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Some Identities in Quotient Rings

Mohammadi EL Hamdaoui, Abdelkarim Boua∗ and Gurninder S. Sandhu

abstract: Let R be an associative ring, P a prime ideal of R. In this paper, we study the structure of the
ring R/P and describe the possible forms of the generalized derivations satisfying certain algebraic identities
on R. As a consequence of our theorems, we first investigate strong commutativity preserving generalized
derivations of prime rings, and then examine the generalized derivations acting as (anti)homomorphisms in
prime rings. Some commutativity theorems are also given in prime rings.
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1. Introduction

Lets R an associative ring with center Z(R), Q its Martindale quotient ring and U its left Utumi
quotient ring with center denoted by C which called the extended centroid of R (we refer the reader
to [2] for more information about these objects) and the symbols s ◦ t and [s, t] will denote the anti-
commutator st − ts and commutator st + ts, respectively. Recall that an ideal P of R is said to be prime
if for any x, y ∈ R, xRy ⊆ P implies that x ∈ P or y ∈ P. Therefore, R is called a prime ring if and
only if {0} is prime ideal of R. A additive mapping d : R −→ R is said to be a derivation of a ring
R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Moreover an additive mapping F is called a generalized
derivation of R associated with derivation d if F (xy) = F (x)y + xd(y) for all x, y ∈ R, (derivation d is
a generalized derivation associated with it self ). An additive mapping H : R → R is called a left (resp.
right) multiplier if H(xy) = H(x)y (resp. H(xy) = xH(y)), holds for all x, y ∈ R. A multiplier is an
additive mapping which is both right as well as left multiplier.

Over the last few decades, several authors have investigated the relationship between the commu-
tativity of the ring R and certain specific types of additives mappings, as automorphisms, generalized
derivations acting on appropriate subsets of the rings, see [1], [5], [6], [10] and [12]. In [3], Bell and Daif
investigated the commutativity in rings admitting a derivation which is SCP on a nonzero right ideal.
Precisely, they proved that if a semiprime ring R admits a derivation d satisfying [d(x), d(y)] = [x, y]
for all x, y in a right ideal I of R, then I ⊆ Z(R). In particular, R is commutative if I = R. In [11]
Nadeem ur Rehman generalized this result in the prime ring such he proved the commutativity of R/P
and some useful results if R admits two derivations d1 and d2 satisfies [d1(x), d2(y)] − [x, y] ∈ P for all
x, y ∈ R. (Many authors have also worked on commutativity-preserving maps on rings). In this paper, we
investigate the commutativity of quotient ring R/P by using generalized derivations F1 and F2 satisfying
algebraic identities acting on prime ideals P . More precisely, we will establish a relationship between
the structure of rings R/P and the behavior of generalized derivations satisfying the following algebraic
identities:
(i) [F1(x), F2(y)] + H([x, y]) ∈ P , for all x, y ∈ R.
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(ii) F1(x) ◦ F2(y) + H(x ◦ y) ∈ P , for all x, y ∈ R.
(iii) [F1(x), F2(y)] + H(x ◦ y) ∈ P , for all x, y ∈ R.
(iv) F1(x) ◦ F2(y) + H([x, y]) ∈ P , for all x, y ∈ R.
(v) F (xy) ∓ F (x)F (y) + H([x, y]) ∈ P , for all x, y ∈ R.
(vi) F (xy) ∓ F (x)F (y) + H(x ◦ y) ∈ P , for all x, y ∈ R.
Finally, examples are given to demonstrate that the restrictions imposed on the hypothesis of our results
are not superfluous.

2. Some preliminaries

In this section, we recall some basic identities and lemmas, which are useful in demonstration of our
results.

(i) [x, yz] = y[x, z] + [x, y]z.

(ii) [xy, z] = [x, z]y + x[y, z].

(iii) xy ◦ z = (x ◦ z)y + x[y, z] = x(y ◦ z) − [x, z]y.

(vi) x ◦ yz = y(x ◦ z) + [x, y]z = (x ◦ y)z + y[z, x].

Lemma 2.1. [11, proposition 3.1] Let R be a ring, P be a prime ideal of R. If R admits a generalized
derivation F associated with derivation d satisfying [x, F (x)] ∈ P for all x ∈ R, then either R/P is an
integral domain or d(R) ⊆ P .

Lemma 2.2. [4, lemma] Let R be a prime ring. If F : R −→ R and G : R −→ R are functions such
that F (x)yG(z) = G(x)yF (z) for all x, y, z ∈ R, then there exists λ in the extended centroid of R such
that F (x) = λG(x) for all x ∈ R.

3. Mains results

Lemma 3.1. Let R be a ring, P be a prime ideal of R. If R admits a multiplicative generalized derivation
F associated with derivation d satisfying [y, F (x)] ∈ P for all x, y ∈ R, then either R/P is an integral
domain or d(R) ⊆ P .

Proof. Suppose that
[x, F (y)] ∈ P for all x, y ∈ R. (3.1)

Replacing y by yt in (3.1) and using it again we obtain

F (y)[x, t] + [x, y]d(t) + y[x, d(t)] ∈ P for all x, y, t ∈ R. (3.2)

For x = t, it follows that
[t, y]d(t) + y[t, d(t)] ∈ P for all y, t ∈ R. (3.3)

Taking ry instead of y in (3.3), we get [t, ry]d(t) + ry[t, d(t)] ∈ P for all r, y, t ∈ R which implies that

r[t, y]d(t) + [t, r]yd(t) + ry[t, d(t)] ∈ P for all r, y, t ∈ R. (3.4)

Using (3.3) and (3.4), we conclude that

[t, r]yd(t) ∈ P for all r, y, t ∈ R. (3.5)

Equivalently,
[t, r]Rd(t) ⊂ P for all r, t ∈ R. (3.6)

By primness of P, we arrive at

[t, r] ∈ P or d(t) ∈ P for all r, t ∈ P. (3.7)

If we set A = {t ∈ R | [t, r] ∈ P, r ∈ R} and B = {t ∈ R | d(t) ∈ P }. Then A and B are two additives
subgroups of R such A ∩ B = ∅, and A ∪ B = R. Since a group cannot be a union of two of its proper
additives subgroups, we are forced to conclude that R = A or R = B. Therefore, d(R) ⊆ P or R/P is
commutative. �
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Motivated by the papers [7] and [8], we will study the case in the identity is replaced by a more
general algebraic identity by connecting the identities with a multiplier H .

Theorem 3.2. Let R be a ring, P be a prime ideal of R. If R admits a multiplier H and F1, F2 generalized
derivations associated respectively with derivations d1, d2. If [F1(x), F2(y)]+H([x, y]) ∈ P for all x, y ∈ R,
then one of the following holds true:

(i) H(R) ⊆ P,

(ii) d1(R) ⊆ P or d2(R) ⊆ P,

(iii) R/P is an integral domain.

Proof. Suppose that
[F1(x), F2(y)] + H([x, y]) ∈ P for all x, y ∈ R. (3.8)

Replacing x by xt in (3.8) and using it, we obtain for all x, y, t ∈ R

F1(x)[t, F2(y)] + [x, F2(y)]d1(t) + x[d1(t), F2(y)] + H(x)[t, y] ∈ P. (3.9)

In particular taking t = F2(y) in (3.9), we get for all x, y ∈ R

[x, F2(y)]d1(F2(y)) + x[d1(F2(y)), F2(y)] + H(x)[F2(y), y] ∈ P. (3.10)

Replacing x by sx in (3.10), we obtain for all x, y ∈ R

s[x, F2(y)]d1(F2(y)) + [s, F2(y)]xd1(F2(y)) + sx[d1(F2(y)), F2(y)] + sH(x)[F2(y), y] ∈ P.

Using (3.10) in the above expression, it is easy to get for all x, y, s ∈ R

[s, F2(y)]xd1(F2(y)) ∈ P. (3.11)

By primness of P, we find that for each y ∈ R

[s, F2(y)] ∈ P for all s ∈ R or d1(F2(y)) ∈ P. (3.12)

Let us set A = {y ∈ R | [s, F2(y)] ∈ P, s ∈ R} and B = {y ∈ R | d1(F2(y)) ∈ P }. A and B are two
additives subgroups of R such that A ∩ B = ∅, and A ∪ B = R. Since a group cannot be a union of two
of its proper subgroups, thus we have either R = A or R = B. If R = A, that mean [s, F2(y)] ∈ P for
all y, s ∈ R, using Lemma 3.1, we get R/P is commutative or d2(R) ⊆ P . In case of R = B, we have
d1F2(y) ∈ P for all y ∈ R. From (3.10) we find H(x)[F2(y), y] ∈ P for all x, y ∈ R, replacing x by xt in
this relation, we find that H(x)R[F2(y), y] ∈ P. By primness of P, we arrive H(R) ⊆ P or [F2(y), y] ∈ P,
in the last case, using lemma 2.1, we find that d2(R) ⊆ P or R/P is commutative. If we replace y by
yt in (3.8) and we continue by the same techniques, we will find the same results with d1(R) ⊆ P . It
completes the proof.

�

Denote the identity map of R by IR. It is easy to verify that IR and −IR are multipliers of R, thus by
replacing H with ∓IR, where IR is the additive map, we find the following consequent results of Theorem
3.2:

Corollary 3.3. Let R be a ring, P be a prime ideal of R. If R admits generalized derivations F1 and
F2 associated respectively with derivations d1 and d2. If [F1(x), F2(y)] ∓ [x, y] ∈ P for all x, y ∈ R, then
one of the following holds true:

(i) d1(R) ⊆ P or d2(R) ⊆ P,

(ii) R/P is an integral domain.
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Corollary 3.4. Let R be a semiprime ring. If R admits two generalized derivations F1, F2 associated
respectively with nonzero derivations d1, d2, then [F1(x), F2(y)] ∓ [x, y] = 0 for all x, y ∈ R if only if R
is commutative.

Proof. Suppose that [F1(x), F2(y)] + [x, y] = 0 for all x, y ∈ R. Since R is semiprime ring, there exits a
family P of prime ideals of R such that ∩P ∈PP = {0}. Thus for each x, y ∈ R, we have [F1(x), F2(y)] +
[x, y] ∈ P for all P ∈ P. Invoking Theorem 3.2 and using H = IR, we get that (d1(R) ⊆ P or d2(R) ⊆ P
or R ⊆ P for all P ∈ P) or R is commutative, which, because of ∩P ∈PP = {0}, that means (d1 = 0 or
d2 = 0 or R = {0}) or R is commutative, since the first is impossible, we get R is commutative.
If R is commutative it is easy to verify that the identity equal a zero.

�

Now from Theorem 3.2, one can drive the following commutativity theorems:

Theorem 3.5. Let R be a ring, P be a prime ideal of R. If R admits a multiplier H and generalized
derivations F1, F2 associated respectively with derivations d1, d2 such that R satisfies any of the following
assertions:

(a) F1(x) ◦ F2(y) + H([x, y]) ∈ P for all x, y ∈ R.

(b) F1(x) ◦ F2(y) + H(x ◦ y) ∈ P , for all x, y ∈ R.

(c) [F1(x), F2(y)] + H(x ◦ y) ∈ P , for all x, y ∈ R,

then one of the following holds true:

(i) H(R) ⊆ P.

(ii) d1(R) ⊆ P or d2(R) ⊆ P.

(iii) R/P is an integral domain.

Proof. (a) Suppose that
F1(x) ◦ F2(y) + H([x, y]) ∈ P for all x, y ∈ R. (3.13)

Replacing x by xt in (3.13) and using it, we get for all x, y, t ∈ R

F1(x)[t, F2(y)] + (x ◦ F2(y))d1(t) + x[d1(t), F2(y)] + H(x)[t, y] ∈ P. (3.14)

In particular taking t = F2(y) in (3.14), we arrive at

x ◦ F2(y)d1(F2(y)) + x[d1(F2(y)), F2(y)] + H(x)[F2(y), y] ∈ P for all x, y ∈ R. (3.15)

Replacing x by sx in (3.15), we get for all x, y ∈ R

s(x ◦ F2(y))d1(F2(y)) + [s, F2(y)]xd1(F2(y)) + sx[d1(F2(y)), F2(y)] + sH(x)[F2(y), y] ∈ P.

Using (3.15) in the above expression, it is easy to get

[s, F2(y)]xd1(F2(y)) ∈ P for all x, y, s ∈ R. (3.16)

By primness of P, we find that for each y ∈ R

[s, F2(y)] ∈ P for all s ∈ R or d1(F2(y)) ∈ P. (3.17)

We recalled the argument from Theorem 3.2 to get the results. This completes the proof.
Similarly, one can easily prove the conclusion from the identities (b) and (c). �



Some Identities in Quotient Rings 5

It is easy to verify that the maps IR and −IR are multipliers of R, thus by replacing H with −IR, IR,
we find the following consequent results of Theorem 3.2:

Corollary 3.6. Let R be a ring, P be a prime ideal of R. If R admits generalized derivations F1 and F2

associated respectively with derivations d1 and d2, which satisfies any of the following assertions:

(a) F1(x) ◦ F2(y) ∓ [x, y] ∈ P for all x, y ∈ R.

(b) F1(x) ◦ F2(y) ∓ x ◦ y ∈ P , for all x, y ∈ R.

(c) [ F1(x), F2(y)] ∓ x ◦ y ∈ P , for all x, y ∈ R,

then one of the following holds true:

(i) d1(R) ⊆ P or d2(R) ⊆ P.

(ii) R/P is an integral domain.

If we replace F with d and H with ∓IR in Theorem 3.2 and Theorem 3.5, we get the following
corollary:

Corollary 3.7. Let R be a ring, P be a prime ideal of R. If R admits derivations d1 and d2, then

(a) [8, Theorem 1 (1)] [d1(x), d2(y)] ∓ [x, y] ∈ P for all x, y ∈ R if only if R/P is an integral domain.

(b) [8, Theorem 3] If d1(x) ◦ d2(y) ∓ [x, y] ∈ P for all x, y ∈ R then R/P is is an integral domain.

(c) [8, Theorem 2 (1)] If d1(x) ◦ d2(y) ∓ x ◦ y ∈ P , for all x, y ∈ R then R/P is an integral domain.

(d) [8, Theorem 2 (2)] If [ d1(x), d2(y)] ∓ x ◦ y ∈ P , for all x, y ∈ R then R/P is an integral domain.

Proof. (a) ⇒ We see that derivation is a generalized derivation associated with itself, so using theorem
3.2 with H = ∓IR, we get one of the following holds true:

(i) d1(R) ⊆ P or d2(R) ⊆ P.

(ii) R/P is an integral domain.

Using (i) with our assumption, we find that [x, y] ∈ P, then R/P is an integral domain.
⇐ trivial.
Using the same technique, we can prove the others results.

�

Corollary 3.8. Let R be a 2-torsion free semiprime ring. If R admits generalized derivations F1 and
F2 associated respectively with nonzero derivations d1 and d2 such that R satisfies any of the following
assertions:

(a) F1(x) ◦ F2(y) ∓ [x, y] = 0 for all x, y ∈ R.

(b) F1(x) ◦ F2(y) ∓ (x ◦ y) = 0 for all x, y ∈ R.

(c) [F1(x), F2(y)] ∓ (x ◦ y) = 0 for all x, y ∈ R,

then R is commutative.

Proof. By the same argument used in corollary 3.4, we can find our result.
�

Theorem 3.9. Let R be a ring, P be a prime ideal of R. If R admits a multiplier H (not necessarily
additive) and a generalized derivation F associated with a nonzero derivation d such that R satisfies any
of the following assertions:
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(a) F (xy) ∓ F (x)F (y) + H([x, y]) ∈ P for all x, y ∈ R.

(b) F (xy) ∓ F (x)F (y) + H(x ◦ y) ∈ P for all x, y ∈ R,

then one of the following holds true:

(i) H(R) ⊆ P and F (R) ⊆ P.

(ii) H(R) ⊆ P and (F ∓ IR)(R) ⊆ P.

(iii) R/P is an integral domain.

Proof. (a) Suppose that

F (xy) + F (x)F (y) + H([x, y]) ∈ P for all x, y ∈ R. (3.18)

Replacing y by yx in (3.18) and using it, we obtain

(x + F (x))yd(x) ∈ P for all x, y ∈ R. (3.19)

By primeness of P, we have

x + F (x) ∈ P or d(x) ∈ P for all x ∈ R. (3.20)

Since both the sets A = {x ∈ R | x + F (x) ∈ P } and B = {x ∈ R | d(x) ∈ P } form additive subgroups of
R, it follows that either R = A or R = B. Let us consider first R = A, which mean that x + F (x) ∈ P
for all x ∈ R. Writing rx for x, we find (r + F (r))x + rd(x) ∈ P for all x, r ∈ R, which implies that
rd(x) ∈ P for all x, r ∈ R. Left multiplying by d(x) and using primness of P, we obviously get d(R) ∈ P .
Therefore, in each case we conclude that d(x) ⊆ P for all x ∈ R.

In light of this fact, from (3.18), we notice that

F (x)(y + F (y)) + H([x, y]) ∈ P for all x, y ∈ R. (3.21)

Replacing y by yt in (3.21) and using it, we get H(y)[x, t] ∈ P for all x, y, t ∈ R. It forces that either
H(R) ⊆ P or [R, R] ⊆ P. We have nothing to prove in the latter case, so let us assume that H maps R
into P. Thereby from (3.21) we obtain F (x)(y + F (y)) ∈ P. It gives that F (x)R(y + F (y)) ⊆ P for all
x, y ∈ P. By primeness of P, we have either F (R) ⊆ P or (y + F (y)) ∈ P for all y ∈ R.
(b) By following the similar techniques as above with necessary variations we can get the conclusions. �

Corollary 3.10. [11, Theorem 1.4 (i)] Let R be a ring, P be a prime ideal of R. If R admits a generalized
derivation F associated with a nonzero derivation d such that F (xy) ∓ F (x)F (y) ∈ P for all x, y ∈ R,
then F (R) ⊆ P or (F ∓ IR)(R) ⊆ P or R/P is an integral domain.

Corollary 3.11. Let R be a ring, P be a prime ideal of R. If R admits a generalized derivation F
associated with a nonzero derivation d which satisfies one of the following assertions:

(a) F (xy) ∓ F (x)F (y) ∓ [x, y] ∈ P for all x, y ∈ R.

(b) F (xy) ∓ F (x)F (y) ∓ x ◦ y ∈ P for all x, y ∈ R,

then R/P is an integral domain.

Corollary 3.12. Let R be a semiprime ring. If R admits a generalized derivation associated with a
derivation d which satisfies one of following assertions:

(a) F (xy) + F (x)F (y) ∓ [x, y] = 0 for all x, y ∈ R.

(b) F (xy) + F (x)F (y) ∓ x ◦ y = 0 for all x, y ∈ R,

then R is commutative.
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Corollary 3.13. [9, Theorem 1.2 (i)] Let R be a prime ring and F be a generalized derivation of R
associated with nonzero derivation d. If F acts as an homomorphism on R, then R is commutative.

Proof. Remember that F cannot be zero or identity because d 6= 0. �

Theorem 3.14. Let R be a ring, P be a prime ideal of R. If R admits a multiplier H (not necessarily
additive) and a generalized derivation F associated with a nonzero derivation d such that R satisfies any
of the following assertions:

(a) F (xy) ∓ F (y)F (x) + H([x, y]) ∈ P for all x, y ∈ R.

(b) F (xy) ∓ F (y)F (x) + H(x ◦ y) ∈ P for all x, y ∈ R,

then one of the following holds true:

(i) F (R) ⊆ P and H(R) ⊆ P,

(ii) there exists λ ∈ C such that (F − λ)(R) ⊆ P with (λ + H)(R) ⊆ P,

(iii) R/P is an integral domain.

Proof. (a) Suppose that

F (xy) + F (y)F (x) + H([x, y]) ∈ P for all x, y ∈ R. (3.22)

Taking xy in place of x in (3.22) and using it, we find that

xyd(y) + F (y)xd(y) ∈ P for all x, y ∈ R. (3.23)

Putting rx for x in (3.23), it gives

rxyd(y) + F (y)rxd(y) ∈ P for all x, y, r ∈ R. (3.24)

Left multiplying (3.23) by r and then subtract from (3.24), we get

[F (y), r]xd(y) ∈ P for all x, y, r ∈ R. (3.25)

By Primness of P, for each y ∈ R either [F (y), r] ∈ P or d(y) ∈ P for all y, r ∈ R. Since both of the sets
A = {y ∈ R | [F (y), r] ∈ P, r ∈ R} and B = {y ∈ R | d(y) ∈ P } are additives subgroups of R, it follows
that either R = A or R = B.

Let R = A, i.e., [F (y), r] ∈ P for all y, r ∈ R. Using Lemma 3.1, we get R/P is commutative or
d(R) ⊆ P . If R/P is commutative, then we are done, so let us assume that d(R) ⊆ P. From our initial
hypothesis, we have

F (x)y + F (y)F (x) + H([x, y]) ∈ P for all x, y ∈ R. (3.26)

Replacing x by xt in (3.26), we get

F (x)ty + F (y)F (x)t + H([x, y])t + H(x)[t, y] ∈ P for all x, y, t ∈ R. (3.27)

Right-multiplying (3.26) by t and then subtract from (3.27), we get F (x)[t, y] + H(x)[t, y] ∈ P for all
x, y, t ∈ R. This gives that {F + H}(R)R[R, R] ⊆ P, which, in lite of primness of P , yields that either
R/P is commutative or {F + H}(R) ⊆ P. In the latter case, again from our initial hypothesis (3.22), we
obtain

F (y)F (x) − H(y)x ∈ P for all x, y ∈ R. (3.28)

Replacing y by yr in (3.28), we get

F (y)rF (x) − H(y)rx ∈ P for all x, y, r ∈ R. (3.29)
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Now taking rx instead of x in (3.28), we have

F (y)F (r)x − H(y)rx ∈ P for all x, y, r ∈ R. (3.30)

Comparing (3.29) and (3.30) to arrive at F (y)(F (r)x− rF (x)) ∈ P for all x, y, r ∈ R. It forces that either
F (R) ⊆ P or F (r)x − rF (x) ∈ P for all x, r ∈ R. Since (F + H)(R) ⊆ P, therefore in the first case, we
get H(R) ⊆ P. We assume the case F (u)x − uF (x) ∈ P for all u, x ∈ R. Replacing u by uy, we get

F (u)yIR(x) = IR(u)yF (x) for all x, y ∈ R.

Using lemma 2.2, there exists λ ∈ C such that F (x) = λx for all x ∈ R. It implies that (F − λ)x ∈ P for
all x ∈ R and using our hypothesis (F + H)(R) ⊆ P , we get [(F − λ) + (λ + H)](R) ⊆ P , its forces that
(λ + H)(R) ⊆ P .
Using similar techniques as above with necessary variations, we can prove the result from (b). It completes
the proof. �

Corollary 3.15. [11, Theorem 1.4] Let R be a ring, P be a prime ideal of R. If R admits a generalized
derivation F associated with a nonzero derivation d such that F (xy) ∓ F (y)F (x) ∈ P for all x, y ∈ R,
then either F (R) ⊆ P or R/P is an integral domain.

Corollary 3.16. [9, Theorem 1.2 (ii)] Let R be a semiprime ring and F be a generalized derivation of R
associated with nonzero derivation d. If F acts as an anti-homomorphism on R, then R is commutative.

Corollary 3.17. Let R be a semiprime ring. If R admits a generalized derivation associated with a
nonzero derivation d such that R satisfies any of the following assertions:

(a) F (xy) ∓ F (y)F (x) − ([x, y]) = 0 for all x, y ∈ R.

(b) F (xy) ∓ F (y)F (x) − (x ◦ y) = 0 for all x, y ∈ R,

then R is commutative.

4. Examples

The following examples show that the condition ”primness of P ” in Theorems 3.2, 3.5 and 3.9 cannot
be omitted.

Example 4.1. Let Z be the set of integers. We define R, and F : R → R as follows:

R =











0 x y
0 0 z
0 0 t



 | x, y, z, t, 0 ∈ Z







P =











0 0 x
0 0 y
0 0 z



 | x, y, z, 0 ∈ Z







,

d = F such that F





0 x y
0 0 z
0 0 t



 =





0 x y
0 0 0
0 0 0



 and H = ∓IR.

It is clear that R is a ring, P is not a prime ideal, F is a generalized derivation associated with a nonzero
derivation d such that d(R)  P, and for all X, X ′ ∈ R, we have

(a) [F (X), F (X ′)] ∓ [X, X ′] ∈ P for all X, X ′ ∈ R.

(b) F (X) ◦ F (X ′) ∓ X ◦ X ′ ∈ P for all X, X ′ ∈ R.

(c) [F (X), F (X ′)] ∓ X ◦ X ′ ∈ P for all X, X ′ ∈ R.

(d) F (X) ◦ F (X ′) ∓ [X, X ′] ∈ P for all X, X ′ ∈ R,

but R/P is not an integral domain.
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Example 4.2. Let Z be the set of integers. We define R, and F, d, H : R → R as follows:

R =











x y 0
0 0 0
0 z 0



 | x, y, z, 0 ∈ Z







, P =











0 x 0
0 0 0
0 y 0



 | x, y ∈ Z







,

F





x y 0
0 0 0
0 z 0



 =





x y 0
0 0 0
0 0 0



 , d





x y 0
0 0 0
0 z 0



 =





0 0 0
0 0 0
0 z 0



 ,

and H





x y 0
0 0 0
0 z 0



 =





x y 0
0 0 0
0 0 0



 .

It is easy to verify that R is a ring, P is not a prime ideal, F is a generalized derivation associated with
a nonzero derivation d, H is a multiplier such that H(R) * P. Then for all X, X

′

∈ R, we have

(i) F (XX ′) − F (X)F (X ′) + H [X, X ′] ∈ P.

(ii) F (XX ′) + F (X)F (X ′) − H(X ◦ X ′) ∈ P,

but R/P not an integral domain.
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