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ABSTRACT: In this paper, the existence, uniqueness and controllability of solutions for fuzzy neutral stochastic
differential equations (FNSDESs) with impulses are considered based on the Banach fixed point theorem.
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1. Introduction

In this paper, we will study the existence, uniqueness and controllability of solutions for FNSDEs
with impulses given by

dy(t) = £ y(e)] = [Ay®) + 9t y(0) + v |t + (H(O)dBr(®)).t € 3 = [0,T).
Ay(ty) = I(y(ty ),  k=1,..m t#t. (1.1)
y(t) = vo.

Where A : J — Fgn is a fuzzy coefficient, f,g:J X Fgn —> Fgn are nonlinear continuous functions, h :
Jd — R™, v:J — Fgrn is an admissible control function and By is a fractional Browian motion defined
on a filtered probability space (Q,A, {Af}o<¢<r,P), the initial data yo € Fr» and I € C(Fgn, Trn)
are bounded functions, Ay(ty) = y(t]) — y(t;) represents the left and right limits of y(t) at t = ¢
respectively, k = 1,..,m.

We wish to mention that the theory of fuzzy neutral stochastic differential equations with impulses have
recently been the subject of important studies. As, for the controllability of fuzzy stochastic differential
equations, even less has been done, with only a few works published in this topic as far as we know. In
[18,19] Sakthivel et al studied the approximate controllability of nonlinear impulsive differential systems
and stochastic systems with unbounded delay. Bouffoussi et al [11] studied the existence, uniqueness and
asymptotic behavior of mild solutions for the neutral stochastic differential equations with finite delay. In
[6] Arhrrabi et al studied the existence and stability of solutions of fuzzy fractional stochastic differential
equations with fractional brownian motions. Park et al [20] proved the existence and uniqueness of
fuzzy solutions and controllability for the impulsive semilinear fuzzy integrodifferential equations. In [12]
Bouzahir et al discussed the controllability of neutral functional differential equations with infinite delay.
Ahmed [2,3] studied the controllability of impulsive neutral stochastic differential equations with finite
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delay and fractional Browian motion in a Hilbert space. Achary et al in [1] studied the controllability
of fuzzy solutions for first order nonlocal impulsive neutral functional differential equations by using the
Banach fixed point theorem. Chalishajar et al [13] proved the existence, uniqueness and controllability
for impulsive fuzzy neutral functional integrodifferential equations.

Our results are inspired by the one in [16] where the approximate controllability of impulsive neutral
fuzzy stochastic differential equations with nonlocal condition in Banach space is studied. The rest of this
paper is organized as follows, Section 2 summarizes the fundamental aspects. The existence, uniqueness
and controllability results of solution for fuzzy neutral stochastic differential equations with impulses are
proved in Section 3, an example in Section 4 is given to illustrate the results and we conclude the results
in Section 5.

2. Preliminaries

Let Fgn denote the set of fuzzy subsets of the real axis, if A : R” — [0, 1], satisfying the following
properties:

(1) A is normal, that is, there exists zgp € R™ such that A(zg) = 1,
(77) A is fuzzy convex, that is, for 0 < A <1

A(Az1 + (1= N)z2) > min{A(z1), A(z2)}, for any 21,22 € R,
(7i7) A is upper semicontinous on R”,

(iv) [A]° = cl{z € R™ : A(2) > 0} is compact, where cl denotes the closure in (R™,|.]).
Then Fg» is called the space of fuzzy number. For a € (0, 1], we denote [A]* = {z € R"|A(z) > o} and
[A]® = {z € R"|A(2) > 0}. From the conditions (i) to (iv), it follows that the o — level set of A, [A]®, is
a nonempty compact interval, for all @ € [0, 1] and any A € Fgn.
The notation [A]* = [A(«), A(a)], denotes explicitly the o — level set of A, for o € [0,1]. We refer to
A and A as the lower and upper branches of A, respectively. For A € Fgn, we define the lengh of the
a — level set of A as len([A]*) = A(a) — A(a). For addition and scalar multiplication in fuzzy set space
Frn, we have [Al + Ag]a = [Al]a + [Ag]a, [)\A]a = )\[A]a
The Hausdorff distance between fuzzy numbers is given by

Do (A1, A2) = sup {[A; () — Ay(a)], [Ar(c) — Az(a)|},

= sup Dr((M]* [Aa]?).

0<a<1

The metric space (Fgn, Do) is complet metric space and the following properties of the metric Do, are
valid.

Doo (A1 + Az, Az + Asg) = Do (A1, Az),
Do (A1, AM2) = [A[Doo (A1, Az),
Doo (A1, A2) < Do (A1, As) + Do (As, As),
for all A1, As, A3 € Frn and X € R"™.

Definition 2.1. [1] The metric D on C(J,Frn) is given by

D(Al, Ag) = Oi?ET Doo (Al (t), A2 (t))

Remark 2.2. (C(H,?]Rn),D) is a complete metric space.
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Definition 2.3. [I] e The derivative v'(t) of a fuzzy processus u is defined by

provided that the equation define a fuzzy set u/'(t) € Fgn.
e The fuzzy integral f;v(t)dt, a,b € [0,T] is defined by

[ /az@dt] o [ [ o [ @amdt] |

provided that the Lebesgue integral on the right hand side exist.

Definition 2.4. [1] A mapping f : § — Frn is strongly measurable if for all o € [0,1] the set-valued
function F, : § — K(R™) defined by F,(t) = [f(t)]* is Lebesque measurable when K(R™) has the
topology induced by the Hausdorff metric.

Definition 2.5. [1]/ e A mapping f : § — Fgn is called level wise continuous at ty € J if the multivalued
mapping Fo(t) = [f()]* s continuous at t =ty with respect to the Hausdorff metric for all o € [0, 1].
o A mapping [ : J — Frn is said to be integrably bounded if there is an integrable function g(t) such

that |ly(t)|| < g(t) for every y(t) € Fo(t).
o A strongly measurable and integrably bounded mapping f : J — Frn is said to be integrable over J if

I f)dt € Fan.
Remark 2.6. If f:J — Fgrn is strongly measurable and integrably bounded, then f is integrable.

Let (.) : R" — Fgn denote the embedding of R™ into Fgx, i.e. for r € R™ we have

| 1,4f a=m,
<r>(a)_{0,if a#r.
Remark 2.7. It is easy to see that if y : & — R™ is an R™-valued random wvariable on a probability

space (2, A,P), then <y> : Q — Fre is a fuzzy random variable. For stochastic processes we have a
similar property.

3. Main results
3.1. Existence and uniqueness result

In this subsection, we show the existence and uniqueness of fuzzy solution for FNSDEs with impulses
given by (1.1) (v = 0).

Definition 3.1. A fuzzy process {y(t), t € J} is said to be solution of System (1.1) if:
(1) y(-) € C(3,Twn),
(i) y(0) = yo,
(131) fort € J, we have

(1) =G(O)[s0 — 1(0.u0)] + 1(t.9(0) + | AGU =) f(s.u(s)ds + [ Gl = s, (s)s

([ 6= omeaButs)) + 3 G- i), (3.1)

tr=0
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Let us introduce the following hypotheses.

(H1) Let G(t) € Fgn, such that
[Go)]" =[c"1),G (1], G)=T,

and G*, G" are continuous such that max{|G®(t)|, |G"(t)]} < M and |AG(t)| < N, Vt € 4.

(H2) The functions f,g:J x Frn —> Fgn are continuous and there exists a finite constants A,y > 0
such that

D ([ Ly 1 (1 =0)]" ) < XD ()], [20))°)

and

Dt (lot, ()] [t =@ ) <7D (D)7, =)

for all y,z € Frn and t € J.

(H3) For each y, z € Fga, there exist a constant p > 0 such that
Do [yt ()" ) < 1D ([y(®) [(0]%) = 1,..om.
(HA) N+ ANT + (y+ p)MT < 1.

Theorem 3.2. Suppose that the hypotheses (H1) — (H4) holds, then, for all T > 0, the System (1.1)
(v=0) has a unique fuzzy solution on J.

Proof: For each y € Fgn and t € §, define ¢ : C(J, Frn) — C(J, Frn) by

u(t) = G(O) [ = 10.0)] + 1(t.9(0) + [ AGE =) (s.u(s)ds + [ Gl = s, (s

+ < /0 Gt — s)h(s)dBH(s)> + ) Gt —te) I(y(ty)-

tr=0

Since Qa,éa are continuous, ¢y : § — Fgn is continuous, so ¢ is a mapping from C(J, Fgn) into itself.
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Now, for y, z € C(d, Fgn ), we have:

then:

@H([@(tﬂ“,[m@)]“):DHQ (g0 — F(0,50)} + F(£, y(t) /AGt s)f(s,y(s

4 / Gt~ S)gls,u(s))ds + ( / G- $)h(s)dBu (s) )

—|—ZGt ti) I (y(t, ))]a{(){yo F(0,y0)} + f(t, 2(t) /AGt $)f(s,2(

/Gt $)g(s, z(s))ds + /Gt s)h(s)dBg (s ZGt L) I (= ))] ),

DH([ t){yo — £(0,0) } [ / AG(t — s)f(s,y(s))ds}

+/Gtssy ds}—i—/Gts s)dBp (s
" Z (1~ 1) iy ] [ )0 - f0y0>}]a+[f<t,z<t>>}“

+ /AGt $)f(s,2( /Gt—s (s, z( dsa

+ /Gt s)h(s)dBy (s [ZGt ti) (= ))] )

Dy ([ow0)] " [o0]) < | "D ([AG( — )15 06| [AGH =~ )7 9()] s

[e3

+ D ([£t)] " 1t z(t))}“) / EX(CEEre)

+®H([2Gt Iy (t)] [tX_: (¢ =t (=(6)] ).
a6t~ o ([ton] " 164 Yo+ (] s

+/0th )| ([ots. <>>] [96s.2(5))] ") s

. Z_ Gt =)D ([t )] [1ez00)] ).

giN [ o) [26)]Yas 4 30m ([ot0] . [20)] )

[e3

et [ (o))" 2] s+ sarm([uco] . [200] ).

, [G(t —5)g(s, z(s))}a)ds
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therefore:

Doc (0y(6),02()) = swp Dur([ow(0)] ", [02(0] ) <A swp Dur([wr)]", [20]")

0<a<1 0<a<1
t

+ AN sup DH([y(s)]a, [z(s)rl)ds

0 0<a<l
wtt [ s u([o66)] " 2] s 4t swp D[] [20)] ).

< ADy (y(t), z(t)) + AN /Ot Doo (y(s), z(s))ds
+yM /Ot Do (y(s), z(s))ds + uMD (y(t), z(t)),

or we have

D(¢y,¢z) = sup Do (dy(t), dz(t)),

0<t<T
then:
D(¢y,¢z) <X sup Do (y(t),z(t)) + AN sup Do (y(s), z(s))ds

0<t<T 0 0<s<T
t

+9M [ sup Do (y(s),2(s) ) ds + M sup_ Do (y(t), 2(0))
0 0<s<T 0<t<T

< (/\ FANT + (v + u)MT)D(y, 2).

So, by the hypotheses (H4), ¢ is a contraction mapping. Hence, by Banach fixed point theorem, the
fuzzy neutral stochastic differential equations (1.1) has a unique fixed point y € C(J, Fgn ). O

3.2. Controllability result

In this subsection, we state the controllability result for fuzzy neutral stochastic differential equations
with impulses given by (1.1) by using Banach fixed point theorem.

Definition 3.3. [12] The System (1.1) is said to be controllable on J, if there exist a fuzzy control
function v(t) such that a fuzzy solution y(t) of (1.1) satisfies y(T) = y1, i.e. [y(T)]* = [y1]*, where
y1 € Frn is a target set.

Defined the fuzzy mapping W : P(R) — Fgn by

_ fOT G(T — s)v(s)ds , v C Ty,
W) { 0, otherwise,

where T, is the closure of support v and P(R) is a nonempty fuzzy subset of R. Then, the a-level of W
is given by

T
W*(v) = /O GH(T = s)u(s)ds,  u(s) € [u"(s),v" ()],

—a T—a
W (v) = /0 G (T — s)v(s)ds, 7(s) € [vt(s),7(s)].
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We assume that W, W are bijective mappings. Hence, We can introduce a-level set of v(s) given by:

[(W“) ( T) {yo™ — f*(0,y0)} — /A"‘G"‘ —8)f*(s,y%(s))ds

_/ GY(T - s)g® ds—/ G(T (s)dBr(s)

- ZGQ 0 <,:>>),<W“> (yl &) {me -7, yo>}
' —o—=o —Q el T—Ol
- / TG (T - 5T (5,5°())ds — T (T,7°(T)) - / G (T — 5)g° (s, 7°(s))ds
T

[T R B - Y- wTia ) |

tr=0
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Then, substitute this expression into the Eq. (3.1) yields a-level of y(T'), we get

G(T)[yo — £(0.50)] + F(T,y(t) /AG — $)f(s.y(s))ds

/G —5)g(s,y(s ds+</G —5) dBH()>

+ZG 0L+ [ T 97 (1= Al - 10,0
— f(T,y(t) /AG —5)f(s,y(s ds—/G —9)g(s,y(s))ds

/G — $)h(s)dBy (s > ZG — t) Ly )))ds],

= T) {yo™ — f*(0,50)} + f*(T,y" ))+/ AG(T — 5) f*(s,y"(s))ds
+/TQ"‘T—5 ds+/ G*(T (s)dB(s)
+ZGa — tg Ik / G(T —s) Wa < = {yo - (O yo)}
T
- P T) — [ ATGHT = )y () ds / G (T = )" (5,37 (5))ds
T
—/0 G*(T — 5)h*(s)dBp (s Z G*(T — te) I (y (,;)))ds,é"‘(T) {%a—fa(o,yo)}
T
+/0 AYGH(T — )T (5,5%(s))ds + T ( / G (T — 5)g%(s,5(s))ds

T—oz
+/ G (T — s)h" (s)dBy (s +ZG T —to)T, (7(1;,))
/ T —5) 1(—?—6%1’){%“—7"‘(0,%)}
—a—a —a —Q T—Ol
- / TG (T - 57" (5,5°(s))ds — T (T,7°(T)) - / G (T — 5)g°(s,7°(s))ds

T
/G — )1 (5)dBr(s) — ZG“(T—thi(y“(tk‘)))ds],

tr=0
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then, we have

)" = |G ™ — £2(0.00)} + £2(T, 9 (D)) + /Z@“(T—s)ﬁ(aga(s»ds
:
+/0 G(T - 5)g” ds+/ Go(T (5)dB (s)
v ETJ G (T~ )T (5" () + (W) () <ga G (T) [~ *(0.m0))
L) - [ AT o [ GT g 6
- [ @@ iog“(T—wk(y ). @ @) {7 - 70,00}
/AG — )" (5,77 (9)ds + 77 /G ~ 97 (7 (5))ds

T—oz—oz —a —« T—Oc
- / A (T - )T (5,77 ())ds — T (T 7°(T)) - / G (T — 5)g°(5,7°(s))ds

= [rw] = ]

T
/G — $)h" (s)dBr(s) — Z@“(T—tkﬁi@“(t;))>

Now, we set

(ITy)() = G(1) [yo — F(0,30)] + F(t, (1) /AGt—s (5, y(s))ds

/Gt—s g(s,y(s ds+</Gt—s dBH()>

+tk§:OGt—tk Vi (y /Gt—s ( —G(T)lyo - £(0,40)]
— f(T,y(t) /AG —5) ds—/G —5)g(s,y(s))ds

/G — $)h(s)dB (s )> ZG(T—tk)Ik(( )))ds ted. (3.2)

tr=0
In the following theorem, the controllability of fuzzy solutions for (1.1) is established.

Theorem 3.4. If the hypotheses (H1) — (H3) are satisfied and A(1 + NT) + MT(y+p+ X — ANT —
YMT — uM) < 1, then for all T > 0, the System (1.1) is controllable on J.

Proof: We can easily check that IT is continuous mapping from C(J, Fgn) to itself. For y, z € C(d, Frn),
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we have

D (190", 17:(0)]%) = D |GC0) {0 - Oyo} [ / AG(t — 5)

el

+sesen] UtG o] + K/G >T

e for-rrfy s

/AG f(s,y(s))ds — /G

</ G(T s)dB (s > ZGT te) L (y ))>d8r’[ (t){yo

o[- [ fr-
[reso] K/m >} {zat
{/Gt‘s ( (T){vo = £(0,90)} /AG

f(0,90)}

))]a

—/G — 8)g(s, z( ds—</G $)dBg (s > ZGT te) I (y
0

< wH([yu)]“,[z( i) e [ @H(y@na,[ )
Yy I (TCE L )d8+uM®H<[ OREOY
+M/ ()\DH( ) /\N/ DH( 12, [2(5)] )s
A (O )ds D (16 B ) ) as.

o)
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Therefore,

Do (Iy(1). 112(1)) = sup Dy ([T (0))", [=(0)°).

0<a<1
t

< )\0;1321 DH([y(t)]aa [Z(t)]a) + AN sup DH([y(s)]a’ [z(s)]o‘)ds

0 0<a<l
t

#90 [ sup D ((s))" [2(5)]" )ds + udd sup_ D [y, [=(0)°)
0 0<a<l 0<a<1

M / ()\ sup_ D (1)), [20]°) ~ uM sup D ([y(s))*, [2()]°)

0<a<1 0<a<1

AN [ sup @H([ (s )]"‘,[z(s)]o‘)ds

0 0<a<l

o [ s Dy ([y(s))°, [2(s )]"‘)ds)ds

0 0<a<l

< AD +)\N/

—|—7M/ ))ds + M Do ( (),z(t))

+M/ <)\D )\N/

—’yM/ ds uMD ( (s ),z(s)))ds.
Hence,

D (Hy, Hz) = OiltlET Do (Hy(t), Hz(t))

t

<A sup Dy (y(t), z(t)) + AN sup Do (y(s), z(s))ds

0<t<T 0 0<s<T
t

+M [ sup D (y(s), 2(8))d8+uM sup_ Do (y(2), 2(1))
0 0<s<T 0<t<T

0<s<T 0 0<s<T

+M/ ()\ sup Do y )) AN ! sup Doo(y(s),z(s))ds

—yM | sup Doo(y(s), 2(s))ds — uM sup Doo(y(S),z(S))>ds,
0 0<s<T 0<s<T

< )\D(y,z) + )\NTD(y,z) —|—’yMTD(y, z) + ,uMD(y,z) + MT()\D(y,z)

— )\NTD(y, z) — ’yMTD(y, z) — uMD(y, z)),

< ()\(1 +NT)+ MT(y+p+ - ANT—’yMT—uM))D(y,z).

Then, IT is a contraction mapping. So, by Banach fixed point theorem, Eq (3.2) has a unique fixed point
x € C(J,Frn). Thus, the System (1.1) is controllable on J. O
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4. Example

In this section, we give an example to illustrate our results. let

{y(t) = 3ty3(t)] = 2y(t) + 2t53(t) + v(t) + (h(t)dBy (1)), t € 3,
{ Lu(y(t) = s (4.1)
y(O) =0¢€ ?Rn.

Then, we set f(t,y(t)) = 3ty3(t) and g(t,y(t)) = 2ty>(t). Hence, a-level of f is

(1 v@]” = i),
= [to+ 2@ 0 14 - )@ @)].  Vac(o1].

Therefore, we have

@H([fa,y(t»]“, [f(t,zu))]“) -
@) - 0)]°).
)

< tmax {(a +2)[(y*(1))° = (z*(1)*], (4 = )|F*(1)° = E*(1)°|},

< 4@ ) +7° Oz (1) + (°(1)*) max {|y* (1)
< KiDr ([(®)", [(0)),

where K; = 4t((y°‘(t))2 FTEN(E) + (z%))?) > 0.

On the other hand, the a-level of g is given by:

lotue)]” = )]

—2*(t), [ () -z (@)},

Therefore, we get:
D ([gty ()] [o(t,2(0)]°)
(2°()*, 3 - a)(z*(1)*])
< tmax {(a +1)(y(0)* - ()], 3 - |G ~ (=
<3t((@° 0 +7° (0 (1) + (2°()*) max {|y" (1)
< KD ([0, [:(0)°).

where K = 3t((y°‘( )2+ 7% ()2 (t) + (2*(1))?

) =5

DEIE
— 2], [7*(t) — 2 ()]},

~—

) > 0. And, the a-level of I is given by:

2 2
, Va € [0, 1].
) ) o1
Then, we have:

i ({1 [C0]") = 24 ([ T ) [ 5
2 2

2—|—y( ) 2—|—y( ) 2—|—Z°‘(tk) 2—|—Ea(tk)
< max - )
B { 21y (h) 2+ z0(h)

v )
< 10 (0] [2()]"),

24+7%(t,)  2+2Z%(t,)
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where K3 = (2+E"‘(t‘))2(2+_0‘(t_)) > 0. Hence, the constants k1, Ko, K3 are satisfied the hypotheses (H1)-
Yy 2z Uy

(H4). Thus, the conditions of Theorem 3.2 are satisfied. Therefore, Systeme (4.1) has a unique fuzzy

solution.

Now, we examine the controllability result, then, let’s consider the target state y; = 3 € Fpn.

o] = [2(),5°()],

(ﬂo‘)_l((a+2)—T(a+2) /GoH—l)GO‘( —s)(a+2)y*(s)ds
T

—/ sGH(T —s)(a+1)y ds—/ G*(T — s)h“(s)dBp(s)
0

LG T — t)\ e -

_2“2_:0%))(%7 ) ((4—0&)—T(4_Q)y (T)
T . -

- / G(3 - a)G" (T — 5)(4 — a)g* (s)ds - / ST (T — (3 — o)™ (s)ds

° 0

t

T—a a(T_tk)
—/0 G (T — 3% (5)dB (s _22“7())

tr=0

Further, by remplacing the above derived values into the integral equation with respect to System (4.1),
we obtain [y(T)]* = [3]*. Hence, all conditions of Theorem 3.4 are fulfilled. Therefore, the System (4.1)
is controllable.

5. Conclusion

In this work, we have proved the existence, uniqueness and controllability results for FNSDEs with
impulses via Banach fixed point analysis approach and using the fuzzy numbers whose values are normal,
upper semicontinuous, convex and compact.
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