The Multiplicity of Solutions for a Critical Problem Involving the Fracional p-Laplacian Operator

Djamel Abid, Kamel Akrout and Abdeljabbar Ghanmi

ABSTRACT: This paper deals with the existence of multiple solutions for the following critical fractional p-Laplacian problem

$$
\left\{\begin{array}{l}
(-\Delta)_{p}^{s} u(x)=\lambda|u|^{p-2} u+f(x, u)+\mu g(x, u) \text { in } \Omega, u>0 \\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

where $p>1, s \in(0,1), \Omega \subset \mathbb{R}^{n}(n>p s)$, be a bounded smooth domain, λ, μ are positive parameters and the functions $f, g: \bar{\Omega} \times[0, \infty) \longrightarrow[0, \infty)$, are continuous and differentiable with respect to the second variable. Our main tools are based on variational methods combined with a classical concentration compacteness method.

Key Words: Nehari manifold, Fibering maps, Ekland's variational principle, Multiplicity of solutions.

Contents

1 Introduction
2 Functional analytic settings and Nehari manifold analysis
3 Proof of Theorem 1.1

1. Introduction

Let $p>1, s \in(0,1)$ and let Ω be a smooth bounded domain in $\mathbb{R}^{n}(n>p s)$. In this paper, we study the existence of at least three nontrivial solutions for the following fractional p-Laplacian problem

$$
\left\{\begin{array}{l}
(-\Delta)_{p}^{s} u(x)=\lambda a(x)|u|^{p-2} u+f(x, u)+\mu g(x, u) \text { in } \Omega, u>0, \tag{1.1}\\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega,
\end{array}\right.
$$

where λ and μ are positive parameters, the functions $f, g: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$, and $a: \Omega \rightarrow \mathbb{R}$ are continuous, $(-\Delta)_{p}^{s}$ is a nonlocal operator which is defined ${ }^{d}$, up to normalization factors, by the Riesz potential as

$$
(-\Delta)_{p}^{s} u(x):=2 \lim _{\epsilon \rightarrow 0} \int_{\Omega \backslash B_{\epsilon}(x)} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+p s}} \mathrm{~d} y, \quad x \in \Omega,
$$

where $B_{\epsilon}(x):=\{y \in \Omega:|x-y|<\epsilon\}$. Note that, in [3,10], the eigenvalue problem associated with the fractional nonlinear operator $(-\Delta)_{p}^{s}$ was studied, and particularly some properties of the first eigenvalue λ_{1} were obtained. We refer to $[3,10,20,21]$ for more details on nonlocal fractional operators.

Problems like (1.1) are naturally arise in many different contexts, such as, among the others, the thin obstacle problem, optimization, finance, conservation laws, ultra relativistic limits of quantum mechanics, quasi-geostrophic flows, materials science and water waves. For more details, we can see [20,21]. When $p=2$, (1.1) becomes an elliptic problem involving a linear fractional Laplacian, and when s gets close to 1, problem (1.1), becomes an elliptic problem involving the p-Laplace operator $\operatorname{div}\left(|\nabla u|{ }^{p-2} \nabla u\right)$). Recently, a great deal of attention has been focused on studying problems involving these type of operators

[^0]see for example $[5,10,11,12,15,18,19]$. Precisely, in [12], Ghanmi studied the following fractional p Laplacian problem
\[

\left\{$$
\begin{array}{l}
(-\Delta)_{p}^{s} u(x)=f(x, u)+\lambda a(x)|u|^{q-2} u, \text { in } \Omega, u>0 \\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega
\end{array}
$$\right.
\]

Under appropriate conditions, and using the decomposition of the Nehari manifold, the author proved that the above non-local elliptic problem has at least two nontrivial solutions.
In [16], using the Nehari manifold method, Kratou, studied the following elliptic problem

$$
\left\{\begin{array}{l}
-(\Delta) u(x)=f(x)|u|^{p-2} u+\lambda g(x)|u|^{q-2} u, \text { in } \Omega \\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

Under adequate assumptions on the sources terms f and g, the author established the existence of three solutions: one is positive, one is negative and the other changes sign.
In order to precisely state our result, we introduce the assumptions on the functions f and g. We suppose that, there exist positive constants α_{i} and β_{i} for $i=1,2,3,4$ such that

$$
\min \left(\alpha_{1}, \beta_{1}\right) \leq \max \left(\alpha_{1}, \beta_{1}\right)<\frac{1}{p-1}<p<\min \left(\alpha_{2}, \beta_{2}\right) \leq \max \left(\alpha_{2}, \beta_{2}\right)<\min \left(p_{s}^{*}, \alpha_{4}, \beta_{4}\right)
$$

Moreover, for any $u \in L^{p_{s}^{*}}(\Omega)$, we have

$$
\begin{equation*}
\alpha_{3}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}} \leq \alpha_{2} \int_{\Omega} F(x, u) d x \leq \int_{\Omega} f(x, u) u d x \leq \alpha_{1} \int_{\Omega} f_{u}(x, u) u^{2} d x \leq \alpha_{4}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{3}\|u\|_{L^{q}(\Omega)}^{q} \leq \beta_{2} \int_{\Omega} G(x, u) d x \leq \int_{\Omega} g(x, u) u d x \leq \beta_{1} \int_{\Omega} g_{u}(x, u) u^{2} d x \leq \beta_{4}\|u\|_{L^{q}(\Omega)}^{q} \tag{1.3}
\end{equation*}
$$

for some q with $p<q<p_{s}^{*}$. Where

$$
p_{s}^{*}=\frac{n p}{n-s p}
$$

and F, G are defined by

$$
\left\{\begin{array}{l}
F(x, u)=\int_{0}^{u} f(x, s) d s \\
G(x, u)=\int_{0}^{u} g(x, s) d s
\end{array}\right.
$$

Our main result of this paper is the following theorem.
Theorem 1.1. If Equations (1.2), and (1.3) hold, then there exists $\mu^{*}>0$, such that for every $\lambda \in\left(0, \lambda_{1}\right)$ and $\mu>\mu^{*}$, problem (1.1) admits three different nontrivial solutions. Moreover, these solutions are, one negative, one positive and the other has non-constant sign.

The rest of this paper is organized as follows: in Section 2, we introduce the functional settings of problem (1.1), and we study the Nehari manifold and fibering map analysis. Section 3, is devoted to the proof of Theorem 1.1.

2. Functional analytic settings and Nehari manifold analysis

In this section, we briefly recall some definitions and basic properties of the fractional Sobolev spaces. After that, we define the Nehari manifold sets and we discuss the relationship between fibering maps and the Nehari manifold.
For any $1 \geq q \geq \infty$, We denote the usual norm of $L^{q}(\Omega)$ by $|u|_{q}$. Moreover, for each $0<s<1<p<\infty$, and for all measurable function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$, we define the Gagliardo seminorm which is defined by

$$
\begin{equation*}
[u]_{s, p}=\left(\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x d y\right)^{\frac{1}{p}} \tag{2.1}
\end{equation*}
$$

The fractional Sobolev space

$$
W^{s, p}\left(\mathbb{R}^{n}\right)=\left\{u \text { is measurable in } L^{P}\left(\mathbb{R}^{n}\right):[u]_{s, p}<\infty\right\}
$$

is equipped with the norm

$$
\|u\|_{s, p}=\left(|u|_{p}^{p}+\int_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x d y\right)^{\frac{1}{p}}
$$

In the rest of this paper, we shall work in the following space

$$
\begin{equation*}
X_{0}=\left\{u \in W^{s, p}\left(\mathbb{R}^{n}\right): u=0 \text { for a.e. } x \in \mathbb{R}^{n} \backslash \Omega\right\} \tag{2.2}
\end{equation*}
$$

As we can see in ([21], Theorem 7.1), X_{0} can be equivalently equipped by setting

$$
\|u\|=[u]_{s, p}
$$

It is well known(see $[21,23]$), that X_{0} is a uniformly convex and separable Banach space. Moreover, the embedding $X_{0} \hookrightarrow L^{\sigma}(\Omega)$ is compact for any $1 \leq \sigma<p_{s}^{*}$ and continuous for each $1 \leq \sigma \leq p_{s}^{*}$. Moreover, from [14], the fractional p-Laplacian is redefined variationally as the nonlinear operator from X_{0} into its dual X_{0}^{\star}, which is defined, for all $u, v \in X_{0}$, by

$$
\begin{equation*}
\langle\mathcal{T}(u), v\rangle=\int_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+p s}} d x d y \tag{2.3}
\end{equation*}
$$

Definition 2.1. We say that $u \in X_{0}$, is a weak solution of problem (1.1), if for all $v \in X_{0}$, we have the following weak formulation

$$
\langle\mathcal{T}(u), v\rangle=\lambda \int_{\Omega} a(x)|u|^{p-2} u v d x+\int_{\Omega} f(x, u) v(x) d x+\mu \int_{\Omega} g(x, u) v(x) d x
$$

Associated to the problem (1.1), we define the functional $\Phi_{\lambda, \mu}: X_{0} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\Phi_{\lambda, \mu}(u)=\frac{1}{p} A(u)-B(u)-\mu C(u) \tag{2.4}
\end{equation*}
$$

where

$$
A(u)=\|u\|^{p}-\lambda \int_{\Omega} a(x)|u|^{p} d x ; \quad B(u)=\int_{\Omega} F(x, u) d x, \text { and } C(u)=\int_{\Omega} G(x, u) d x
$$

It is not difficult to prove that Φ is of class C^{1}, moreover, for any $u, v \in X_{0}$, we have

$$
\left\langle\Phi_{\lambda, \mu}^{\prime}(u), v\right\rangle=\langle\mathcal{T}(u), v\rangle-\lambda \int_{\Omega} a(x)|u|^{p-2} u v d x-\int_{\Omega} f(x, u) v(x) d x-\mu \int_{\Omega} g(x, u) v(x) d x
$$

So, according to Definition 2.1, we can see that, critical points of the functional Φ correspond to solutions for the problem (1.1).
To prove the main result of this paper, we will use the same aproach as in [24]. That is, we will constact three disjoint sets K_{1}, K_{2} and K_{3} not containing 0 such that $\Phi_{\lambda, \mu}$ has a critical point in K_{i}. These sets will be subsets of the following C^{1} manifolds

$$
\begin{aligned}
& M_{1}=\left\{u \in X_{0}: \int_{\Omega} u_{+}>0 \text { and } A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+}-\mu \int_{\Omega} g(x, u) u_{+}=0\right\} \\
& M_{2}=\left\{u \in X_{0}: \int_{\Omega} u_{-}>0 \text { and } A\left(u_{-}\right)-\int_{\Omega} f(x, u) u_{-}-\mu \int_{\Omega} g(x, u) u_{-}=0\right\}
\end{aligned}
$$

and

$$
M_{3}=M_{1} \cap M_{2}
$$

where $u_{+}=\max \{u, o\}, u_{-}=\max \{-u, 0\}$ are the negative and positive parts of u.

Lemma 2.2. For every $w_{0} \in X_{0}, w_{0}>0,\left(w_{0}<0\right)$, there exists $t_{\mu}>0$ such that $t_{\mu} w_{0} \in M_{1},\left(t_{\mu} w_{0} \in M_{2}\right)$. Moreover, $\lim _{\mu \rightarrow \infty} t_{\mu}=0$. In particular, if $w_{0}>0$ and $w_{1}<0$, are two functions in X_{0} with disjoint supports, then, there exist $t_{\mu}^{\prime}, t_{\mu}>0$ such that $t_{\mu}^{\prime} w_{0}+t_{\mu} w_{1} \in M_{3}$. Moreover t_{μ}^{\prime} and t_{μ} tend to zero as μ tends to infinity.

Proof. For $w \in X_{0}$, we put

$$
\phi(w)=A(w)-\int_{\Omega} f(x, w) w d x-\mu \int_{\Omega} g(x, w) w d x .
$$

Let $w_{0} \geq 0$. We will prove that $\phi\left(t_{\mu} w_{0}\right)=0$ for some $t_{\mu}>0$.
Using conditions (1.2) and (1.3), for $t>0$, we get

$$
\begin{aligned}
\phi\left(t w_{0}\right) & =A\left(t w_{0}\right)-\int_{\Omega} f\left(x, t w_{0}\right) t w_{0} d x-\mu \int_{\Omega} g\left(x, t w_{0}\right) t w_{0} d x \\
& \geq t^{p} A\left(w_{0}\right)-\alpha_{4} t^{p_{s}^{*}}\left|w_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}-\mu \beta_{4} t^{q}\left|w_{0}\right|_{q}^{q},
\end{aligned}
$$

and

$$
\phi\left(t w_{0}\right) \leq t^{p} A\left(w_{0}\right)-\alpha_{3} t^{p_{s}^{*}}\left|w_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}-\mu \beta_{3} t^{q}\left|w_{0}\right|_{q}^{q} .
$$

We can easily see that for all $u \in X_{0}$. If $\lambda<\lambda_{1}$, then

$$
\begin{equation*}
\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p} \leq A(u) \leq\|u\|^{p} \tag{2.5}
\end{equation*}
$$

Therefore, the fact that $p<q<p_{s}^{*}$, implies that $\phi\left(t w_{0}\right)$ is negative for t large enough, and positive for t small enough . Consequently, by Bolzano's theorem, there exists $t_{\mu}>0$, such that $\phi\left(t_{\mu} w_{0}\right)=0$. On the other hand, we have

$$
\begin{aligned}
\phi\left(t w_{0}\right) & \leq t^{p} A\left(w_{0}\right)-\mu \beta_{3} t^{q}\left|w_{0}\right|_{q}^{q} \\
& \leq t^{p} \mu \beta_{3}\left|w_{0}\right|_{q}^{q}\left(\frac{A\left(w_{0}\right)}{\mu \beta_{3}\left|w_{0}\right|_{q}^{q}}-t^{q-p}\right) .
\end{aligned}
$$

So, we can choose t_{μ}, such that

$$
\begin{equation*}
0<t_{\mu}<\left(\frac{A\left(v_{0}\right)}{\mu \beta_{3}\left|w_{0}\right|_{q}^{q}}\right)^{\frac{1}{q-p}} . \tag{2.6}
\end{equation*}
$$

Finally, from (2.6), we can see that $t_{\mu} \rightarrow 0$ as $\mu \rightarrow+\infty$. This completes the proof of Lemma 2.2.
Put

$$
K_{1}=\left\{u \in M_{1}: u \geq 0\right\}, K_{2}=\left\{u \in M_{2}: u \leq 0\right\}, \text { and } K_{3}=M_{3} .
$$

Lemma 2.3. For every $u \in K_{i}, i=1,2,3$, we have

$$
\begin{equation*}
\|u\|^{p} \leq\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-1}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{p}-\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) \leq \Phi_{\lambda, \mu}(u) \leq\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\|u\|^{p} \tag{2.8}
\end{equation*}
$$

Proof. Let $u \in K_{i}$. Then, from the definition of K_{i}, we have

$$
\begin{equation*}
A(u)=\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x . \tag{2.9}
\end{equation*}
$$

So, from (2.5), we get

$$
\|u\|^{p} \leq\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-1}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
$$

This establishes inequality (2.7). On the other hand, Now, by combining Equations (1.2) and (1.3) with (2.9), we obtain

$$
B(u)+\mu C(u) \leq \frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
$$

So

$$
\begin{aligned}
\Phi_{\lambda, \mu}(u) & =\frac{1}{p} A(u)-(B(u)+\mu C(u)) \\
& \geq\left(\frac{1}{p}-\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
\end{aligned}
$$

This proves the first inequality in (2.8). On the other hand, from (1.2), (1.3), we obtain

$$
\begin{aligned}
\Phi_{\lambda, \mu}(u) & \leq \frac{1}{p} A(u)+\frac{1}{\alpha_{2}} \int_{\Omega} f(x, u) u d x+\frac{\mu}{\beta_{2}} \int_{\Omega} g(x, u) u d x \\
& \leq \frac{1}{p} A(u)+\max \left(\frac{1}{\alpha_{2}}, \frac{1}{\beta_{2}}\right)\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) \\
& \leq \frac{1}{p} A(u)+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
\end{aligned}
$$

Therefore, from (2.5) and (2.9), we get

$$
\Phi(u) \leq\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right) A(u) \leq\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\|u\|^{p} .
$$

This finishes the proof
Lemma 2.4. There exists $c>0$ such that,

$$
\begin{aligned}
\left\|u_{-}\right\| & \geq c, \text { for all } u \in K_{2} \\
\left\|u_{+}\right\| & \geq c, \text { for all } u \in K_{1} \\
\min \left(\left\|u_{-}\right\|,\left\|u_{+}\right\|\right) & \geq c, \text { for all } u \in K_{3}
\end{aligned}
$$

Proof. Let $u \in K_{i}$, then, from Equations (1.2), (1.3) and the Sobolev embedding, we have

$$
\begin{aligned}
A\left(u_{ \pm}\right) & =\int_{\Omega} f\left(x, u_{ \pm}\right) u_{ \pm} d x+\mu \int_{\Omega} g\left(x, u_{ \pm}\right) u_{ \pm} d x \\
& \leq\left.\alpha_{4}\left|u_{ \pm} p_{p_{s}^{s}}^{p_{s}^{*}}+\beta_{4} \mu\right| u_{ \pm}\right|_{q} ^{q} \\
& \leq \alpha_{4} c_{1}\left\|u_{ \pm}\right\|^{p_{s}^{*}}+\beta_{4} c_{2}\left\|u_{ \pm}\right\|^{q} .
\end{aligned}
$$

for some positive constants c_{1} and c_{2}.
Now, from (2.5), one has

$$
\begin{equation*}
\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|u_{ \pm}\right\|^{p} \leq\left(\alpha_{4} c_{1}\left\|u_{ \pm}\right\|^{p_{s}^{*}}+\beta_{4} c_{2}\left\|u_{ \pm}\right\|^{q}\right) \tag{2.10}
\end{equation*}
$$

Since $0<\lambda<\lambda_{1}$ and $p<q<p_{s}^{*}$, then, the result of Lemma 2.4 follows immediately from Equation (2.10).

Lemma 2.5. There exists $l>0$ such that, for every $u \in X_{0}$, we have

$$
\Phi_{\lambda, \mu}(u) \geq l\|u\|^{p}
$$

provided that $\|u\|$ is small enough.
Proof. Let $u \in X_{0}$, then, by combining Equations (1.2) and (1.3) with (2.5), we get

$$
\begin{aligned}
\Phi_{\lambda, \mu}(u) & =\frac{1}{p} A(u)-B(u)-\mu C(u) \\
& \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p}-\frac{\alpha_{4}}{\alpha_{2}}|u|_{p_{s}^{*}}^{p_{s}^{*}}-\frac{\beta_{4} \mu}{\beta_{2}}|u|_{q}^{q} \\
& \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p}-\frac{c_{1} \alpha_{4}}{\alpha_{2}}\|u\|^{p_{s}^{*}}-\frac{c_{2} \beta_{4} \mu}{\beta_{2}}\|u\|^{q} \\
& \geq\|u\|^{p}\left(\frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)-\frac{c_{1} \alpha_{4}}{\alpha_{2}}\|u\|^{p_{s}^{*}-p}-\frac{c_{2} \beta_{4} \mu}{\beta_{2}}\|u\|^{q-p}\right)
\end{aligned}
$$

Since $0<\lambda<\lambda_{1}$ and $p<q<p_{s}^{*}$. Then, from the above inequality, we see that for $\|u\|$ small enough, we have

$$
\Phi(u) \geq l\|u\|^{p}
$$

for some positive constant l.

Now we introduce lemma for describing the properties of the manifolds M_{i}
Lemma 2.6. M_{i}, is a C^{1} sub-manifold of X_{0} of co-dimension $1(i=1,2)$ and of co-dimension 2 for $i=3$. The sets K_{i} are complete. Moreover, for every $u \in M_{i}$ we have the direct decomposition

$$
T_{u} X_{0}=T_{u} M_{i} \bigoplus \operatorname{span}\left\langle u_{-}, u_{+}\right\rangle
$$

where $T_{u} M$ is the tangent space at u of the banach manifold M. Finally, the projection onto the first component in this decomposition is uniformly continuous on bounded sets of M_{i}.

Proof. Let us denote

$$
\begin{gathered}
\bar{M}_{1}=\left\{u \in X_{0}: \int_{\Omega} u_{+} d x>0\right\} \\
\bar{M}_{2}=\left\{u \in X_{0}: \int_{\Omega} u_{-} d x>0\right\} \\
\bar{M}_{3}=\bar{M}_{1} \cap \bar{M}_{2}
\end{gathered}
$$

We see that $M_{i} \subset \bar{M}_{i}$. The set \bar{M}_{i} is open in X_{0}, than it will be enough to prove that M_{i} is C^{1} submanifold of \bar{M}_{i}. In order to do this, we have to construct a C^{1}-functions $\phi_{i}: \bar{M}_{i} \rightarrow R^{d}$ with $d=1$ for $i=1,2$ and $d=2$ for $i=3$ and we will get $M_{i}=\phi_{i}^{-1}(0)$, where 0 is regular value of ϕ_{i}. First we define

$$
\begin{aligned}
\phi_{1}(u) & =A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+} d x-\mu \int_{\Omega} g(x, u) u_{+} d x \text { for } u \in \bar{M}_{1} \\
\phi_{2}(u) & =A\left(u_{-}\right)-\int_{\Omega} f(x, u) u_{-} d x-\mu \int_{\Omega} g(x, u) u_{-} d x \text { for } u \in \bar{M}_{2} \\
\phi_{3}(u) & =\left(\phi_{1}(u), \phi_{2}(u)\right) \text { for } u \in \bar{M}_{3}
\end{aligned}
$$

We can easly see that $M_{i}=\phi_{i}^{-1}(0)$. From standard arguments see [4], ϕ_{i} is of class C^{1}. Therefore, we just need to prove that 0 is a regular value for ϕ_{i}. Let $u \in M_{1}$, then we have

$$
\begin{aligned}
\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle & =p A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+} d x-\int_{\Omega} f_{u}(x, u) u_{+}^{2} d x-\mu \int_{\Omega} g(x, u) u_{+} d x-\mu \int_{\Omega} g_{u}(x, u) u_{+}^{2} d x \\
& \leq p A\left(u_{+}\right)-\int_{\Omega}\left(1+\frac{1}{\alpha_{1}}\right) f(x, u) u_{+} d x+\mu\left(1+\frac{1}{\beta_{1}}\right) \int_{\Omega} g(x, u) u_{+} d x \\
& \leq p A\left(u_{+}\right)-\left(1+\frac{1}{\max \left(\alpha_{1}, \beta_{1}\right)}\right)\left(\int_{\Omega} f(x, u) u_{+} d x+\mu \int_{\Omega} g(x, u) u_{+} d x\right) \\
& =\left(p-1-\frac{1}{\max \left(\alpha_{1}, \beta_{1}\right)}\right) A\left(u_{+}\right)
\end{aligned}
$$

The fact that $\max \left(\alpha_{1}, \beta_{1}\right)<\frac{1}{p-1}$, implies that $\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle<0$. Therefore, M_{1} is a C^{1} sub-manfold of X. The same arguments are used to prove that M_{2} and M_{3}, are C^{1} sub-manfold of X.
Now, we will prove that K_{i} is complete,
Let u_{k} be a Cauchy sequence in K_{i}, then $u_{k} \rightarrow u$ in X. Moreover $\left(u_{k}\right)_{\mp} \rightarrow(u)_{\mp}$ in X. Moreover, from Lemma 2.4, we can deduce that $u \in K_{i}$. Finally, we have the decomposition

$$
T_{u} X=T_{u} M_{1} \bigoplus \operatorname{span}\left\langle u_{+}\right\rangle
$$

where

$$
M_{1}=\left\{u: \phi_{1}(u)=0\right\} \text { and } T_{u} M_{1}=\left\{v:\left\langle\phi_{1}^{\prime}(u), v\right\rangle=0\right\} .
$$

Put

$$
\gamma=\frac{\left\langle\phi_{1}^{\prime}(u), v\right\rangle}{\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle},
$$

and let $v \in T_{u} X_{0}$ be unit tangential vector, then, we can write $v=v_{1}+v_{2}$ where $v_{2}=\gamma u_{+}$and $v_{1}=v-v_{2}$. Moreover, it is clear that $v_{1} \in T_{u} M_{1}$, and $\left\langle\phi_{1}^{\prime}(u), v_{1}\right\rangle=0$. The same arguments are used to show that

$$
T_{u} X=T_{u} M_{2} \bigoplus \operatorname{span}\left\langle u_{-}\right\rangle, \text {and } T_{u} X=T_{u} M_{3} \bigoplus \operatorname{span}\left\langle u_{-}, u_{+}\right\rangle .
$$

The proof of Lemma 2.6 is now completed.
Lemma 2.7. The unrestricted functional $\Phi_{\lambda, \mu}$ verifies the palais-Smale condition for energy level

$$
\begin{equation*}
c<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p_{s}}}, \tag{2.11}
\end{equation*}
$$

where S_{p} is the best Sobolev constant which is given by

$$
\begin{equation*}
S_{p}=\inf _{v \in X_{0} \backslash\{0\}} \frac{\|v\|_{X_{0}}^{p}}{\|v\|_{L^{p_{s}^{*}}}^{p}} . \tag{2.12}
\end{equation*}
$$

Proof. Let $\left\{u_{k}\right\} \subset X_{0}$ be such that

$$
\Phi_{\lambda, \mu}\left(u_{k}\right) \rightarrow c, \text { and } \Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right) \rightarrow 0, \text { as } k \rightarrow \infty
$$

We need to prove that $\left\{u_{k}\right\}$ have a convergent sub-sequence.
From Lemma 2.3, we see that $\left\{u_{k}\right\}$ is bounded in X_{0}. Then, up to a sequence, still denoted by $\left\{u_{k}\right\}$, there exists $u_{*} \in X_{0}$ such that

$$
u_{k} \rightharpoonup u_{*}, \text { weakly in } X_{0} .
$$

So immediately, we have

$$
A\left(u_{k}\right) \rightarrow A\left(u_{*}\right), \text { as } k \rightarrow \infty .
$$

Moreover, by [23], [lemma 8], as $k \rightarrow \infty$, we get

$$
\left\{\begin{array}{l}
u_{k} \rightharpoonup u_{*}, \text { weakly in } L^{p_{s}^{*}}\left(\mathbb{R}^{n}\right), \\
u_{k} \rightarrow u_{*}, \text { strongly in } L^{r+1}\left(\mathbb{R}^{n}\right), \\
u_{k} \rightarrow u_{*}, \text { a.e. in } \mathbb{R}^{n}
\end{array}\right.
$$

On the other hand, from Theorem IV-9 in [4], there exists $l \in L^{r+1}\left(\mathbb{R}^{n}\right)$, such that:

$$
\left|u_{k}(x)\right| \leq l(x) \text { in } \mathbb{R}^{n} .
$$

Therefore, the dominated convergence theorem, implies that

$$
C\left(u_{k}\right) \longrightarrow C\left(u_{*}\right), \text { as } k \rightarrow \infty .
$$

Now, by using Brezis-Lieb lemma [26], we obtain

$$
\begin{aligned}
& A\left(u_{k}\right)=A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)+o(1) \\
& B\left(u_{k}\right)=B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)+o(1)
\end{aligned}
$$

From the above equations, one has

$$
\begin{aligned}
\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} & =A\left(u_{k}\right)-p_{s}^{*} B\left(u_{k}\right)-\mu q C\left(u_{k}\right) \\
& =A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)-p_{s}^{*}\left(B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)\right)-\mu q C\left(u_{k}\right)+o(1) \\
& =\left\langle J_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}+A\left(u_{k}-u_{*}\right)-p_{s}^{*} B\left(u_{k}-u_{*}\right) .
\end{aligned}
$$

Since $\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}=0$, and $\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} \longrightarrow 0$ as $k \longrightarrow \infty$, then, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A\left(u_{k}-u_{*}\right)=\lim _{k \rightarrow \infty} p_{s}^{*} B\left(u_{k}-u_{*}\right):=b \tag{2.13}
\end{equation*}
$$

If $b=0$, then the proof is completed. So we assume that $b>0$. From (2.5), we have

$$
p_{s}^{*} B\left(u_{k}-u_{*}\right) \leq \frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*} S_{p}^{-\frac{p_{s}^{*}}{p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{p_{s}^{*}}{p}}\left(A\left(u_{k}-u_{*}\right)\right)^{\frac{p_{s}^{*}}{p}}
$$

By letting k tends to infinity, we get

$$
b \geq\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}
$$

On the other hand, we have

$$
\begin{aligned}
c & =\lim _{k \longrightarrow \infty}\left(\frac{1}{p} A\left(u_{k}\right)-B\left(u_{k}\right)-\mu C\left(u_{k}\right)\right) \\
& =\lim _{k \longrightarrow \infty}\left(\frac{1}{p} A\left(u_{k}-u_{*}\right)-B\left(u_{k}-u_{*}\right)-\frac{1}{p} A\left(u_{*}\right)-B\left(u_{*}\right)-\mu C\left(u_{k}\right)\right)+o(1) \\
& =\Phi_{\lambda, \mu}\left(u_{*}\right)+b\left(\frac{1}{p}-\frac{1}{p_{s}^{*}}\right) \\
& \geq \Phi_{\lambda, \mu}\left(u_{*}\right)+\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}} .
\end{aligned}
$$

By the assumption that $c<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}$, we obtain $\Phi_{\lambda, \mu}\left(u_{*}\right)<0$. In particular, $u_{*} \neq 0$, and

$$
\begin{equation*}
B\left(u_{*}\right)>\frac{1}{p} A\left(u_{*}\right)-\mu C\left(u_{*}\right) . \tag{2.14}
\end{equation*}
$$

So

$$
\begin{aligned}
c & =\lim _{k \rightarrow \infty} \Phi_{\lambda, \mu}\left(u_{k}\right)=\lim _{k \longrightarrow \infty}\left(\Phi_{\lambda, \mu}\left(u_{k}\right)-\frac{1}{p}\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}}\right) \\
& =\lim _{k \rightarrow \infty}\left(\frac{p_{s}^{*}}{p}-1\right)\left(B\left(u_{k}-u_{*}\right)\right)+B\left(u_{*}\right)-\mu\left(\frac{p-q}{p}\right) C\left(u_{k}\right) \\
& =\frac{s p_{s}^{*}}{n}\left(B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)\right)-\mu\left(\frac{p-q}{p}\right) C\left(u_{*}\right) \\
& \geq \frac{s}{n}\left(\frac{p_{s}^{*} \alpha_{4}}{\alpha_{2}}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n} B\left(u_{*}\right)+\mu\left(\frac{q-p}{p}\right) C\left(u_{*}\right) \\
& \geq \frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}
\end{aligned}
$$

which is a contradiction. Hence, $b=0$, and $u_{k} \rightarrow u_{*}$ strongly in X_{0}. This completes the proof.

3. Proof of Theorem 1.1

In this section, we will prove the main result of this paper (Theorem 1.1). First of all, we begin by remark that if $u \in K_{i}$ is a critical point of the restricted functional $\left.\Phi_{\lambda, \mu}\right|_{K_{i}}$. Then u is also a critical point of the unrestricted functional $\Phi_{\lambda, \mu}$. Which implies that u is a weak solution for problem (1.1).

Lemma 3.1. If c satisfies (2.11), then the functional $\Phi_{\lambda, \mu}$ defined on K_{i} satifies the Plais-Smale condition at level c.

Proof. Let $\left(u_{k}\right) \in K_{i}$ be a sequence such that $\Phi_{\lambda, \mu}\left(u_{k}\right)$ is uniformly bounded and $\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right) \rightarrow 0$. Let $v_{j} \in T_{u_{j}} X_{0}$, be a unit tangenttial vector such that

$$
\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right), v_{j}\right\rangle=\left\|\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right)\right\|_{X^{\prime}}
$$

By lemma 2.6, we have that $v_{j}=w_{j}+y_{j}$, for some $w_{j} \in T_{u_{j}} M_{i}$ and $y_{j} \in \operatorname{span}\left\langle\left(u_{j}\right)_{+},\left(u_{j}\right)_{-}\right\rangle$. Since $\Phi_{\lambda, \mu}\left(u_{j}\right)$ is uniformly bounded, then, by lemma $2.3, u_{j}$ is also uniformly bounded in X_{0}. So, w_{j} is uniformly bounded in X_{0}. Therefore, as j tends to infinity, we get

$$
\left\|\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right)\right\|_{X^{\prime}}=\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right), v_{j}\right\rangle=\left\langle\left.\Phi_{\lambda, \mu}^{\prime}\right|_{K_{i}}\left(u_{j}\right), v_{j}\right\rangle \rightarrow 0
$$

as a consequences we get

$$
\left.\Phi_{\lambda, \mu}^{\prime}\right|_{K_{i}}\left(u_{k}\right) \rightarrow 0
$$

Finally, the result follows immediately from Lemma 2.7.
Now we need to show that the functional $\left.\Phi_{\lambda, \mu}\right|_{K_{i}}$ satifies the hypothesis of the Ekcland's Variational Principle [8]. We have as a direct consequence of the construction of the manifold K_{i} that $\Phi_{\lambda, \mu}$ is bounded below over K_{i}.
Hence, by Ekeland's Variational Principle, there existe $v_{k}^{i} \in K_{i}$ such that

$$
\Phi_{\lambda, \mu}\left(v_{k}^{i}\right) \rightarrow c_{i}:=\inf _{K_{i}} \Phi_{\lambda, \mu} \quad \text { and } \quad\left(\left.\Phi_{\lambda, \mu}\right|_{K_{i}}\right)^{\prime}\left(v_{k}^{i}\right) \rightarrow 0
$$

On the other hand, from Lemma 2.2, if μ is large, then we have

$$
c_{i}<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}
$$

Hence, Lemma 2.7 implies that $\Phi_{\lambda, \mu}$ satisfies the palais smail condition in K_{i} for $i=1,2,3$. Therefore, up to sub-sequences, there exist $u \in K_{1}, v \in K_{2}, w \in K_{3}$ such that, as k tends to infinity, we have $v_{k}^{1} \longrightarrow u$,
$v_{k}^{2} \longrightarrow v$, and $v_{k}^{3} \longrightarrow w$.
The fact that $K_{i} \subset M_{i}$ implies that

$$
\int_{\Omega} u_{+} d x>0, \int_{\Omega} v_{-} d x>0, \text { and } \int_{\Omega} w_{+} d x>0
$$

So, u, v and w are nontrivial. On the other hand, since K_{1}, K_{2} and K_{3} are disjoint, then, u, v and w are distinct. Now, since the convergence of v_{k}^{i} is strongly, then, u, v and w are critical points of the functional $\Phi_{\lambda, \mu}$. Finally, the fact that $u \in K_{1}, v \in K_{2}, w \in K_{3}$, implies that problem (1.1) admits three nontrivial solutions, moreover these solutions are one positive, one negative and the other change sign. The proof of Theorem 1.1 is now completed.

References

1. J. G. Azorero, I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Am. Math. Soc., 323(2)(1991), 877-895.
2. T. Bartsch, Z. Liu, On a superlinear elliptic p-laplacian equation, J. Differ. Equ. 198(2004), 149-175.
3. L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9(2016), 323-355.
4. H. Brezis, P. G. Ciarlet,J. L. Lions, Analyse fonctionnelle: théorie et applications, Paris: Dunod, 1999. Print.
5. A. D. Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33(5) (2016) 1279-1299.
6. S. Cingolani, G. Vannella, Multiple positive solutions for a critical quasilinear equation via morse theory, Ann. I. H. Poincarrré 26(2009)397-413.
7. G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for dirichlet problems with p-laplacian Port. Math. (N. S.), 58 (2001), 339-378.
8. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(2) (1974), 324-353.
9. J. F. Escobar, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate, Commun. Pure Appl. Math. 43(7)(1990), 857-883.
10. G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma (N. S.) 5 (2014) 373-386.
11. A. Ghanmi, K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Frac. Differ. Calculus, 6 (2016), 201-217.
12. A. Ghanmi, Multiplicity of nontrivial solutions of a class of fractional p-Laplacian problem, Z. Anal. Anwend., 34 (2015), 309-319.
13. M. Guedda,L. Véron, Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Anal. Theory Methods Appl. 13(8) (1989), 879-902.
14. A. Iannizzotto, S. B. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian problem via morse theory, Adv. Calc. Var. 9(2) (2016), 101-125.
15. S. Jarohs, Strong comparison principle for the fractional p-Laplacian and applications to starshaped rings, Adv. Nonlinear Stud. 18(4) (2018) 691-704.
16. M. Kratou, Three solutions for a semilinear elliptic boundary value problem,Proc Math Sci 129, 22 (2019). https://doi.org/10.1007/s12044-019-0465-0.
17. P. L. Lions, The concentration-compactness principle in the calculus of variations. the limit case, part 1. Rev. Mat. Iberoam. 1 (1985), 145-201.
18. E. Lindgren, Hölder estimates for viscosity solutions of equations of fractional p-Laplace type, Nonlinear Differ. Equ. Appl. 23(5) (2016), 23-55.
19. X. Mingqi, B. Zhang, V.D. Ràdulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional pLaplacian and critical exponent, Adv. Nonlinear Anal. 9(1) (2020) 690-709.
20. G. Molica Bisci, V.D. Ràdulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, vol.162, Cambridge University Press, Cambridge, 2016.
21. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.
22. J. T. Schwartz, Generalizing the lusternik-schnirelman theory of critical points, Commun. Pure Appl. Math. 17(3)(1964), 307-315.
23. R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389(2) (2012), 887-898.
24. M. Struwe, Three non-trival solutions of anticoercive boundary value problems for the pseudo-laplace-operator, Journal fr die reine und angewandte Mathematik, 325(1991), 68-74.
25. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. equ. 51(1)(1984), 126-150.
26. M. Willem, Minimax theorems, PNLDE 24, Birkhäuser, Boston-Basel-Berlin 1996.
27. Z. Zhang, J. Chen, S. Li, Construction of pseudo-gradient vector field and sign- changing multiple solutions involving p-laplacian, J. Diffe. Equ. 201(2) (2004), 287-303.

Djamel Abid,
LAMIS Laboratory,
Larbie Tebessi University, Tebessa,
Algeria.
E-mail address: djamelabid0312@gmail.com
and
Kamel Akrout,
LAMIS Laboratory,
Larbie Tebessi University, Tebessa,
Algeria.
E-mail address: kamel.akrout@univ-tebessa.dz
and
Abdeljabbar Ghanmi,
Faculté des Sciences de Tunis, LR10ES09 Modélisation matématique, analyse harmonique et téorie du potentiel,
Université de Tunis El Manar, Tunis 2092,
Tunisie.
E-mail address: abdeljabbar.ghanmi@lamsin.rnu.tn.

[^0]: 2010 Mathematics Subject Classification: 35P30, 35J35, 35J60.
 Submitted February 28, 2022. Published July 28, 2022

