.e. in ∂Ω.

Therefore, there exists A ⊂ ∂Ω such that Tk (un) → Tk(u) on ∂Ω\A with µ(A) = 0, where µ is area
measure on ∂Ω.
For every k > 0, let Ak = {x ∈ ∂Ω : |Tk(u)| < k} and B = ∂Ω\

⋃

k>0

Ak. By using Fatou’s Lemma, we

have
∫

∂Ω

|Tk(u)| dσ ≤ lim inf
n→+∞

∫

∂Ω

|Tk (un)| dσ

≤
‖f‖L1(Ω) + ‖g‖L1(∂Ω)

λ
.

Therefore, we obtain

µ(B) =
1

k

∫

B

|Tk(u)| dσ ≤
1

k

∫

∂Ω

|Tk(u)| dσ

≤
‖f‖L1(Ω) + ‖g‖L1(∂Ω)

kλ
.

We get µ(B) = 0, as k goes to ∞. Let’ s now define on ∂Ω the function v by

v(x) = Tk(u(x)), x ∈ Ak.

We take x ∈ ∂Ω\(E ∪ F ), then there exists k > 0 such that x ∈ Ek and we have

un(x) − v(x) = (un(x) − Tk (un(x))) + (Tk (un(x)) − Tk(u(x))) .

Since x ∈ Ek, then |Tk(u(x))| < k and so |Tk (un(x))| < k, from which we deduce that |un(x)| < k.
Therefore,

un(x) − v(x) = Tk (un(x)) − Tk(u(x)) → 0, as n → +∞.

Which means that un converges to v a.e. on ∂Ω, but for all x ∈ Ek, Tk(u(x)) = u(x). Thus, v = u a.e.
on ∂Ω. Therefore,

un → u a.e. on ∂Ω.

Lemma 3.6. (∇un)n∈N
converges almost everywhere in Ω to ∇u.

Proof. We first prove that {∇un} is a Cauchy sequence in measure. Let δ, h, ε are positive real
numbers, obviously we have

{x ∈ Ω : |∇un − ∇um| > δ} ⊂ {x ∈ Ω : |∇un| > h} ∪ {x ∈ Ω : |∇um| > h}∪ {x ∈ Ω : |un − um| > 1}∪ E,

where
E := {x ∈ Ω : |∇un| 6 h, |∇um| 6 h, |un − um| 6 1, |∇un − ∇um| > δ} .

For k > 0, we can write

{x ∈ Ω : |∇un| > h} ⊂ {x ∈ Ω : |un| > k} ∪ {x ∈ Ω : |∇Tk (un)| > h} ,

then by using the same method us in Lemma 3.4 we obtain for k sufficiently large,

meas {{x ∈ Ω : |∇un| > h} ∪ {x ∈ Ω : |∇um| > h} ∪ {x ∈ Ω : |un − um| > 1}} 6
ε

2
.
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Notice that the application

G : (s, t, ξ1, ξ2) 7→ (Φ (ξ1 − Θ(s)) − Φ (ξ2 − Θ(t))) (ξ1 − ξ2)

is continuous and the set

H :=
{

(s, t, ξ1, ξ2) ∈ R × R
N × R

N , |s| ≤ h, |t| ≤ h, |ξ1| ≤ h, |ξ2| ≤ h, |ξ1 − ξ2| > δ
}

is compact and
(Φ (ξ1 − Θ(s)) − Φ (ξ2 − Θ(t))) (ξ1 − ξ2) > 0, ∀ξ1 6= ξ2.

Then, the application G has its minimum on H. Therefore, there exists a real valued function β(h, δ) > 0
such that

β(h, δ)meas(E) ≤

∫

E

[

|∇un − Θ (un)|
p(un)−2

(∇un − Θ (un))

− |∇um − Θ (um)|
p(un)−2

(∇um − Θ (um))
]

[∇un − ∇um] dx,

=

∫

E

[

|∇um − Θ (um)|
p(um)−2

(∇um − Θ (um))

− |∇um − Θ (um)|p(un)−2 (∇um − Θ (um))
]

[∇un − ∇um] dx

+

∫

E

[

|∇un − Θ (un)|
p(un)−2

(∇un − Θ (un))

− |∇um − Θ (um)|
p(um)−2

(∇um − Θ (um))
]

[∇un − ∇um] dx.

We take Tν (un − um) as a test function in (3.5) to get

β(h, δ)meas (E) 6
∫

E

[

|∇um − Θ (um)|p(um)−2 (∇um − Θ (um)) − |∇um − Θ (um)|p(un)−2 (∇um − Θ (um))
]

[∇un − ∇um] dx

−

∫

Ω

(

|un|p(un)−2
un − |um|p(um)−2

um

)

Tν (un − um) dx −

∫

Ω

(Tn(α(un)) − Tm(α(um))) Tν (un − um) dx

− λ

∫

∂Ω

(Tn(un) − Tm(um)) Tν (un − um) dx − ε

∫

Ω

(

|∇un|p+−2 ∇un − |∇um|p+−2 ∇um

)

∇Tν (un − um) dx

+

∫

Ω

[Tn(f) − Tm(f)] Tν (un − um) dx +

∫

∂Ω

[Tn(g) − Tm(g)] Tν (un − um) dx,

from the fact that ‖Tn(α(un))‖L1(Ω) + λ ‖Tn(un)‖L1(∂Ω) ≤ ‖f‖L1(Ω) + ‖g‖L1(∂Ω), we obtain

β(h, δ)meas (E) 6

∫

E

[

|∇um − Θ (um)|
p(um)−2

(∇um − Θ (um))

− |∇um − Θ (um)|p(un)−2 (∇um − Θ (um))
]

[∇un − ∇um] dx

−

∫

Ω

(

|un|
p(un)−2

un − |um|
p(um)−2

um

)

Tν (un − um) dx + ν
(

2 ‖f‖L1(Ω) + 2 ‖g‖L1(∂Ω)

)

+ ν ‖Tn(f) − Tm(f)‖L1(Ω) + ν ‖Tn(g) − Tm(g)‖L1(∂Ω) ,

(3.10)

by using the mean value theorem, there exists η taking values between p (un) and p (um) such that

∫

E

[

|∇um − Θ (um)|p(um)−2 (∇um − Θ (um)) − |∇um − Θ (um)|p(un)−2 (∇um − Θ (um))
]

[∇un − ∇um] dx

6

∫

E

|∇um − Θ (um)|η−1 | log |∇um − Θ (um) | · |∇un − ∇um| · |p (um) − p (un)| dx.
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By using Lemma 2.7, (H2), the facts that h ≫ 1 and the definition of E, we get

∫

E

[

|∇um − Θ (um)|p(um)−2 (∇um − Θ (um)) − |∇um − Θ (um)|p(un)−2 (∇um − Θ (um))
]

[∇un − ∇um] dx

6 2p+

h
p+ (

1 + λ
η−1

)

log ((1 + λ)h) ·

∫

Ω

|p (um) − p (un)| dx.

Therefore, from (3.10) and the Lebesgue dominated convergence theorem we obtain

meas (E) 6
ε

2
,

for all n, m > N2(ε, δ). Consequently, Combining the previous results we get

meas {x ∈ Ω : |∇un − ∇um| > δ} 6 ε, for all n, m > max {N1, N2} ,

hence {∇un} is a Cauchy sequence in measure. Then we can choose a subsequence (denote it by the
original sequence) such that

∇un → v a.e. in Ω.

Thus, using Proposition 2.4 and the fact that ∇Tk (un) → ∇Tk(u) in (Lp−(Ω))N , we deduce that v
coincides with the very weak gradient of u almost everywhere. Therefore, we have

∇un → ∇u a.e. in Ω. (3.11)

Step 3: Passing to the limit.

Since the sequence (∇Tk (un))n∈N
converges in measure to ∇Tk(u), then from Lemma 2.8, we get

∇Tk (un) → ∇Tk(u) in
(

L1(Ω)
)N

. (3.12)

Consequently, by using Lemma 3.4, 3.5 and (3.12) we get u ∈ T
1,p(u(·))
tr (Ω).

Let φ ∈ C∞(Ω), since C∞(Ω) is dense in the space W 1,p+(Ω) and Tk (un − φ) ∈ L∞(∂Ω), then we can
choose Tk (un − φ) as a test function in (3.5) to obtain

∫

Ω

Φ (∇un − Θ(un)) ∇Tk (un − φ) dx +

∫

Ω

|u|p(un)−2unTk (un − φ) dx +

∫

Ω

Tn (α(un)) Tk (un − φ) dx

+ λ

∫

∂Ω

Tn (un) Tk (un − φ) dσ + ε

∫

Ω

[

|un|
p+−2

unTk (un − φ) + |∇un|
p+−2

∇un∇Tk (un − φ)
]

dx

=

∫

Ω

Tn(f)Tk (un − φ) dx +

∫

∂Ω

Tn(g)Tk (un − φ) dσ.

(3.13)

We now focus our attention on the first term in left-hand side of (3.13).
We note that, if L = k + ‖φ‖L∞(Ω), we have

∫

Ω

|∇un − Θ(un)|p(un)−2 (∇un − Θ(un)) · ∇Tk (un − φ) dx

=

∫

Ω

|∇TL (un) − Θ(TL (un))|p(un)−2 (∇TL (un) − Θ(TL (un))) · ∇Tk (TL (un) − φ) dx

=

∫

Ω

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇TL (un) χ{|TL(un)−φ|6k}dx

−

∫

Ω

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇ϕχ{|TL(un)−φ|6k}dx.

(3.14)
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From (3.13), we have

∫

Ω

[

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇TL (un) +
1

p−
|Θ(TL (un) |γ

]

χ{|TL(un)−φ|6k}dx

−

∫

Ω

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇ϕχ{|TL(un)−φ|6k}dx

+

∫

Ω

|u|p(un)−2unTk (un − φ) dx +

∫

Ω

Tn (α(un)) Tk (un − φ) dx + λ

∫

∂Ω

Tn (un) Tk (un − φ) dσ

+ ε

∫

Ω

[

|un|
p+−2

unTk (un − φ) + |∇un|
p+−2

∇un∇Tk (un − φ)
]

dx

=

∫

Ω

fnTk (un − φ) dx +

∫

∂Ω

Tn(g)Tk (un − φ) dσ +

∫

Ω

1

p−
|Θ(TL (un) |γχ{|TL(un)−φ|6k}dx,

(3.15)

where

γ =

{

p+ if |Θ(TL (un) | ≤ 1,
p− if |Θ(TL (un) | > 1.

Since {∇TL (un)} is bounded in
(

Lp′(un)(Ω)
)N

⊂
(

Lp′

+(Ω)
)N

, then from the hypothesis (H3) the se-

quence {Θ(TL (un)} is also bounded in
(

Lp(un)(Ω)
)N

⊂ (Lp−(Ω))
N

, which implies that
{

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un)))
}

is bounded in
(

Lp′(un)(Ω)
)N

⊂
(

Lp′

+(Ω)
)N

.

On account of the fact that un → u a.e. in Ω and ∇un → ∇u a.e. in Ω,

Θ (TL (un)) −→ Θ (TL(u)) a.e. in Ω (3.16)

and

∇TL (un) −→ ∇TL(u) a.e. in Ω. (3.17)

Hence follows that

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un)))

⇀ |∇TL (u) − Θ(TL (u))|p(u)−2 (∇TL (u) − Θ(TL (u))) in
(

Lp′

+(Ω)
)N

.

Therefore
∫

Ω

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇ϕχ{|TL(un)−φ|6k}dx

−→

∫

Ω

|∇TL (u) − Θ(TL (u))|
p(u)−2

(∇TL (u) − Θ(TL (u))) · ∇ϕχ{|TL(u)−φ|6k}dx, as n → ∞.

(3.18)

From (3.16) and the Lebesgue dominated convergence theorem, we obtain

∫

Ω

1

p−
|Θ(TL (un) |γχ{|TL(un)−φ|6k}dx →

∫

Ω

1

p−
|Θ(TL (u) |γχ{|TL(u)−φ|6k}dx.

On the other hand, by using Lemma 2.6 we have

[

|∇TL (un) − Θ(TL (un))|
p(un)−2

(∇TL (un) − Θ(TL (un))) · ∇TL (un)

+
1

p−
|Θ(TL (un) |γ

]

χ{|TL(un)−φ|6k} > 0 a.e. in Ω.
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By using Fatou’s Lemma, we get

∫

Ω

[

|∇TL (u) − Θ(TL (u))|
p(u)−2

(∇TL (u) − Θ(TL (u))) · ∇TL (u)

+
1

p−
|Θ(TL (u) |γ

]

χ{|TL(u)−φ|6k}dx

≤ lim inf
n→∞

∫

Ω

[

|∇TL (un) − Θ(TL (un))|p(un)−2 (∇TL (un) − Θ(TL (un))) · ∇TL (un)

+
1

p−
|Θ(TL (un) |γ

]

χ{|TL(un)−φ|6k}dx.

(3.19)

For the fifth term of the left hand side in (3.15), we prove that

lim
n→+∞

ε

∫

Ω

[

|∇un|p+−2∇un∇Tk (un − φ) + |un|p+−2unTk (un − φ)
]

dx ≥ 0 as ε → 0. (3.20)

Setting l = k + ‖φ‖L∞(Ω) we have,

ε

∫

Ω

|∇un|p+−2∇un∇Tk (un − φ) dx

= ε

∫

{|un−φ|<k}

|∇Tl (un) |p+−2∇Tl (un) ∇ (Tl (un) − φ) dx

=ε

∫

{|un−φ|<k}

|∇Tl (un) |p+dx − ε

∫

{|un−φ|<k}

|∇Tl (un) |p+−2∇Tl (un) ∇φdx

≥ − ε

∫

{|un−ϕ|<k}

|∇Tl (un) |p+−2∇Tl (un) ∇φdx.

(3.21)

By taking v = Tl (un) in (3.5) we get

ε

∫

Ω

[

|∇un|p+−2∇un∇Tl (un) + |un|p+−2unTl (un)
]

dx ≤ l
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

,

hence

ε

∫

Ω

|∇Tl (un) |p+dx ≤ l
(

‖f‖L1(Ω) + ‖g‖L1(∂Ω)

)

,

which implies that the sequence ε∇Tl (un) is uniformly bounded in Lp+(Ω). From Lemma 3.6 ∇Tl (un)
converges a.e. in Ω (up to a subsequence) to ∇Tl(u). So, by Vitali’s Theorem, ε∇Tl (un) converges to
ε∇Tl(u) in Lp+(Ω). Thus,

ε|∇Tl (un) |p+−2∇Tl (un) χ{|un−φ|<k} converges to ε|∇Tl(u)|p+−2∇Tl(u)χ{|u−φ|<k} in Lp′

+(Ω). Using
(3.21), we obtain

lim
n→+∞

ε

∫

Ω

|∇un|p+−2∇un∇Tk (un − φ) dx ≥ −ε

∫

{|u−φ|<k}

|∇Tl(u)|p+−2∇Tl(u)∇ϕdx.

Therefore,

lim
n→+∞

ε

∫

Ω

|∇un|p+−2∇un∇Tk (un − φ) dx ≥ 0, as ε → 0. (3.22)

Now, we prove that

lim
n→+∞

ε

∫

Ω

|un|p+−2unTk (un − φ) dx ≥ 0, as ε → 0.
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We have
∫

Ω

|un|p+−2unTk (un − φ) dx =

∫

Ω

(

|un|p+−2un − |φ|p+−2φ
)

Tk (un − φ) dx

+

∫

Ω

|φ|p+−2φTk (un − φ) dx (3.23)

≥

∫

Ω

|φ|p+−2φTk (un − φ) dx,

since
(

|un|p+−2un − |φ|p+−2φ
)

Tk (un − φ) is nonnegative. Furthermore, Tk (un − φ) converges weakly*

to Tk(u − φ) in L∞(Ω) and |φ|p+−2φ ∈ Lp′

+(Ω), so

lim
n→+∞

∫

Ω

|φ|p+−2φTk (un − φ) dx =

∫

Ω

|ϕ|p+−2ϕTk(u − ϕ)dx. (3.24)

Combining (3.23) and (3.24), we obtain

lim
n→+∞

ε

∫

Ω

|un|p+−2unTk (un − φ) dx ≥ 0, as ε → 0. (3.25)

From (3.22) and (3.25), we get (3.20).
Now, we consider the first term in the right hand side of (3.15), since Tn(f) → f in L1(Ω) then

lim
n→∞

∫

Ω

Tn(f)Tk (un − φ) dx =

∫

Ω

fTk (u − φ) dx. (3.26)

Finally, by using the above results we can pass to the limit as n → ∞ in the equality (3.15) to conclude
that

∫

Ω

|∇u − Θ(u)|p(u)−2 (∇u − Θ(u)) ∇Tk(u − φ)dx +

∫

Ω

|u|p(u)−2uTk(u − φ)dx +

∫

Ω

α(u)Tk(u − φ)dx

+λ

∫

∂Ω

uTk(u − φ)dσ 6

∫

Ω

fTk(u − φ)dx +

∫

∂Ω

gTk(u − φ)dσ, (3.27)

for φ ∈ C∞(Ω).
Since p(u(·)) verifies the log-Hölder condition, C∞(Ω) is dense in the space W 1,p(u(·))(Ω). Moreover,
W 1,p(u(·))(Ω) →֒ W 1,p−(Ω) →֒ L∞(Ω), since p(u(·)) ≥ p− > N and Ω is a bounded open domain with
Lipschitz boundary ∂Ω. Hence, the inequality (3.27) holds true for φ ∈ W 1,p(u(·))(Ω)∩L∞(Ω). Therefore,
u is an entropy solution of the problem (1.1).
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