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The Multiplicity of Solutions for a Critical Problem Involving the Fracional p-Laplacian

Operator
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abstract: This paper deals with the existence of multiple solutions for the following critical fractional
p-Laplacian problem

{

(−∆)s

p
u(x) = λ |u|p−2 u + f(x, u) + µg(x, u) in Ω, u > 0,

u = 0 on R
n \ Ω,

where p > 1, s ∈ (0, 1), Ω ⊂ R
n(n > ps), be a bounded smooth domain, λ, µ are positive parameters and the

functions f, g : Ω×[0, ∞) −→ [0, ∞), are continuous and differentiable with respect to the second variable. Our
main tools are based on variational methods combined with a classical concentration compacteness method.

Key Words: Nehari manifold, Fibering maps, Ekland’s variational principle, Multiplicity of solu-
tions.
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1. Introduction

Let p > 1, s ∈ (0, 1) and let Ω be a smooth bounded domain in R
n(n > ps). In this paper, we study

the existence of at least three nontrivial solutions for the following fractional p-Laplacian problem







(−∆)
s

pu(x) = λa(x) |u|
p−2

u + f(x, u) + µg(x, u) in Ω, u > 0,

u = 0 on R
n \ Ω,

(1.1)

where λ and µ are positive parameters, the functions f, g : Ω × R → R+, and a : Ω → R are continuous,
(−∆)s

p is a nonlocal operator which is defined‘, up to normalization factors, by the Riesz potential as

(−∆)s
pu(x) := 2 lim

ǫ→0

∫

Ω\Bǫ(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy, x ∈ Ω,

where Bǫ(x) := {y ∈ Ω : |x − y| < ǫ}. Note that, in [3,10], the eigenvalue problem associated with the
fractional nonlinear operator (−∆)s

p was studied, and particularly some properties of the first eigenvalue
λ1 were obtained. We refer to [3,10,20,21] for more details on nonlocal fractional operators.

Problems like (1.1) are naturally arise in many different contexts, such as, among the others, the thin
obstacle problem, optimization, finance, conservation laws, ultra relativistic limits of quantum mechanics,
quasi-geostrophic flows, materials science and water waves. For more details, we can see [20,21].
When p = 2, (1.1) becomes an elliptic problem involving a linear fractional Laplacian, and when s gets
close to 1, problem (1.1), becomes an elliptic problem involving the p-Laplace operator div(|∇u|p−2∇u)).
Recently, a great deal of attention has been focused on studying problems involving these type of operators
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see for example [5,10,11,12,15,18,19]. Precisely, in [12], Ghanmi studied the following fractional p-
Laplacian problem







(−∆)
s

pu(x) = f(x, u) + λa(x) |u|
q−2

u, in Ω, u > 0,

u = 0 on R
n \ Ω.

Under appropriate conditions, and using the decomposition of the Nehari manifold, the author proved
that the above non-local elliptic problem has at least two nontrivial solutions.
In [16], using the Nehari manifold method, Kratou, studied the following elliptic problem







−(∆)u(x) = f(x) |u|
p−2

u + λg(x) |u|
q−2

u, in Ω,

u = 0 on R
n \ Ω.

Under adequate assumptions on the sources terms f and g, the author established the existence of three
solutions: one is positive, one is negative and the other changes sign.
In order to precisely state our result, we introduce the assumptions on the functions f and g. We suppose
that, there exist positive constants αi and βi for i = 1, 2, 3, 4 such that

min(α1, β1) ≤ max(α1, β1) <
1

p − 1
< p < min(α2, β2) ≤ max(α2, β2) < min(p∗

s, α4, β4).

Moreover, for any u ∈ Lp∗

s (Ω), we have

α3‖u‖
p∗

s

Lp∗

s (Ω)
≤ α2

∫

Ω

F (x, u)dx ≤

∫

Ω

f(x, u)udx ≤ α1

∫

Ω

fu(x, u)u2dx ≤ α4‖u‖
p∗

s

Lp∗

s (Ω)
(1.2)

and

β3‖u‖q

Lq(Ω) ≤ β2

∫

Ω

G(x, u)dx ≤

∫

Ω

g(x, u)udx ≤ β1

∫

Ω

gu(x, u)u2dx ≤ β4‖u‖q

Lq(Ω), (1.3)

for some q with p < q < p∗
s. Where

p∗
s =

np

n − sp
.

and F, G are defined by
{

F (x, u) =
∫ u

0 f(x, s)ds,

G(x, u) =
∫ u

0 g(x, s)ds.

Our main result of this paper is the following theorem.

Theorem 1.1. If Equations (1.2), and (1.3) hold, then there exists µ∗ > 0, such that for every λ ∈ (0, λ1)
and µ > µ∗, problem (1.1) admits three different nontrivial solutions. Moreover, these solutions are, one

negative, one positive and the other has non-constant sign.

The rest of this paper is organized as follows: in Section 2, we introduce the functional settings of
problem (1.1), and we study the Nehari manifold and fibering map analysis. Section 3, is devoted to the
proof of Theorem 1.1.

2. Functional analytic settings and Nehari manifold analysis

In this section, we briefly recall some definitions and basic properties of the fractional Sobolev spaces.
After that, we define the Nehari manifold sets and we discuss the relationship between fibering maps and
the Nehari manifold.
For any 1 ≥ q ≥ ∞, We denote the usual norm of Lq(Ω) by |u|q. Moreover, for each 0 < s < 1 < p < ∞,
and for all measurable function u : RN → R, we define the Gagliardo seminorm which is defined by

[u]s,p =

(
∫

Q

|u(x) − u(y)|
p

|x − y|n+ps
dxdy

)
1

p

. (2.1)
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The fractional Sobolev space

W s,p(Rn) =
{

u is measurable in LP (Rn) : [u]s,p < ∞
}

,

is equipped with the norm

‖u‖s,p =

(

|u|pp +

∫

R2n

|u(x) − u(y)|
p

|x − y|
n+ps

dxdy

)
1

p

.

In the rest of this paper, we shall work in the following space

X0 = {u ∈ W s,p(Rn) : u = 0 for a.e. x ∈ R
n \ Ω} . (2.2)

As we can see in ( [21], Theorem 7.1), X0 can be equivalently equipped by setting

‖u‖ = [u]s,p.

It is well known(see [21,23]), that X0 is a uniformly convex and separable Banach space. Moreover, the
embedding X0 →֒ Lσ(Ω) is compact for any 1 ≤ σ < p∗

s and continuous for each 1 ≤ σ ≤ p∗
s. Moreover,

from [14], the fractional p-Laplacian is redefined variationally as the nonlinear operator from X0 into its
dual X⋆

0 , which is defined, for all u, v ∈ X0, by

〈T (u) , v〉 =

∫

R2n

|u(x) − u(y)|
p−2

(u(x) − u(y))(v(x) − v(y))

|x − y|
n+ps dxdy. (2.3)

Definition 2.1. We say that u ∈ X0, is a weak solution of problem (1.1), if for all v ∈ X0, we have the

following weak formulation

〈T (u) , v〉 = λ

∫

Ω

a(x)|u|p−2uvdx +

∫

Ω

f(x, u)v(x)dx + µ

∫

Ω

g(x, u)v(x)dx.

Associated to the problem (1.1), we define the functional Φλ,µ : X0 → R, as

Φλ,µ(u) =
1

p
A (u) − B (u) − µC (u) . (2.4)

where

A (u) = ‖u‖p − λ

∫

Ω

a(x)|u|pdx; B (u) =

∫

Ω

F (x, u)dx, and C (u) =

∫

Ω

G(x, u)dx.

It is not difficult to prove that Φ is of class C1, moreover, for any u, v ∈ X0, we have

〈Φ′
λ,µ (u) , v〉 = 〈T (u) , v〉 − λ

∫

Ω

a(x)|u|p−2uvdx −

∫

Ω

f(x, u)v(x)dx − µ

∫

Ω

g(x, u)v(x)dx.

So, according to Definition 2.1, we can see that, critical points of the functional Φ correspond to solutions
for the problem (1.1).
To prove the main result of this paper, we will use the same aproach as in [24]. That is, we will constact
three disjoint sets K1, K2 and K3 not containing 0 such that Φλ,µ has a critical point in Ki. These sets
will be subsets of the following C1 manifolds

M1 =

{

u ∈ X0 :

∫

Ω

u+ > 0 and A(u+) −

∫

Ω

f(x, u)u+ − µ

∫

Ω

g(x, u)u+ = 0

}

,

M2 =

{

u ∈ X0 :

∫

Ω

u− > 0 and A(u−) −

∫

Ω

f(x, u)u− − µ

∫

Ω

g(x, u)u− = 0

}

,

and
M3 = M1 ∩ M2,

where u+ = max{u, o}, u− = max{−u, 0} are the negative and positive parts of u.
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Lemma 2.2. For every w0 ∈ X0, w0 > 0, (w0 < 0), there exists tµ > 0 such that tµw0 ∈ M1, (tµw0 ∈ M2).
Moreover, lim

µ→∞
tµ = 0. In particular, if w0 > 0 and w1 < 0, are two functions in X0 with disjoint supports,

then, there exist t′
µ, tµ > 0 such that t′

µw0 + tµw1 ∈ M3. Moreover t′
µ and tµ tend to zero as µ tends to

infinity.

Proof. For w ∈ X0, we put

φ(w) = A(w) −

∫

Ω

f(x, w)wdx − µ

∫

Ω

g(x, w)wdx.

Let w0 ≥ 0. We will prove that φ(tµw0) = 0 for some tµ > 0.

Using conditions (1.2) and (1.3), for t > 0, we get

φ(tw0) = A(tw0) −

∫

Ω

f(x, tw0)tw0dx − µ

∫

Ω

g(x, tw0)tw0dx

≥ tpA(w0) − α4tp∗

s |w0|
p∗

s

p∗

s
− µβ4tq|w0|qq,

and
φ(tw0) ≤ tpA(w0) − α3tp∗

s |w0|
p∗

s

p∗

s
− µβ3tq|w0|qq.

We can easily see that for all u ∈ X0. If λ < λ1, then

(

1 −
λ

λ1

)

‖u‖p ≤ A(u) ≤ ‖u‖p. (2.5)

Therefore, the fact that p < q < p∗
s, implies that φ(tw0) is negative for t large enough, and positive for t

small enough . Consequently, by Bolzano’s theorem, there exists tµ > 0, such that φ(tµw0) = 0. On the
other hand, we have

φ(tw0) ≤ tpA(w0) − µβ3tq|w0|qq

≤ tpµβ3|w0|qq

(

A(w0)

µβ3|w0|qq
− tq−p

)

.

So, we can choose tµ, such that

0 < tµ <

(

A(v0)

µβ3|w0|qq

)
1

q−p

. (2.6)

Finally, from (2.6), we can see that tµ → 0 as µ → +∞. This completes the proof of Lemma 2.2. �

Put
K1 = {u ∈ M1 : u ≥ 0} , K2 = {u ∈ M2 : u ≤ 0} , and K3 = M3.

Lemma 2.3. For every u ∈ Ki, i = 1, 2, 3, we have

‖u‖p ≤

(

1 −
λ

λ1

)−1 (
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

, (2.7)

and

(

1

p
−

1

min (α2, β2)

) (
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

≤ Φλ,µ(u) ≤

(

1

p
+

1

min (α2, β2)

)

‖u‖p (2.8)

Proof. Let u ∈ Ki. Then, from the definition of Ki, we have

A(u) =

∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx. (2.9)
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So, from (2.5), we get

‖u‖p ≤

(

1 −
λ

λ1

)−1 (
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

.

This establishes inequality (2.7). On the other hand, Now, by combining Equations (1.2) and (1.3) with
(2.9), we obtain

B(u) + µC(u) ≤
1

min (α2, β2)

(
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

.

So

Φλ,µ(u) =
1

p
A(u) − (B(u) + µC(u))

≥

(

1

p
−

1

min (α2, β2)

) (
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

.

This proves the first inequality in (2.8). On the other hand, from (1.2), (1.3), we obtain

Φλ,µ(u) ≤
1

p
A(u) +

1

α2

∫

Ω

f(x, u)udx +
µ

β2

∫

Ω

g(x, u)udx

≤
1

p
A(u) + max

(

1

α2
,

1

β2

) (
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

≤
1

p
A(u) +

1

min (α2, β2)

(
∫

Ω

f(x, u)udx + µ

∫

Ω

g(x, u)udx

)

.

Therefore, from (2.5) and (2.9), we get

Φ(u) ≤

(

1

p
+

1

min (α2, β2)

)

A(u) ≤

(

1

p
+

1

min (α2, β2)

)

‖u‖p.

This finishes the proof �

Lemma 2.4. There exists c > 0 such that,

‖u−‖ ≥ c, for all u ∈ K2

‖u+‖ ≥ c, for all u ∈ K1

min(‖u−‖, ‖u+‖) ≥ c, for all u ∈ K3

Proof. Let u ∈ Ki, then, from Equations (1.2), (1.3) and the Sobolev embedding, we have

A(u±) =

∫

Ω

f(x, u±)u±dx + µ

∫

Ω

g(x, u±)u±dx

≤ α4|u±|
p∗

s

p∗

s
+ β4µ|u±|qq

≤ α4c1‖u±‖p∗

s + β4c2‖u±‖q.

for some positive constants c1 and c2.
Now, from (2.5), one has

(

1 −
λ

λ1

)

‖u±‖p ≤
(

α4c1‖u±‖p∗

s + β4c2‖u±‖q
)

. (2.10)

Since 0 < λ < λ1 and p < q < p∗
s, then, the result of Lemma 2.4 follows immediately from Equation

(2.10). �
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Lemma 2.5. There exists l > 0 such that, for every u ∈ X0, we have

Φλ,µ(u) ≥ l‖u‖p,

provided that ‖u‖ is small enough.

Proof. Let u ∈ X0, then, by combining Equations (1.2) and (1.3) with (2.5), we get

Φλ,µ(u) =
1

p
A(u) − B(u) − µC(u)

≥
1

p

(

1 −
λ

λ1

)

‖u‖p −
α4

α2
|u|

p∗

s

p∗

s
−

β4µ

β2

|u|qq

≥
1

p

(

1 −
λ

λ1

)

‖u‖p −
c1α4

α2
‖u‖p∗

s −
c2β4µ

β2

‖u‖q

≥ ‖u‖p

(

1

p

(

1 −
λ

λ1

)

−
c1α4

α2
‖u‖p∗

s−p −
c2β4µ

β2

‖u‖q−p

)

.

Since 0 < λ < λ1 and p < q < p∗
s. Then, from the above inequality, we see that for ‖u‖ small enough, we

have

Φ(u) ≥ l‖u‖p,

for some positive constant l. �

Now we introduce lemma for describing the properties of the manifolds Mi

Lemma 2.6. Mi, is a C1 sub-manifold of X0 of co-dimension 1 (i = 1, 2) and of co-dimension 2 for

i = 3. The sets Ki are complete. Moreover, for every u ∈ Mi we have the direct decomposition

TuX0 = TuMi

⊕

span 〈u−, u+〉 ,

where TuM is the tangent space at u of the banach manifold M. Finally, the projection onto the first

component in this decomposition is uniformly continuous on bounded sets of Mi.

Proof. Let us denote

M̄1 =

{

u ∈ X0 :

∫

Ω

u+dx > 0

}

.

M̄2 =

{

u ∈ X0 :

∫

Ω

u−dx > 0

}

.

M̄3 = M̄1 ∩ M̄2.

We see that Mi ⊂ M̄i. The set M̄i is open in X0, than it will be enough to prove that Mi is C1 sub-
manifold of M̄i. In order to do this, we have to construct a C1-functions φi : M̄i → Rd with d = 1 for
i = 1, 2 and d = 2 for i = 3 and we will get Mi = φ−1

i (0), where 0 is regular value of φi. First we define

φ1(u) = A(u+) −

∫

Ω

f(x, u)u+dx − µ

∫

Ω

g(x, u)u+dx for u ∈ M̄1,

φ2(u) = A(u−) −

∫

Ω

f(x, u)u−dx − µ

∫

Ω

g(x, u)u−dx for u ∈ M̄2,

φ3(u) = (φ1 (u) , φ2 (u)) for u ∈ M̄3.
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We can easly see that Mi = φ−1
i (0). From standard arguments see [4], φi is of class C1. Therefore, we

just need to prove that 0 is a regular value for φi. Let u ∈ M1, then we have

〈φ′
1(u), u+〉 = pA(u+) −

∫

Ω

f(x, u)u+dx −

∫

Ω

fu(x, u)u2
+dx − µ

∫

Ω

g(x, u)u+dx − µ

∫

Ω

gu(x, u)u2
+dx

≤ pA(u+) −

∫

Ω

(

1 +
1

α1

)

f(x, u)u+dx + µ

(

1 +
1

β1

)
∫

Ω

g(x, u)u+dx

≤ pA(u+) −

(

1 +
1

max (α1, β1)

) (
∫

Ω

f(x, u)u+dx + µ

∫

Ω

g(x, u)u+dx

)

=

(

p − 1 −
1

max (α1, β1)

)

A(u+)

The fact that max(α1, β1) < 1
p−1 , implies that 〈φ′

1(u), u+〉 < 0. Therefore, M1 is a C1 sub-manfold of

X. The same arguments are used to prove that M2 and M3, are C1 sub-manfold of X.

Now, we will prove that Ki is complete,
Let uk be a Cauchy sequence in Ki, then uk → u in X. Moreover (uk)∓ → (u)∓ in X. Moreover, from
Lemma 2.4, we can deduce that u ∈ Ki. Finally, we have the decomposition

TuX = TuM1

⊕

span 〈u+〉 ,

where
M1 = {u : φ1(u) = 0} and TuM1 =

{

v :
〈

φ′
1(u), v

〉

= 0
}

.

Put

γ =
〈φ′

1(u), v〉

〈φ′
1(u), u+〉

,

and let v ∈ TuX0 be unit tangential vector, then, we can write v = v1+v2 where v2 = γu+ and v1 = v−v2.

Moreover, it is clear that v1 ∈ TuM1, and 〈φ′
1(u), v1〉 = 0. The same arguments are used to show that

TuX = TuM2

⊕

span 〈u−〉 , and TuX = TuM3

⊕

span 〈u−, u+〉 .

The proof of Lemma 2.6 is now completed. �

Lemma 2.7. The unrestricted functional Φλ,µ verifies the palais-Smale condition for energy level

c <
s

n

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p , (2.11)

where Sp is the best Sobolev constant which is given by

Sp = inf
v∈X0\{0}

‖v‖
p

X0

‖v‖
p

Lp∗

s

. (2.12)

Proof. Let {uk} ⊂ X0 be such that

Φλ,µ(uk) → c, and Φ′
λ,µ(uk) → 0, as k → ∞.

We need to prove that {uk} have a convergent sub-sequence.
From Lemma 2.3, we see that {uk} is bounded in X0. Then, up to a sequence, still denoted by {uk},
there exists u∗ ∈ X0 such that

uk ⇀ u∗, weakly in X0.

So immediately, we have
A (uk) → A (u∗) , as k → ∞.
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Moreover, by [23], [lemma 8], as k → ∞, we get






uk ⇀ u∗, weakly in Lp∗

s (Rn) ,

uk → u∗, strongly in Lr+1(Rn),
uk → u∗, a.e. in R

n.

On the other hand, from Theorem IV-9 in [4], there exists l ∈ Lr+1(Rn), such that:

|uk(x)| ≤ l(x) in R
n.

Therefore,the dominated convergence theorem, implies that

C (uk) −→ C (u∗) , as k → ∞.

Now, by using Brezis-Lieb lemma [26], we obtain

A (uk) = A(uk − u∗) + A (u∗) + o(1),

B (uk) = B (uk − u∗) + B (u∗) + o(1).

From the above equations, one has
〈

Φ′
λ,µ(uk), uk

〉

X0

= A (uk) − p∗
sB (uk) − µqC (uk)

= A(uk − u∗) + A (u∗) − p∗
s(B (uk − u∗) + B (u∗)) − µqC (uk) + o(1)

=
〈

J ′
λ,µ(u∗), u∗

〉

X0

+ A(uk − u∗) − p∗
sB (uk − u∗) .

Since
〈

Φ′
λ,µ(u∗), u∗

〉

X0

= 0, and
〈

Φ′
λ,µ(uk), uk

〉

X0

−→ 0 as k −→ ∞, then, we obtain

lim
k→∞

A(uk − u∗) = lim
k→∞

p∗
sB (uk − u∗) := b. (2.13)

If b = 0, then the proof is completed. So we assume that b > 0. From (2.5), we have

p∗
sB (uk − u∗) ≤

α4

α2
p∗

sS
−

p∗

s
p

p

(

1 −
λ

λ1

)−
p∗

s
p

(A(uk − u∗))
p∗

s
p .

By letting k tends to infinity, we get

b ≥

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p .

On the other hand, we have

c = lim
k−→∞

(

1

p
A (uk) − B (uk) − µC (uk)

)

= lim
k−→∞

(

1

p
A(uk − u∗) − B (uk − u∗) −

1

p
A (u∗) − B (u∗) − µC(uk)

)

+ o(1)

= Φλ,µ (u∗) + b(
1

p
−

1

p∗
s

)

≥ Φλ,µ(u∗) +
s

n

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p .

By the assumption that c < s
n

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 − λ
λ1

)
n
ps

S
n
ps

p , we obtain Φλ,µ(u∗) < 0. In particular, u∗ 6= 0,

and
B (u∗) > 1

p
A (u∗) − µC (u∗) . (2.14)
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So

c = lim
k−→∞

Φλ,µ(uk) = lim
k−→∞

(

Φλ,µ(uk) −
1

p

〈

Φ′
λ,µ(uk), uk

〉

X0

)

= lim
k−→∞

(
p∗

s

p
− 1)(B (uk − u∗)) + B (u∗) − µ(

p − q

p
)C(uk)

=
sp∗

s

n
(B (uk − u∗) + B (u∗)) − µ(

p − q

p
)C (u∗)

≥
s

n

(

p∗
sα4

α2

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p +
sp∗

s

n
B (u∗) + µ

(

q − p

p

)

C (u∗)

≥
s

n

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p ,

which is a contradiction. Hence, b = 0, and uk → u∗ strongly in X0. This completes the proof. �

3. Proof of Theorem 1.1

In this section, we will prove the main result of this paper (Theorem 1.1). First of all, we begin by
remark that if u ∈ Ki is a critical point of the restricted functional Φλ,µ|Ki

. Then u is also a critical point
of the unrestricted functional Φλ,µ. Which implies that u is a weak solution for problem (1.1).

Lemma 3.1. If c satisfies (2.11), then the functional Φλ,µ defined on Ki satifies the Plais-Smale condition

at level c.

Proof. Let (uk) ∈ Ki be a sequence such that Φλ,µ(uk) is uniformly bounded and Φ′
λ,µ(uk) → 0. Let

vj ∈ Tuj
X0, be a unit tangenttial vector such that

〈Φ′
λ,µ(uj), vj〉 = ‖Φ′

λ,µ(uj)‖X′ .

By lemma 2.6, we have that vj = wj + yj, for some wj ∈ Tuj
Mi and yj ∈ span 〈(uj)+, (uj)−〉 .

Since Φλ,µ(uj) is uniformly bounded, then, by lemma 2.3, uj is also uniformly bounded in X0. So, wj is
uniformly bounded in X0. Therefore, as j tends to infinity, we get

‖Φ′
λ,µ(uj)‖X′ = 〈Φ′

λ,µ(uj), vj〉 = 〈Φ′
λ,µ|Ki

(uj), vj〉 → 0.

as a consequences we get
Φ′

λ,µ|Ki
(uk) → 0.

Finally, the result follows immediately from Lemma 2.7. �

Now we need to show that the functional Φλ,µ|Ki
satifies the hypothesis of the Ekcland’s Variational

Principle [8]. We have as a direct consequence of the construction of the manifold Ki that Φλ,µ is bounded
below over Ki.

Hence, by Ekeland’s Variational Principle, there existe vi
k ∈ Ki such that

Φλ,µ(vi
k) → ci := inf

Ki

Φλ,µ and (Φλ,µ|Ki
)′(vi

k) → 0.

On the other hand, from Lemma 2.2, if µ is large, then we have

ci <
s

n

(

α4

α2
p∗

s

)

−n

sp∗

s

(

1 −
λ

λ1

)
n
ps

S
n
ps

p .

Hence, Lemma 2.7 implies that Φλ,µ satisfies the palais smail condition in Ki for i = 1, 2, 3. Therefore, up
to sub-sequences, there exist u ∈ K1, v ∈ K2, w ∈ K3 such that, as k tends to infinity, we have v1

k −→ u,
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v2
k −→ v, and v3

k −→ w.

The fact that Ki ⊂ Mi implies that

∫

Ω

u+dx > 0,

∫

Ω

v−dx > 0, and

∫

Ω

w+dx > 0.

So, u, v and w are nontrivial. On the other hand, since K1, K2 and K3 are disjoint, then, u, v and
w are distinct. Now, since the convergence of vi

k is strongly, then, u, v and w are critical points of the
functional Φλ,µ. Finally, the fact that u ∈ K1, v ∈ K2, w ∈ K3 , implies that problem (1.1) admits three
nontrivial solutions, moreover these solutions are one positive, one negative and the other change sign.
The proof of Theorem 1.1 is now completed.
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