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Global Dynamics of a Discrete SEIR Epidemic Model with Treatment

Mahmoud H. DarAssi and Mohammad A. Safi

abstract: The global dynamics of a discrete SEIR epidemic model with treatment have been considered. A
unique positive solution for the proposed model with the positive initial conditions is obtained. The stability
analysis of the disease-free equilibrium and endemic equilibrium have been investigated. It has been proved
that the DFE is globally asymptotically stable when the basic reproduction number R0 ≤ 1. The proposed
model has a unique endemic equilibrium that is globally asymptotically stable whenever R̃0 > 1. A numerical
simulation illustrates the theoretical results.
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1. Introduction

Every year, people suffer from infectious diseases. After the susceptible individuals are infected, the
disease incubates in the susceptibles for a time period; then, it becomes exposed and hence infectious. To
control the spreading of the emerging and re-emerging disease such as Hepatitis, Cholera, HIV, SARS,
Ebola, Yellow fever, Smallpox, and MERS, treatment has been imposed [1,3,4,5,6,7,8,10,13,15,16,18,19,
20,21,22,23,24,25,26]. DarAssi et al. [5] have studied a delayed SEIR epidemic model with pulse vacci-
nation and treatment. They proved that the infection-free periodic solution is globally attractive when
the reproduction number R∗ < 1 and the disease is permanent when R∗ > 1.

Two types of dynamical epidemic models have been studied: the continuous-time models described
by differential equations and the discrete-time models described by difference equations. Recently, more
attention has been paid to the epidemic discrete-time models. The reasons are that most of the collected
disease data come in the form of a discrete point which is more convenient and accurate to describe the
disease than the continuous models. Moreover, discrete models have more dynamical behaviors (see [27]
and the references therein).

Numerous studies have been made to study the discrete epidemic models. X. Fan et al. [12] have
considered a discrete SEIRS epidemic model with general nonlinear incidence. The authors investigated
the positivity and boundedness of the solutions with positive initial conditions. They obtained that when
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the reproduction number R0 ≤ 1, the disease is eradicated, and the model has a unique globally attractive
endemic equilibrium when R0 > 1. M. Safi et al. [25] have studied the global dynamics of a discrete
quarantine/isolation model. L. Wang et al. [27] have considered a class of discrete SIRS epidemic models
with disease courses. The authors computed the basic reproduction number R0 and proved that the
disease-free equilibrium is globally attractive when R0 < 1 and the disease is permanent when R0 > 1.
Y. Wang et al. [28] have introduced Lyapunov functions for a class of discrete SIRS epidemic models
with nonlinear incidence rates and varying population sizes. The authors established the sufficient and
necessary conditions for the global asymptotic stability of the disease-free equilibrium and endemic equi-
librium with general nonlinear incidence rate β S g(I) and different death rates.

The continuous SEIR epidemic model with treatment [5] is given by the following differential equa-
tions:





Ṡ(t) = Π − λ(t)S(t) − ν S(t),

Ė(t) = λ(t)S(t) − (κ+ ν)E(t),

İ(t) = κE(t) − (ν + σ + δ1 + γ1) I(t),

Ẏ (t) = σ I(t) − (ν + ψ + δ2 + γ2)Y (t),

Ẇ (t) = ψ Y (t) − (ν + δ3 + γ3)W (t),

Ṙ(t) = γ1 I(t) + γ2 Y (t) + γ3 W (t) − ν R(t),

(1.1)

where λ(t) =
β I(t)

N(t)
, Π is the recruitment rate of susceptible corresponding to births and immigration, ν

is the natural death rate, β is the contact rate, κ is the progression rate from exposed to infectious class,
σ is the treatment rate of infectious individuals, ψ is the treatment failure rate, γi (i = 1, 2, 3) is the
recovery rate for untreated infectious, treated and fail treated individuals, respectively. δi (i = 1, 2, 3) is
the disease-induced death rate of infectious, treated and fail treated individuals, respectively. The total
population size is given by the equation N(t) = S(t) + E(t) + I(t) + Y (t) +W (t) +R(t).

In this work, we considered the discrete version of the model (1.1). This paper is organized as follows:
A discrete SEIR epidemic model with treatment is considered in section (2). In section (3), we presented
the fundamental properties of the discrete model. The stability analysis of the disease-free equilibrium
is carried out in section (4). The existence and stability analysis of the endemic equilibrium point is
conducted in section (5). In section (6), numerical simulations are provided to illustrate the obtained
results and conclude the results.

2. Model Formulation

A discrete epidemic SEIR model with treatment is considered. The backward difference scheme is
used to discretize the continuous model (1.1). This model is called the SEIYWR model. The population
N(t) is divided into the following compartments: S(t) is the susceptible individuals, E(t) is the exposed
individuals, I(t) is the infectious individuals but not treated, Y (t) is the treated individuals, W (t) is
the treated individuals who failed treatment, and R(t) is the recovered individuals. Hence, N(t) =
S(t) + E(t) + I(t) + Y (t) + W (t) + R(t). Therefore, the SEIYWR model is governed by the following
difference equations:





S(t+ 1) − S(t) = Π − λ(t+ 1)S(t+ 1) − ν S(t+ 1),

E(t+ 1) − E(t) = λ(t+ 1)S(t+ 1) − k1 E(t+ 1),

I(t+ 1) − I(t) = κE(t+ 1) − k2 I(t+ 1),

Y (t+ 1) − Y (t) = σ I(t+ 1) − k3 Y (t+ 1),

W (t+ 1) −W (t) = ψ Y (t+ 1) − k4 W (t+ 1),

R(t+ 1) −R(t) = γ1 I(t+ 1) + γ2 Y (t+ 1) + γ3 W (t+ 1) − ν R(t+ 1),

(2.1)



Global Dynamics of a Discrete SEIR Epidemic Model with Treatment 3

where λ(t+ 1) =
β I(t+ 1)

N(t+ 1)
, k1 = κ+ ν, k2 = ν+σ+ δ1 +γ1, k3 = ν+ψ+ δ2 +γ2, k4 = ν+ δ3 +γ3, Π is

the recruitment rate of susceptible corresponding to births and immigration, ν is the natural death rate,
β is the contact rate, κ is the progression rate from exposed to infectious class σ is the treatment rate
of infectious individuals, ψ is the treatment failure rate, γi (i = 1, 2, 3) is the recovery rate for untreated
infectious, treated and fail treated individuals, respectively. δi (i = 1, 2, 3) is the disease-induced death
rate of infectious, treated and fail treated individuals, respectively. Subject to the following initial
conditions:

S(0) > 0, E(0) > 0, I(0) > 0, Y (0) > 0,W (0) > 0, R(0) > 0. (2.2)

3. Fundamental properties

Lemma 3.1. The model (2.1) with initial conditions (2.2) has a unique positive solution
(S(t), E(t), I(t), Y (t),W (t), R(t)), ∀n = 1, 2, 3, · · ·

We will apply the mathematical induction to prove the lemma 3.1 as follows:

Proof. Rewrite the model (2.1) as follows:





I(t+ 1) = a1 E(t+ 1) + b1,

Y (t+ 1) = a2 E(t+ 1) + b2,

W (t+ 1) = a3 E(t+ 1) + b3,

R(t+ 1) = a4 E(t+ 1) + b4,

S(t+ 1) = a5 E(t+ 1) + b5,

(3.1)

where

a1 =
κ

1 + k2
, b1 =

I(t)

1 + k2
,

a2 =
σκ

(1 + k2)(1 + k3)
, b2 =

σ I(t) + (1 + k2)Y (t)

(1 + k2)(1 + k3)
,

a3 =
ψσκ

(1 + k2)(1 + k3)(1 + k4)
, b3 =

ψσ I(t)

(1 + k2)(1 + k3)(1 + k4)
+

ψ Y (t)

(1 + k3)(1 + k4)
+

W (t)

1 + k4
,

a4 =
γ a1 + γ2 a2 + γ3 a3

1 + ν
, b4 =

γ1 b1 + γ2 b2 + γ3 b3 +R(t)

1 + ν
,

a5 = −
1 + k1

1 + ν
, b5 =

Π + S(t) + E(t)

1 + ν
,

Substituting the expressions (3.1) in the second equation of model (2.1) yields

E(t+ 1) =
E(t)

1 + k1
+

β [a5 E(t+ 1) + b5] [a1 E(t+ 1) + b1]

(1 + k1)
(∑5

i=1 [ai E(t+ 1) + bi] + E(t+ 1)
) (3.2)

Let y = E(t+ 1) and define

f(y) = y −
E(t)

1 + k1
−

β [a5 y + b5] [a1 y + b1]

(1 + k1)
(∑5

i=1 [ai y + bi] + y
) = 0

Since f(y) is an increasing function and f(0) = −
β b5 b1

(1 + k1)
∑5

i=1 bi

−
E(t)

1 + k1
< 0, then f(y) has a unique

positive solution. Hence, equation (3.2) has a unique solution E(t+ 1) > 0 which implies that the system
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(3.1) has a unique solution I(t+ 1) > 0, Y (t+ 1) > 0, W (t+ 1) > 0, and R(t+ 1) > 0.

Let x = S(t+ 1), then using the first equation in model (2.1) we define

g(x) = (1 + ν)x+
β [a1 E(t+ 1) + b1] x

x+ L
− Π

where L = E(t+ 1) + I(t+ 1) +Y (t+ 1) +W (t+ 1) +R(t+ 1). Since g′(x) > 0, then g(x) is an increasing
function with g(0) = −Π < 0. Thus, g(x) has a unique positive solution and therefore, there exists a
unique S(t+ 1) > 0 which is completed the proof. �

Lemma 3.2. Any solution (S(t), E(t), I(t), Y (t),W (t), R(t)) of model (2.1) with initial conditions (2.2)

satisfies lim sup
t→∞

N(t) ≤
Π

ν
.

Proof. Since,

N(t+ 1) = S(t+ 1) + I(t+ 1) + E(t+ 1) + Y (t+ 1) +W (t+ 1) +R(t+ 1)

= Π − ν (S(t+ 1) + E(t+ 1) + I(t+ 1) + Y (t+ 1) +W (t+ 1) +R(t+ 1))

− δ1 I(t+ 1) − δ2 Y (t+ 1) − δ3 W (t+ 1) +N(t)

=
Π +N(t) − δ1 I(t+ 1) − δ2 Y (t+ 1) − δ3 W (t+ 1)

1 + ν

≤
Π +N(t)

1 + ν
, t = 0, 1, 2, · · ·

=
Π

1 + ν
+
N(t)

1 + ν
. Upon using the iteration method we get

N(t+ 1) ≤
Π

1 + ν
+

Π

(1 + ν)2
+

Π

(1 + ν)3
+ · · · +

Π

(1 + ν)(t+1)
+

N(0)

(1 + ν)(t+1)

=
Π

ν

[
1 −

1

(1 + ν)(t+1)

]
+

N(0)

(1 + ν)(t+1)
.

Hence,

lim sup
t→∞

N(t+ 1) ≤ lim sup
t→∞

N(t) ≤
Π

ν

�

Therefore, the region

D =

{
(S(t), E(t), I(t), Y (t),W (t), R(t)) ∈ R

6
+|N(t) ≤

Π

ν

}

is positively invariant.

4. Disease-Free Equilibrium (DFE)

4.1. Local stability of DFE

The unique DFE of the system (2.1) is given by

E0 =

(
Π

ν
, 0, 0, 0, 0, 0

)
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To compute the basic reproduction number of model (2.1), we will apply the next generation operator
method [2,9,11,14,17]. The matrix of the new infection terms, F, and the matrix of the transition terms,
V, that are associated with the model (2.1) are given by:

F =




0 β 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 and V =




k1 0 0 0
−κ k2 0 0
0 −σ k3 0
0 0 −ψ k4




Following [11] the basic reproduction number is denoted by R0 = ρ
(
F V −1

)
and is given by

R0 =
β κ

k1 k2

The following lemma can be proved using theorem (2) in [11].

Lemma 4.1. The DFE point E0 =

(
Π

ν
, 0, 0, 0, 0, 0

)
of model (2.1) is locally asymptotically stable (LAS)

when R0 < 1 and unstable when R0 > 1.

4.2. Global stability of DFE

In this section, the global attractivity of the disease-free equilibrium of model (2.1) is investigated,
and the following result is concluded.

Theorem 4.2. The DFE of the model (2.1) is globally-asymptotically stable (GAS) in D whenever
R0 ≤ 1.

Proof. Consider the following Lyapunov function

F1(t) =
κ

k1
E(t) + I(t)

The backward difference of F1 is denoted by ∆F1 and is given by

∆F1 = F1(t+ 1) − F1(t) =
κ

k1
E(t+ 1) + I(t+ 1) −

κ

k1
E(t) − I(t)

=
κ

k1
[E(t+ 1) − E(t)] + I(t+ 1) − I(t)

=
κ

k1
[λ(t+ 1)S(t+ 1) − k1 E(t+ 1)] + κE(t+ 1) − k2 I(t+ 1)

Since
S(t+ 1)

N(t+ 1)
≤ 1 in D, then

F1(t+ 1) − F1(t) ≤
κ

k1
[β I(t+ 1) − k1 E(t+ 1)] + κE(t+ 1) − k2 I(t+ 1)

=

[
κβ

k1
− k2

]
I(t+ 1)

= k2

[
κβ

k1 k2
− 1

]
I(t+ 1)

= k2[R0 − 1] I(t+ 1)

Which implies that ∆F1 = F1(t + 1) − F1(t) ≤ 0 whenever R0 ≤ 1 and ∆F1 = 0 if and only if
E(t + 1) = I(t + 1) = Y (t + 1) = W (t + 1) = 0. Hence, (E, I, Y,W ) → (0, 0, 0, 0) as n → ∞. Upon

setting E = I = Y = W = 0 in the first and last equations in model (2.1) we get S →
Π

ν
and R → 0 as

n → ∞. Thus, the maximum invariable set in {(S,E, I, Y,W,R) : F1(t) = 0} is a disease-free equilibrium
E0. Following the theorems of stability of difference equations (theorem 6.3 in [17]) every solution of the
equations in model (2.1) with the initial conditions in D approaches E0 as n → ∞. Thus, the disease-free
equilibrium E0 of model (2.1) is globally attractive. Hence the proof is completed. �
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5. Endemic Equilibria

5.1. Existence of the endemic equilibrium point EEP

Let E1 = (S1, E1, I1, Y1,W1, R1) be an endemic equilibrium point for the model (2.1). Therefore the
following lemma can be established.

Lemma 5.1. The model (2.1) has a unique endemic equilibrium point E1, whenever R0 > 1.

Proof. Solving the equations of the model (2.1) at steady-state, yields

S1 =
Π

λ1 + ν
, E1 =

λ1 S1

k1
, I1 =

κλ1 S1

k1 k2

Y1 =
σ κλ1 S1

k1 k2 k3
, W1 =

ψ σ κλ1 S1

k1 k2 k3 k4

R1 =
κλ1 S1

ν k1 k2 k3 k4
[γ1 k3 k4 + γ2 σ k4 + γ3 σ ψ]

(5.1)

where

λ1 =
β I1

N1
and N1 = S1 + E1 + I1 + Y1 +W1 +R1

Substituting equations (5.1) in the expression of λ1 to get

R0 = 1 + Λλ1

where

Λ =
ν k2 k3 k4 + νκ k3 k4 + νκσ k4 + νκσψ + κ(γ1 k3 k4 + γ2σ k4 + γ3σψ)

ν k1 k2 k3 k4

Hence,
R0 − 1

Λ
> 0 if and only if R0 > 1. This implies that S1, E1, I1, Y1,W1, R1 > 0 if and only if R0 > 1.

�

5.2. Stability of the Endemic Equilibrium

In this section, we assumed that the associated disease-induced mortality is negligible i.e (δ1 = δ2 =
δ3 = 0). To investigate the global stability of the unique endemic equilibrium point for this case, we
define

D0 = {(S,E, I, Y,W,R) ∈ D|E = I = Y = W = R = 0}

The following result is established.

Theorem 5.2. The unique endemic equilibrium point (EEP) of the model (2.1) with δ1 = δ2 = δ3 = 0
is globally asymptotically stable (GAS) in D/D0 if

R̃0 = R0

∣∣∣∣
δ1=δ2=δ3=0

=
βκ

(ν + κ)(ν + σ + γ1)
> 1

Proof. Upon setting δ1 = δ2 = δ3 = 0 in model (2.1). Define the following Lyapunov function

F2(t) =
1

2
[(S(t) − S1) + (E(t) − E1) + (I(t) − I1) + (Y (t) − Y1) + (W (t) −W1) + (R(t) −R1)]

2

=
1

2
[N(t) −N1]

2
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The backward difference of F2 is given by

∆F2 = F2(t+ 1) − F2(t)

=
1

2
[N(t+ 1) −N1]2 −

1

2
[N(t) −N1]2

=
1

2
[N(t+ 1) −N(t)] [N(t+ 1) +N(t) − 2N1]

= −
1

2
[N(t+ 1) −N(t)]

2
+ [N(t+ 1) −N1] [N(t+ 1) −N(t)]

≤ [N(t+ 1) −N1] [N(t+ 1) −N(t)] .

But, setting δ1 = δ2 = δ3 = 0 and adding the equations of model (2.1) yields N(t + 1) − N(t) =

Π − ν N(t+ 1) and N1 =
Π

ν
. Thus,

∆F2 ≤ [N(t+ 1) −N1] [Π − ν N(t+ 1)] .

= [N(t+ 1) −N1] [ν N1 − ν N(t+ 1)] .

= −ν [N(t+ 1) −N1]2

≤ 0

Therefore, F2 is a Lyapunov function on D/D0 and hence, by applying the theorem of stability of
difference equations (theorem 6.3 in [17]), we obtain that every solution of the equations in model (2.1)

with δ1 = δ2 = δ3 = 0 approaches the unique endemic equilibrium point as t → ∞ whenever R̃0 > 1.e �

6. Discussion and Conclusion

In this section, we will investigate the numerical simulation of the proposed model (2.1). The values
of the model (2.1) parameters are listed in Table 1 below.

Parameter R0 ≤ 1 R0 > 1 Parameter R0 ≤ 1 R0 > 1
Π 136 136 γ1 0.00337 0.00337
ν 0.000034 0.000034 γ2 0.00386 0.00386
κ 0.1 0.1 γ3 0.00335 0.00335
β 0.15 0.25 δ1 0.1 0.1
σ 0.1 0.1 δ2 0.1 0.1
ψ 0.15 0.15 δ3 0.1 0.1

Table 1: The values of the parameters of the model (2.1) when R0 ≤ 1 and when R0 > 1.

Figure 1 (Left) shows that the disease dies out, which means that the disease-free equilibrium point
of model (2.1) is globally attractive, and figure 1 (Right) shows that the disease is permanent.

Figure 2 displays that the number of cumulative cases of infection with treatment is more significant
than cumulative cases without treatment.

Figure 3 depicts the relation between the basic reproduction number R0 and the birth-death rate ν
for several values of the contact rate β. It shows that R0 decrease as ν increases and R0 increases as β
increases.
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Figure 1: The infected compartments as functions of time when R0 = 0.7372 < 1 (Left). The infected
compartments as functions of time when R0 = 1.2287 > 1 (Right).
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Figure 2: The plot of the cumulative cases of infection verses time in days with treatment (dotted line)
and without treatment (solid line) when R0 = 0.7372 < 1 (Left). The plot of the cumulative cases
of infection verses time in days with treatment (dotted line) and without treatment (solid line) when
R0 = 1.2287 > 1 (Right).
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Figure 3: The plot of the basic reproduction number as a function of the birth-death rate ν for several
values of the contact rate. β = 0.1 (solid blue), β = 0.15 (solid red), β = 0.2 (dashed) and β = 0.25
(dotted).

In this paper, the global dynamics of a discrete SEIR model with treatment have been proposed and
analyzed. This model is obtained from the continuous model in [5] by backward difference scheme. The
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threshold conditions for the global attractivity of the DFE and the endemic equilibrium are established.
It has proven that the DFE is globally asymptotically stable when R0 ≤ 1. However, the endemic

equilibrium is GAS whenever R̃0 > 1. Since R0 =
βκ

(κ+ ν)(ν + σ + δ1 + γ1)
is independent of γ2 and γ3,

which means that both the recovery rate of treated individuals and the recovery rate of failed treated
individuals are not affecting the disease of being permanent or dying out.
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Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infectious individuals but not treated
Y (t) Population of treated individuals
W (t) Population of treated individuals who failed treatment
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate
ν Natural death rate
κ Progression rate from exposed to infectious
β Contact rate
σ Treatment rate for infectious individuals
ψ Treatment failure rate
γ1 Recovery rate of infectious individuals
γ2 Recovery rate of treated individuals
γ3 Recovery rate of failed treated individuals
δ1 Disease-induced death rate of infectious individuals
δ2 Disease-induced death rate of treated individuals
δ3 Disease-induced death rate of failed treated individuals

Table 2: Description of variables and parameters of the model (2.1).
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