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γ̃-open Sets and (γ̃, β̃)-continuous Mappings ∗

D. Saravanakumar and M. Mohamed Riyazdeen

abstract: In this paper, we introduce a new class of open sets namely γ̃-open sets in a topological space.
In addition, we define γ̃-Ti (i = 0, 1

2
, 1, 2) spaces, (γ̃, β̃)-continuous mapping and study their basic properties.
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1. Introduction

Kasahara [3] initiated the concept of α-operation in topological spaces, Jankovic [2] obtained the α-
closed graphs and Ogata [7,8] defined the γ-operation (resp. γ-closed set) and investigated the relation-
ships between clγ(A) and τγcl(A) for a subset A of a topological space X . Further, he obtained the
concept of γ-Ti (i = 0, 1

2 , 1, 2) spaces through the γ-closed and γ-open sets. Levine [4] defined a gener-
alized closed set and Maki et al. [6] extended this generalized closed set to a γ-g.closed set. Dunham [1]
introduced T 1

2

spaces and Levine [5] defined a semi-open set. Sai sundara Krishnan et al. [9,10] modified

the concept of semi-open to γ-semi-open (resp. γ∗-pre-open) and he was studied γ-semi-separation ax-
ioms. Saravanakumar et al. [11,12,13] introduced a µ̃-open set, µ̃-separation axioms and some continuous
mappings with respect to γ and β operations on the topological spaces (X, τ) and (Y, σ) respectively and
investigated their basic properties.

In this paper, we define a γ̃-open set in a topological space with respect to γ-operation and its family
denoted by γ̃O(X). Further, we obtain a γ̃-closed set, γ̃-interior, γ̃-closure and γ̃-boundary in a topolog-
ical space. Moreover, we discuss the basic properties of γ̃-Ti (i = 0, 1

2 , 1, 2) spaces and (γ̃, β̃)-continuous
mappings.

2. Preliminaries

Let the topological spaces (X , τ) and (Y , σ) be respectively denoted by X and Y . An operation γ [7]
on the topology τ is a mapping from τ into the power set P (X) of X such that V ⊆ V γ for each V ∈ τ ,
where V γ denotes the value of γ at V . Similarly, an operation β on the topology σ is a mapping from
σ into the power set P (Y ) of Y such that W ⊆ W β for each W ∈ σ, where W β denotes the value of β

at W . A subset A of X is γ-open [7], if for each x ∈ A, there exist an open neighborhood U such that
x ∈ U and Uγ ⊆ A. Its complement is called γ-closed and τγ [7] denotes set of all γ-open sets in X . For
a subset A of X , γ-interior [7] of A is intγ(A) = {x ∈ A : x ∈ N ∈ τ and Nγ ⊆ A for some N}; γ-closure
[7] of A is clγ(A) = {x ∈ X : x ∈ U ∈ τ and Uγ ∩ A 6= ∅ for all U}; τγ-int(A) [7] = ∪{G : G ⊆ A and
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G ∈ τγ}; τγ-cl(A) [7] = ∩{F : A ⊆ F and X \ F ∈ τγ}. A subset A of X is γ-g.closed [7] if clγ(A) ⊆ U

whenever A ⊆ U and U is γ-open in X . For a subset A of X , cl∗

γ(A) [6] denotes the intersection of
all γ-g.closed sets containing A, that is the smallest γ-g.closed set containing A; int∗

γ(A) [6] denotes the
union of all γ-g.open sets contained in A, that is the largest γ-g.open set contained in A. If A is a subset
of X and x ∈ X , then (i) x ∈ cl∗

γ(A) [6] if and only if M ∩ A 6= ∅ for each γ-g.open set M containing x;
(ii) cl∗

γ(X \ A) [6] = X \ int∗

γ(A) and (iii) cl∗

γ(cl∗

γ(A)) [6] = cl∗

γ(A). A subset A of X is γ-semi-open [9] if
A ⊆ τγcl(τγint(A)) and γSO(X) [9] denotes set of all γ-semi-open sets in X .

3. γ̃-open sets

Definition 3.1. Let X be a topological space and γ : τ → P (X) be an operation on τ . A subset A of X

is said to be a γ̃-open set, if there exists a set U ∈ τγ such that U ⊆ A ⊆ cl∗

γ(U). The collection of all
γ̃-open sets is denoted by γ̃O(X).

Example 3.2. Let X = {a, b, c}, τ = {∅, X, {a}, {c}, {a, b}, {a, c}} and define an operation γ : τ → P (X)
by

γ(A) =

{

A ∪ {c} if A = {a}
cl(A) if A 6= {a}

for every A ∈ τ .

Then γ̃O(X) = {∅, X, {c}, {a, b}}.

Theorem 3.3. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset of
X, then A ∈ γ̃O(X) if and only if A ⊆ cl∗

γ(τγint(A)).

Proof. If A ∈ γ̃O(X), then there exists a set U ∈ τγ such that U ⊆ A ⊆ cl∗

γ(U). Since U ∈ τγ , we have
that U = τγint(U) ⊆ τγint(A). Therefore A ⊆ cl∗

γ(U) ⊆ cl∗

γ(τγint(A)) and hence A ⊆ cl∗

γ(τγint(A)).
Conversely, assume that A ⊆ cl∗

γ(τγint(A)). To prove that A ∈ γ̃O(X). Take U = τγint(A). Then
τγint(A) ⊆ A ⊆ cl∗

γ(τγint(A)). Hence A ∈ γ̃O(X). �

Theorem 3.4. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset of
X and A ∈ τγ , then A ∈ γ̃O(X).

Proof. If A ∈ τγ , then A = τγint(A). Since A ⊆ cl∗

γ(A), we have that A ⊆ cl∗

γ(τγint(A)). Then by
Theorem 3.3, A ∈ γ̃O(X). �

Remark 3.5. The converse of the Theorem 3.4 need not be true.

Consider X = {a, b, c, d}, τ = {∅, X, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d}} and define an operation
γ : τ → P (X) by

γ(A) =

{

A if A = {b, c}
A ∪ {b, d} if A 6= {b, c}

for every A ∈ τ .

Then τγ = {∅, X, {b, c}, {b, c, d}} and γ̃O(X) = {∅, X, {b, c}, {a, b, c}, {b, c, d}}. Hence A = {a, b, c} ∈
γ̃O(X), but A 6∈ τγ .

Theorem 3.6. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset of
X and A ∈ γ̃O(X), then A ∈ γSO(X).

Proof. If A ∈ γ̃O(X), then by Theorem 3.3, we have that A ⊆ cl∗

γ(τγint(A)). Since every γ-closed set is γ-
g.closed and cl∗

γ(τγint(A)) is a least γ-g.closed set containing τγint(A), this implies that cl∗

γ(τγint(A)) ⊆
τγcl(τγint(A)). Thus A ⊆ τγcl(τγint(A)) and hence A ∈ γSO(X). �

Remark 3.7. The converse of the Theorem 3.6 need not be true.

Consider X = {a, b, c, d}, τ = {∅, X, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d}} and define an operation
γ : τ → P (X) by
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γ(A) =

{

A if d ∈ A

A ∪ {d} if d 6∈ A
for every A ∈ τ .

Then γSO(X) = {∅, X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}} and γ̃O(X) = {∅, X, {d},

{a, d}, {b, c, d}}. Hence A = {b, d} ∈ γSO(X), but A 6∈ γ̃O(X).

Theorem 3.8. Let X be a topological space and γ : τ → P (X) be an operation on τ . If Aα ∈ γ̃O(X) for
each α ∈ J , then

⋃

α∈J Aα ∈ γ̃O(X).

Proof. Since Aα ∈ γ̃O(X), then there exists a set Uα ∈ τγ such that Uα ⊆ A ⊆ cl∗

γ(Uα). This implies that
⋃

α∈J Uα ⊆
⋃

α∈J Aα ⊆
⋃

α∈J cl∗

γ(Uα) ⊆ cl∗

γ(
⋃

α∈J Uα) since union of all γ-open sets is γ-open. Therefore
⋃

α∈J Aα ∈ γ̃O(X). �

Note that intersection of any two sets in γ̃O(X) need not be γ̃-open. Let X = {a, b, c, d}, τ =
{∅, X, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d}} and define an operation γ : τ → P (X) by

γ(A) =

{

A ∪ {b} if a ∈ A

A ∪ {d} if a 6∈ A
for every A ∈ τ .

Take A = {a, b, c} and B = {b, c, d}. Then A, B ∈ γ̃O(X), but A ∩ B = {b, c} 6∈ γ̃O(X).

Theorem 3.9. Let X be a topological space and γ : τ → P (X) be an operation on τ . If a set A ∈ γ̃O(X)
and B is a subset of X such that A ⊆ B ⊆ cl∗

γ(τγint(A)), then B ∈ γ̃O(X).

Proof. If A ∈ γ̃O(X), then by Theorem 3.3, A ⊆ cl∗

γ(τγint(A)). Since A ⊆ B, this implies that
cl∗

γ(τγint(A)) ⊆ cl∗

γ(τγint(B)). By hypothesis B ⊆ cl∗

γ(τγint(A)) ⊆ cl∗

γ(τγint(B)) and hence B ⊆
cl∗

γ(τγint(B)). This shows that B ∈ γ̃O(X). �

Definition 3.10. Let X be a topological space and γ : τ → P (X) be an operation on τ . A subset A of X

is called a γ̃-closed set if its complement X \ A ∈ γ̃O(X). The collection of all γ̃-closed sets is denoted
by γ̃C(X).

Theorem 3.11. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset
of X, then A ∈ γ̃C(X) if and only if int∗

γ(τγcl(A)) ⊆ A.

Proof. If A ∈ γ̃C(X), then X \ A ∈ γ̃O(X) is γ̃-open. Therefore X \ A ⊆ cl∗

γ(τγint(X \ A)) (by Theorem
3.3) = cl∗

γ(X \ τγcl(A)) = X \ int∗

γ(τγcl(A)). This implies that int∗

γ(τγcl(A)) ⊆ A. Conversely, suppose
that int∗

γ(τγcl(A)) ⊆ A. Then X \ A ⊆ X \ int∗

γ(τγcl(A)) = cl∗

γ(X \ τγcl(A)) = cl∗

γ(τγint(X \ A)).
Therefore X \ A ∈ γ̃O(X) and this shows that A ∈ γ̃C(X). �

Theorem 3.12. Let X be a topological space and γ : τ → P (X) be an operation on τ . If a set F ∈ τc
γ

and A is a subset of X such that int∗

γ(F ) ⊆ A ⊆ F , then A ∈ γ̃C(X).

Proof. Let int∗

γ(F ) ⊆ A ⊆ F where F ∈ τc
γ . Then X \ F ⊆ X \ A ⊆ X \ int∗

γ(F ) = cl∗

γ(X \ F ). Let
U = X \ F . Then U ∈ τγ and U ⊆ X \ A ⊆ cl∗

γ(U). This implies that X \ A ∈ γ̃O(X) and hence
A ∈ γ̃C(X). �

Remark 3.13. The converse of the Theorem 3.12 need not be true.

Consider X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}
and define an operation γ : τ → P (X) by

γ(A) =







A if A = {a}
cl(A) if A = {a, d}

A ∪ {c} if A 6= {a} and {a, b}
for every A ∈ τ .
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Thus for the set {b} ∈ γ̃C(X), does not exist any γ-closed set in X.

Theorem 3.14. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset
of X, then
(i) int∗

γ(τγcl(A)) is γ̃-closed;
(ii) cl∗

γ(τγint(A)) is γ̃-open.

Proof. (i) Clearly, we have that int∗

γ(τγcl(int∗

γ(τγcl(A)))) ⊆ int∗

γ(τγcl(τγcl(A))) = int∗

γ(τγcl(A)). Hence
int∗

γ(τγcl(A)) is γ̃-closed.

(ii) Follows from (i) and Theorem 3.3. �

Theorem 3.15. Let X be a topological space and γ : τ → P (X) be an operation on τ . If Aα ∈ γ̃C(X)
for each α ∈ J , then

⋂

α∈J Aα ∈ γ̃C(X).

Proof. Let Aα ∈ γ̃C(X). Then X \Aα ∈ γ̃O(X). By Theorem 3.8,
⋃

α∈J(X \Aα) ∈ γ̃O(X). This implies
that

⋃

α∈J(X \ Aα) = X \
⋂

α∈J Aα ∈ γ̃O(X) and hence
⋂

α∈J Aα ∈ γ̃C(X). �

Definition 3.16. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset
of X, then γ̃-interior of A is defined as union of all γ̃-open sets contained in A. Thus intγ̃(A) = ∪{U :
U ∈ γ̃O(X) and U ⊆ A}.

Definition 3.17. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is
a subset of X, then γ̃-closure of A is defined as intersection of all γ̃-closed sets containing A. Thus
clγ̃(A) = ∩{F : X \ F ∈ γ̃O(X) and A ⊆ F}.

Theorem 3.18. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A is a subset
of X, then
(i) intγ̃(A) is a γ̃-open set contained in A;
(ii) clγ̃(A) is a γ̃-closed set containing A;
(iii) A is γ̃-closed if and only if clγ̃(A) = A;
(iv) A is γ̃-open if and only if intγ̃(A) = A;
(v) intγ̃(intγ̃(A)) = intγ̃(A);
(vi) clγ̃(clγ̃(A)) = clγ̃(A);
(vii) intγ̃(A) = X \ clγ̃(X \ A);
(viii) clγ̃(A) = X \ intγ̃(X \ A).

Proof. (i) Follows from the Definition 3.16 and Theorem 3.18.
(ii) Follows from the Definition 3.17 and Theorem 3.15.
(iii) and (iv) Follows from the condition (ii), Definition 3.17 and the condition (i), Definition 3.16 respec-
tively.
(v) and (vi) Follows from the conditions (i), (iv) and the conditions (ii), (iii) respectively.
(vii) and (viii) Follows from the Definitions 3.10, 3.16 and 3.17. �

Theorem 3.19. Let X be a topological space and γ : τ → P (X) be an operation on τ . If A and B are
two subsets of X, then the following are hold:
(i) If A ⊆ B, then intγ̃(A) ⊆ intγ̃(B);
(ii) If A ⊆ B, then clγ̃(A) ⊆ clγ̃(B);
(iii) intγ̃(A ∪ B) ⊇ intγ̃(A) ∪ intγ̃(B);
(iv) clγ̃(A ∩ B) ⊆ clγ̃(A) ∩ clγ̃(B);
(v) intγ̃(A ∩ B) ⊆ intγ̃(A) ∩ intγ̃(B).
(vi) clγ̃(A ∪ B) ⊇ clγ̃(A) ∪ clγ̃(B).

Proof. (i) and (ii) Follows from the Definition 3.16 and Definition 3.17 respectively.
(iii) and (iv) Follows from the condition (i), Theorem 3.8 and the condition (ii), Theorem 3.15 respectively.
(v) and (vi) Follows from the condition (i) and condition (ii) respectively. �
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Theorem 3.20. Let X be a topological space, γ : τ → P (X) be an operation on τ and A be a subset of
X. (i) If A ⊆ int∗

γ(τγcl(A)), then clγ̃(A) ⊆ int∗

γ(τγcl(A));
(ii) If cl∗

γ(τγint(A)) ⊆ A, then intγ̃(A) ⊇ cl∗

γ(τγint(A)).

Proof. (i) Since clγ̃(A) is the least γ̃-closed set containing A and Theorem 3.14(i) shows that int∗

γ(τγcl(A)) ∈
γ̃C(X). Therefore clγ̃(A) ⊆ int∗

γ(τγcl(A)).

(ii) Since intγ̃(A) is the greatest γ̃-open set containing A and Theorem 3.14(ii) shows that cl∗

γ(τγint(A))
∈ γ̃O(X). Therefore intγ̃(A) ⊇ cl∗

γ(τγint(A)). �

Definition 3.21. Let X be a topological space and γ : τ → P (X) be an operation on τ . A subset A of
X is called γ̃-regular if it is both γ̃-open and γ̃-closed. The collection of all γ̃-regular set of X is denoted
by γ̃R(X).

Note that a set A ∈ γ̃R(X), then its complement X \ A ∈ γ̃R(X).

Definition 3.22. Let X be a topological space and γ : τ → P (X) be an operation on τ and A be a subset
of X. Then γ̃-boundary of A is denoted by bdγ̃(A) and is defined as bdγ̃(A) = clγ̃(A) ∩ clγ̃(X \ A).

Theorem 3.23. Let X be a topological space and γ : τ → P (X) be an operation on τ . For a subset A of
X, bdγ̃(A) = ∅ if and only if A ∈ γ̃R(X).

Proof. Let bdγ̃(A) = ∅. Then clγ̃(A)∩clγ̃(X \A) = ∅. This implies that clγ̃(A) ⊆ X \clγ̃(X \A) = intγ̃(A)
(by Theorem 3.18(vii)). Therefore clγ̃(A) = A = intγ̃(A) and hence A ∈ γ̃O(X) and A ∈ γ̃C(X).
Conversely, assume that A ∈ γ̃R(X). Then A ∈ γ̃O(X) and A ∈ γ̃C(X). This implies that clγ̃(A) =
A = intγ̃(A) = X \ clγ̃(X \ A) (by Theorem 3.18(vii)). Since X \ clγ̃(X \ A) ∩ clγ̃(X \ A) = ∅, we have
that clγ̃(A) ∩ clγ̃(X \ A) = ∅. This shows that bdγ̃(A) = ∅. �

Theorem 3.24. Let X be a topological space, γ : τ → P (X) be an operation on τ and A be a subset of
X. Then the following are equivalent:
(i) X \ bdγ̃(A) = intγ̃(A) ∪ intγ̃(X \ A);
(ii) clγ̃(A) = intγ̃(A) ∪ bdγ̃(A);
(iii) bdγ̃(A) = clγ̃(A) ∩ clγ̃(X \ A) = clγ̃(A) \ intγ̃(A).

Proof. (i) ⇒ (ii). From (i) X \ bdγ̃(A) = intγ̃(A)∪ intγ̃ (X \A) implies that bdγ̃(A) = [X \ intγ̃(A)]∩ [X \
intγ̃(X \ A)]. Therefore intγ̃(A) ∪ bdγ̃ (A) = [intγ̃(A) ∪ (X \ intγ̃(A))] ∩ [intγ̃ (A) ∪ clγ̃(A)] = X ∩ clγ̃(A) =
clγ̃(A). Hence clγ̃(A) = intγ̃(A) ∪ bdγ̃(A).

(ii) ⇒ (iii). From (ii) clγ̃(A) \ intγ̃(A) = [intγ̃(A) ∪ bdγ̃(A)] \ intγ̃(A) = bdγ̃(A) .......(*1). Also from (ii)
X∩clγ̃(A) = intγ̃(A)∪bdγ̃(A) implies that [intγ̃(A)∪(X\intγ̃(A))]∩[intγ̃ (A)∪clγ̃(A)] = intγ̃(A)∪bdγ̃(A)
implies that intγ̃(A) ∪ [clγ̃(X \ A) ∩ clγ̃(A)] = intγ̃(A) ∪ bdγ̃(A). Therefore bdγ̃(A) = clγ̃(A) ∩ clγ̃(X \ A)
.......(*2). From (*1) and (*2), we have that bdγ̃(A) = clγ̃(A) ∩ clγ̃(X \ A) = clγ̃(A) \ intγ̃(A).

(iii) ⇒ (i). From (iii), we have that X \bdγ̃(A) = X \[clγ̃(X \A)∩clγ̃(A)] = [X \clγ̃(X \A)]∪[X \clγ̃(A)] =
intγ̃(A) ∪ intγ̃(X \ A). Therefore X \ bdγ̃(A) = intγ̃(A) ∪ intγ̃(X \ A). �

Theorem 3.25. Let X be a topological space and γ : τ → P (X) be an operation on τ . For a subset A of
X, we have the following conditions hold:
(i) bdγ̃(A) = bdγ̃(X \ A);
(ii) bdγ̃(A) = clγ̃(A) \ intγ̃(A);
(iii) bdγ̃(A) ∩ intγ̃(A) = ∅;
(iv) clγ̃(A) = intγ̃(A) ∪ bdγ̃(A);
(v) bdγ̃(intγ̃(A)) ⊆ bdγ̃(A);
(vi) bdγ̃(clγ̃(A)) ⊆ bdγ̃(A);
(vii) X \ bdγ̃(A) = intγ̃(A) ∪ intγ̃(X \ A);
(viii) X = intγ̃(A) ∪ intγ̃(X \ A) ∪ bdγ̃(A).
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Proof. (i) By Definition 3.22, we have that bdγ̃(A) = clγ̃(X \A)∩clγ̃(A) = clγ̃(X \A)∩clγ̃(X \(X \A)) =
bdγ̃(X \ A). Therefore bdγ̃(A) = bdγ̃(X \ A).

(ii) By Definition 3.22, we have that bdγ̃(A) = clγ̃(A) ∩ clγ̃(X \ A) = clγ̃(A) \ (X \ clγ̃(X \ A)) =
clγ̃(A) \ intγ̃(A) (by Theorem 3.18 (vii)). Therefore bdγ̃(A) = clγ̃(A) \ intγ̃(A).

(iii) By Definition 3.22, we have that bdγ̃(A) ∩ intγ̃(A) = (clγ̃(A) \ intγ̃(A)) ∩ intγ̃(A) (by (ii)) = ∅.
Hence bdγ̃(A) ∩ intγ̃(A) = ∅.

(iv) Follows from (ii) and Theorem 3.24.

(v) By Definition 3.22, we have that bdγ̃(intγ̃(A)) = clγ̃(X \ intγ̃(A)) ∩ clγ̃(intγ̃(A)) = clγ̃(clγ̃(X \
A)) ∩ clγ̃(intγ̃(A)) = clγ̃(X \ A) ∩ clγ̃(intγ̃(A)) (by Theorem 3.18 (vi)) ⊆ clγ̃(X \ A) ∩ clγ̃(A) = bdγ̃(A).
This shows that bdγ̃(intγ̃(A)) ⊆ bdγ̃(A).

(vi) By Definition 3.22, we have that bdγ̃(clγ̃(A)) = clγ̃(X\clγ̃(A))∩clγ̃(clγ̃(A)) = clγ̃(intγ̃(X\A))∩clγ̃(A)
(by Theorem 3.18 (vi)) ⊆ clγ̃(X \ A) ∩ clγ̃(A) = bdγ̃(A). Therefore bdγ̃(clγ̃(A)) ⊆ bdγ̃(A).

(vii) Follows from (iv) and Theorem 3.24.

(viii) Using (vii) (X \ bdγ̃(A)) ∪ bdγ̃(A) = [intγ̃(A) ∪ intγ̃(X \ A)] ∪ bdγ̃(A). This implies that X =
intγ̃(A) ∪ intγ̃(X \ A) ∪ bdγ̃(A). �

Theorem 3.26. Let X be a topological space, γ : τ → P (X) be an operation on τ and A be a subset of
X. Then
(i) A ∈ γ̃O(X) if and only if A ∩ bdγ̃(A) = ∅;
(ii) A ∈ γ̃C(X) if and only if bdγ̃(A) ⊆ A.

Proof. Let A ∈ γ̃O(X). Then X \ A ∈ γ̃C(X) and clγ̃(X \ A) = X \ A. Also A 6= clγ̃(A). By Definition
3.22, A ∩ bdγ̃(A) = A ∩ (clγ̃(A) ∩ clγ̃(X \ A)) = A ∩ clγ̃(A ∩ (X \ A)) = A ∩ ∅ = ∅. Thus A ∩ bdγ̃(A) = ∅.
Conversely, assume that A ∩ bdγ̃(A) = ∅. Then A ∩ (clγ̃(A) ∩ clγ̃(X \ A)) = ∅. This implies that
A ∩ clγ̃(X \ A) = ∅ and hence clγ̃(X \ A) ⊆ X \ A. Therefore clγ̃(X \ A) = X \ A. This shows that
X \ A ∈ γ̃C(X) and hence A ∈ γ̃O(X)

(ii) Let A ∈ γ̃C(X). Then A = clγ̃(A). Since bdγ̃(A) = (clγ̃(A) ∩ clγ̃(X \ A)) ⊆ clγ̃(A) = A. There-
fore bdγ̃(A) ⊆ A. Conversely, let bdγ̃(A) ⊆ A. Then bdγ̃(A) ∩ (X \ A) = ∅. By Theorem 3.25(i),
bdγ̃(X \ A) ∩ (X \ A) = ∅. By (i), X \ A ∈ γ̃O(X). Hence A ∈ γ̃C(X). �

4. γ̃-separation axioms

Definition 4.1. A topological space X is called a γ̃-T0 space if for each pair of distinct points x, y ∈ X,
there exists a set U ∈ γ̃O(X) such that either x ∈ U and y 6∈ U or y ∈ U and x 6∈ U .

Definition 4.2. A topological space X is called a γ̃-T1 space if for each pair of distinct points x, y ∈ X,
there exists sets U, V ∈ γ̃O(X) containing x and y respectively such that y 6∈ U and x 6∈ V .

Definition 4.3. A topological space X is called a γ̃-T2 space if for each pair of distinct points x, y ∈ X,
there exists sets U, V ∈ γ̃O(X) such that x ∈ U and y ∈ V and U ∩ V = ∅.

Definition 4.4. Let X be a topological space, γ : τ → P (X) be an operation on τ and A be a subset of
X. Then A is called a γ̃-generalized closed (briefly γ̃-g.closed) set if clγ̃(A) ⊆ U whenever A ⊆ U and
U ∈ γ̃O(X). The collection of all γ̃-g.closed sets is denoted by γ̃GC(X).

Note that every γ̃-closed set is γ̃-g.closed, but the converse need not be true.
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Definition 4.5. A topological space X is called a γ̃-T 1

2

space if each γ̃-g.closed set of X is γ̃-closed.

Theorem 4.6. Let X be a topological space and γ : τ → P (X) be an operation on τ . Then for a point
x ∈ X, x ∈ clγ̃(A) if and only if V ∩ A 6= ∅ for any V ∈ γ̃O(X) such that x ∈ V .

Proof. Let F0 be the set of all y ∈ X such that V ∩ A 6= ∅ for any V ∈ γ̃O(X) and y ∈ V . Now, we prove
that clγ̃(A) = F0. Let us assume x ∈ clγ̃(A) and x 6∈ F0. Then there exists a set U ∈ γ̃O(X) containing
x such that U ∩ A = ∅. This implies that A ⊆ X \ U . Therefore clγ̃(A) ⊆ X \ U . Hence x 6∈ clγ̃(A). This
is a contradiction. Hence clγ̃(A) ⊆ F0. Conversely, let F be a set such that A ⊆ F and X \ F ∈ γ̃O(X).
Let x 6∈ F . Then we have that x ∈ X \ F and (X \ F ) ∩ A = ∅. This implies that x 6∈ F0. Therefore
F0 ⊆ F . Hence F0 ⊆ clγ̃(A). �

Theorem 4.7. Let X be a topological space and γ : τ → P (X) be an operation on τ and A be a subset
of X. Then A ∈ γ̃GC(X) if and only if clγ̃({x}) ∩ A 6= ∅ holds for every x ∈ clγ̃(A).

Proof. Let U ∈ γ̃O(X) such that A ⊆ U . Let x ∈ clγ̃(A). By assumption there exists a point z ∈ clγ̃({x})
and z ∈ A ⊆ U . Then by Theorem 4.6, we have that U ∩ {x} 6= ∅. This implies that x ∈ U and hence
A ∈ γ̃GC(X). Conversely, suppose there exists a point x ∈ clγ̃(A) such that clγ̃({x}) ∩ A = ∅. Since
clγ̃({x}) ∈ γ̃C(X) implies that X \ clγ̃({x}) ∈ γ̃O(X). Since A ⊆ X \ clγ̃({x}) and A ∈ γ̃GC(X), implies
that clγ̃(A) ⊆ X \ clγ̃({x}). Hence x 6∈ clγ̃(A). This is a contradiction. �

Theorem 4.8. Let X be a topological space and γ : τ → P (X) be an operation on τ and A be a
subset of X. Then clγ̃({x}) ∩ A 6= ∅ for every x ∈ clγ̃(A) if and only if clγ̃(A) ⊆ kerγ̃(A) holds, where
kerγ̃(E) = ∩{V : V ∈ γ̃O(X) and E ⊆ V } for any subset E of X.

Proof. Let x ∈ clγ̃(A). By hypothesis, there exists a point z such that z ∈ clγ̃({x}) and z ∈ A. Let
U ∈ γ̃O(X) be a subset of X such that A ⊆ U . Since z ∈ U and z ∈ clγ̃({x}). By Theorem 4.7,
we have that U ∩ {x} 6= ∅, this implies that x ∈ kerγ̃(A). Hence clγ̃(A) ⊆ kerγ̃(A). Conversely, let
U ∈ γ̃O(X) such that A ⊆ U . Let x be a point such that x ∈ clγ̃(A). By hypothesis, x ∈ kerγ̃(A) holds.
Namely, we have that x ∈ U , because A ⊆ U and U ∈ γ̃O(X). Therefore clγ̃(A) ⊆ U . By Definition 4.4,
A ∈ γ̃GC(X). Then by Theorem 4.7, clγ̃({x}) ∩ A 6= ∅ holds for every x ∈ clγ̃(A). �

Theorem 4.9. Let X be a topological space and γ : τ → P (X) be an operation on τ and A be a subset
of X. If A ∈ γ̃GC(X), then clγ̃(A) \ A does not contain a non empty γ̃-closed set.

Proof. Suppose there exists a non empty set F ∈ γ̃C(X) such that F ⊆ clγ̃(A) \ A. Let x ∈ F . Then
x ∈ clγ̃(A), implies that F ∩ A = clγ̃(A) ∩ A ⊇ clγ̃({x}) ∩ A 6= ∅ and hence F ∩ A 6= ∅. This is a
contradiction. �

Theorem 4.10. For each x ∈ X, {x} ∈ γ̃C(X) or X \ {x} ∈ γ̃GC(X).

Proof. Suppose that {x} 6∈ γ̃C(X). Then X \ {x} 6∈ γ̃O(X). This implies that X ∈ γ̃O(X) and the set
X only containing X \ {x}. Hence X \ {x} ∈ γ̃GC(X). �

Theorem 4.11. A topological space X is a γ̃-T 1

2

space if and only if for each x ∈ X, {x} ∈ γ̃O(X) or

{x} ∈ γ̃C(X).

Proof. Suppose that {x} 6∈ γ̃C(X). Then it follows from the assumption and Theorem 4.10, {x} ∈ γ̃O(X).
Conversely, let F ∈ γ̃GC(X). Let x ∈ clγ̃(F ). Then by the assumption {x} ∈ γ̃O(X) or {x} ∈ γ̃C(X).

Case(i): Suppose that {x} ∈ γ̃O(X). Then by Theorem 4.6, {x} ∩ F 6= ∅. This implies that clγ̃(F ) = F .
Therefore X is a γ̃-T 1

2

space.

Case(ii): Suppose that {x} ∈ γ̃C(X). Let us assume x 6∈ F . Then x ∈ clγ̃(F ) \ F . This is a con-
tradiction. Hence x ∈ F . Therefore X is a γ̃-T 1

2

space. �
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Theorem 4.12. A space X is γ̃-T1 if and only if for any x ∈ X, {x} ∈ γ̃C(X).

Proof. Follows from Definitions 3.10 and 4.2. �

Remark 4.13. (i) From the Theorems 4.10, 4.11 and 4.12, we have that every γ̃-T 1

2

space is γ̃-T0, every
γ̃-T1 space is γ̃-T 1

2

and every γ̃-T2 space is γ̃-T1.

(ii) Let X be the set of real numbers, τ be the co-finite topology on X and define an operation γ : τ → P (X)
for a particular point p ∈ X by

γ(A) =

{

A if p ∈ A

cl(A) if p 6∈ A
for every A ∈ τ .

Then X is a γ̃-T0 space but not γ̃-T 1

2

.

(iii) Let X = {a, b, c}, τ = {∅, X, {a}, {c}, {a, b}, {a, c}} and define an operation γ : τ → P (X) by
γ(A) = A ∪ {a} for every A ∈ τ . Then X is a γ̃-T 1

2

space but not γ̃-T1.

(iv) Let X = {a, b, c}, τ = P (X) and define an operation γ : τ → P (X) by

γ(A) =







A ∪ {c} if A = {a} or {b}
A ∪ {a} if A = {c}
A if A 6= {a}, {b} and {c}

for every A ∈ τ .

Then X is a γ̃-T1 space but not γ̃-T2.

5. (γ̃, β̃)-continuous mappings

Definition 5.1. A mapping f : X → Y is said to be (γ̃, β̃)-continuous if f−1(V ) ∈ γ̃O(X) whenever
V ∈ β̃O(Y ).

Example 5.2. Let X = {a, b, c}, Y = {1, 2, 3}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}} and
σ = {∅, Y, {1}, {3}, {1, 2}, {1, 3}} and define operations γ : τ → P (X) and β : σ → P (Y ) by

γ(A) =

{

A if c 6∈ A

A ∪ {a} if c ∈ A
for every A ∈ τ and

β(A) =

{

A ∪ {3} if A = {1}
cl(A) if A 6= {1}

for every A ∈ σ respectively.

Define f : X → Y by f(a) = 3, f(b) = 1 and f(c) = 2. Then the inverse image of every β̃-open set is
γ̃-open under f . Hence f is (γ̃, β̃)-continuous.

Definition 5.3. (i) Let X be a topological space and γ : τ → P (X) be an operation on τ . A subset A

of a topological space X is said to be a γ̃-neighborhood of a point x ∈ X if there exist a set U ∈ γ̃O(X)
such that x ∈ U ⊆ A.

Note that γ̃-neighborhood of x may be replaced by γ̃-open neighborhood of x.

(ii) Let X be a topological space. A ⊆ X and p ∈ X . Then p is called a γ̃-limit point of A if
U ∩ (A − {p}) 6= ∅, for any set U ∈ γ̃O(X) containing p. The set of all γ̃-limit points of A is called a
γ̃-derived set of A and is denoted by dγ̃(A). Clearly if A ⊆ B then dγ̃(A) ⊆ dγ̃(B).

Remark 5.4. From the Definition 5.3(ii), it follows that p is a γ̃-limit point of A if and only if p ∈
clγ̃(A − {p}).
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Theorem 5.5. For any A, B ⊆ X, the γ̃-derived sets have the following properties:
(i) clγ̃(A) ⊇ A ∪ dγ̃(A);
(ii) ∪idγ̃(Ai) = dγ̃(∪iAi);
(iii) dγ̃(dγ̃(A)) ⊆ dγ̃(A);
(iv) clγ̃(dγ̃(A)) = dγ̃(A).

Proof. Follows from the Definition 5.4(ii) and Remark 5.4. �

Theorem 5.6. Let f : X → Y be a mapping. Then the following statements are equivalent:
(i) f is (γ̃, β̃)-continuous;
(ii) for each point x in X, the inverse of every β̃-neighborhood of f(x) is a γ̃-neighborhood of x;
(iii) for each point x in X and each β̃-neighborhood B of f(x), there is a γ̃-neighborhood A of x such
that f(A) ⊆ B;
(iv) for each x ∈ X and each set B ∈ β̃O(Y ) contains f(x), there is a set A ∈ γ̃O(X) containing x such
that f(A) ⊆ B;
(v) f(clγ̃(A)) ⊆ clβ̃(f(A)) holds for every subset A of X;

(vi) for any set H ∈ β̃C(Y ), f−1(H) ∈ γ̃C(X).

Proof. (i) ⇒ (ii). Let x ∈ X and B be a β̃-neighborhood of f(x). By Definition 5.3(i), there exist
V ∈ β̃O(Y ) such that f(x) ∈ V ⊆ B. This implies that x ∈ f−1(V ) ⊆ f−1(B). Since f is (γ̃, β̃)-
continuous, so f−1(V ) ∈ γ̃O(X). Hence f−1(B) is a γ̃-neighborhood of x.

(ii) ⇒ (i). Let B ∈ β̃O(Y ). Put A = f−1(B). Let x ∈ A. Then f(x) ∈ B. Clearly, B (being β̃-
open) is a β̃-neighborhood of f(x). By (ii), A = f−1(B) is a γ̃-neighborhood of x. Hence by Definition
5.3(i), there exist Ax ∈ γ̃O(X) such that x ∈ Ax ⊆ A. This implies that A = ∪x∈AAx. By Theorem 3.8,
we have that A ∈ γ̃O(X). Therefore f is (γ̃, β̃)-continuous.

(i) ⇒ (iii). Let x ∈ X and B be a β̃-neighborhood of f(x). Then, there exist Of(x) ∈ β̃O(Y ) such
that f(x) ∈ Of(x) ⊆ B. It follows that x ∈ f−1(Of(x)) ⊆ f−1(B). By (i), f−1(Of(x)) ∈ γ̃O(X). Let
A = f−1(B). Then it follows that A is γ̃-neighborhood of x and f(A) = f(f−1(B)) ⊆ B.

(iii) ⇒ (i). Let U ∈ β̃O(Y ). Take W = f−1(U). Let x ∈ W . Then f(x) ∈ U . Thus U is a β̃-
neighborhood of f(x). By (iii), there exist a γ̃-neighborhood Vx of x such that f(Vx) ⊆ U . Thus it
follows that x ∈ Vx ⊆ f−1(f(Vx)) ⊆ f−1(U) = W . Since Vx is a γ̃-neighborhood of x, which implies that
there exist a Wx ∈ γ̃O(X) such that x ∈ Wx ⊆ W . This implies that W = ∪x∈W Wx. By Theorem 3.8,
W ∈ γ̃O(X). Thus f is (γ̃, β̃)-continuous.

(iii) ⇒ (iv). We may replace the γ̃-neighborhood of x as γ̃-open neighborhood of x in condition (iii).
Straightforward.

(iv) ⇒ (v). Let y ∈ f(clγ̃(A)) and any set V ∈ β̃O(Y ) containing y. Then, there exist a point x ∈ X and
a set U ∈ γ̃O(X) such that x ∈ U with f(x) = y and f(U) ⊆ V . Since x ∈ clγ̃(A), we have that U ∩A 6= ∅
and hence ∅ 6= f(U ∩ A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A). This implies that y ∈ clβ̃(f(A)). Therefore, we have
that f(clγ̃(A)) ⊆ clβ̃(f(A)).

(v) ⇒ (vi). Let H ∈ β̃C(Y ). Then clβ̃(H) = H . By (v), f(clγ̃(f−1(H))) ⊆ clβ̃(f(f−1(H))) ⊆ clβ̃(H) =

H holds. Therefore clγ̃(f−1(H)) ⊆ f−1(H) and thus f−1(H) = clγ̃(f−1(H)). Hence f−1(H) ∈ γ̃C(X).

(vi) ⇒ (i). Let B ∈ β̃O(X). We take H = Y − B. Then H ∈ β̃C(Y ). By (iv), f−1(H) ∈ γ̃C(X).
Hence f−1(B) = X − f−1(Y − B) = X − f−1(H) ∈ γ̃O(X). �

Theorem 5.7. A mapping f : X → Y is (γ̃, β̃)-continuous if and only if f(dγ̃(A)) ⊆ clβ̃(f(A)), for all
A ⊆ X.
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Proof. Let f : X → Y be (γ̃, β̃)-continuous. Let A ⊆ X and x ∈ dγ̃(A). Assume that f(x) 6∈ f(A) and
let V denote a β̃-neighborhood of f(x). Since f is (γ̃, β̃)-continuous, so by Theorem 5.6(iii), there exist
a γ̃-neighborhood U of x such that f(U) ⊆ V . From x ∈ dγ̃(A), it follows that U ∩ A 6= ∅; there exist,
therefore, at least one element a ∈ U ∩ A such that f(a) ∈ f(A) and f(a) ∈ V . Since f(x) 6∈ f(A), we
have that f(a) 6= f(x). Thus every β̃-neighborhood of f(x) contains an element f(a) of f(A) different
from f(x). Consequently, f(x) ∈ dβ̃(f(A)). Conversely, suppose that f is not (γ̃, β̃)-continuous. Then by

Theorem 5.6(iii), there exist x ∈ X and a β̃-neighborhood V of f(x) such that every γ̃-neighborhood U of
x contains at least one element a ∈ U for which f(a) 6∈ V . Put A = {a ∈ X : f(a) 6∈ V }. Since f(x) ∈ V ,
therefore x 6∈ A and hence f(x) 6∈ f(A). Since f(A) ∩ (V − {f(x)}) = ∅, therefore f(x) 6∈ dβ̃(f(A)). It
follows that f(x) ∈ f(dγ̃(A)) − (f(A) ∪ dβ̃(f(A))) 6= ∅, which is a contradiction to the given condition. �

Theorem 5.8. Let f : X → Y be an injective mapping. Then f is (γ̃, β̃)-continuous if and only if
f(dγ̃(A)) ⊆ dβ̃(f(A)), for all A ⊆ X.

Proof. Let A ⊆ X , x ∈ dγ̃(A) and V be a β̃-neighborhood of f(x). Since f is (γ̃, β̃)-continuous, so by
Theorem 5.6(iii), there exist a γ̃- neighborhood U of x such that f(U) ⊆ V . But x ∈ dγ̃(A) gives there
exist an element a ∈ U ∩ A such that a 6= x. Clearly f(a) ∈ f(A) and since f is injective, f(a) 6= f(x).
Thus every β̃-neighborhood V of f(x) contains an element f(a) of f(A) different from f(x). Consequently,
f(x) ∈ dβ̃(f(A)). Therefore, we have that f(dγ̃(A)) ⊆ dβ̃(f(A)). Converse follows from the Theorem
5.7. �

Theorem 5.9. Let f : X → Y be a (γ̃, β̃)-continuous and injective mapping. If Y is β̃-T2 (resp. β̃-T1),
then X is γ̃-T2 (resp. γ̃-T1).

Proof. Suppose Y is β̃-T2. Let x and y be two distinct points of X . Then, there exist two sets U, V ∈
β̃O(X)-open such that f(x) ∈ U , f(y) ∈ V and U ∩ V = ∅. Since f is (γ̃, β̃)-continuous, for U and V ,
there exist two sets W, S ∈ γ̃O(X) such that x ∈ W and y ∈ S, f(W ) ⊆ U and f(S) ⊆ V , implies that
W ∩ S = ∅. Hence X is γ̃-T2. In similar way we prove X is γ̃-T1 whenever Y is β̃-T1. �
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