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Weak Solutions for Double Phase Problem Driven by the (p(x), q(x))-Laplacian Operator

Under Dirichlet Boundary Conditions

Mohamed El Ouaarabi∗, Chakir Allalou, Said Melliani

abstract: In the present paper, in view of the topological degree methods and the theory of the variable
exponent Sobolev spaces, we discuss a Dirichlet boundary value problem for elliptic equations involving the
(p(x), q(x))-Laplacian operator with a reaction term depending on the gradient and on two real parameters.
Under certain assumptions, we establish the existence of at least one weak solution to this problem. Our
results extends some recent work in the literature.
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1. Introduction and motivation

The study of differential equations with p(x)-Laplacian operator or (p(x), q(x))-Laplacian operator is
an attractive topic and has been the object of considerable attention in recent years. Perhaps the impulse
for this comes from the new search field that reflects a new type of physical phenomenon is a class of
nonlinear problems with variable exponents. In the subject of fluid mechanics, for example, Rajagopal
and M. Ruzicka recently developed a very interesting model for these fluids in [24] (see also [25]). Other
applications relate to image processing [1,8], elasticity problems [20,21,22,23,28], the flow in porous media
[4], and problems in the calculus of variations involving variational integrals with nonstandard growth
[15,2].

Here and in the sequel, we will assume that Ω is a bounded domain in R
N (N > 1), with a Lipschitz

boundary denoted by ∂Ω, α(·), ζ(·) ∈ C+(Ω), and let δ,R ∈ L∞(Ω), µ and λ are two real parameters.
In this paper, we consider the following Dirichlet boundary value problem:







−∆p,q(u) + δ(x)|u|ζ(x)−2u = R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where

∆p,q(u) := div
(

|∇u|p(x)−2∇u+ a(x)|∇u|q(x)−2∇u
)

. (1.2)

In this problem, the coefficient a : Ω → R
+ is Lipschitz continuous function, g : Ω × R → R and

f : Ω ×R×R
N → R are Carathéodory functions that satisfy the assumption of growth, and the variables

exponents p, q ∈ C+(Ω) are assumed to satisfy the following assumption:

1 < q− ≤ q ≤ q+ < p− ≤ p ≤ p+ < +∞. (1.3)
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The double phase operator has been used in the modelling of strongly anisotropic materials [28,30,31]
and in Lavrentiev’s phenomenon [32]. In the one hand, we have the physical motivation; since the
double phase operator has been used to model the steady-state solutions of reaction diffusion problems,
that arise in biophysic, plasma-physic and in the study of chemical reactions. In the other hand, these
operators provide a useful paradigm for describing the behaviour of strongly anisotropic materials, whose
hardening properties are linked to the exponent governing the growth of the gradient change radically
with the point, where the coefficient a(·) determines the geometry of a composite made of two different
materials (see [5,6,9,29] and the references given there).

Let us recall some known results on Problem (1.1). For example, Fan and Zhang [11], based on the

theory of the spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω), present several sufficient conditions for the existence of

solutions for the problem (1.1) with ζ(x) = p(x), µ = 1 and a = λ = δ = 0.
R. Alsaedi [3] establishes sufficient conditions for the existence of nontrivial weak solutions for the

problem (1.1) when a = λ = 0, g(x, u) = |u|p(x)−2u.
Problems related to (1.1) in case p(x) ≡ p and q(x) ≡ q have been studied by many scholars, for

example, Liu et al. [14] study the problem (1.1) when δ = R = λ = 0 and µ = 1, and Wang et al. [26]
showed, by using the topological degree theory for a class of demicontinuous operators, the existence of
at least one weak solution of (1.1) with δ = R = µ = 0 and λ = 1.

We would like to draw attention to the fact that the p(x)-laplacian operator has more complicated
nonlinearity than the p-laplacian operator. For example, they are non-homogeneous, which prove that
our problem is more difficult than the operators p-Laplacian type.

Motivated by the aforementioned works, in the present paper, we will generalize these works. By
using a topological degree for a class of demicontinuous operators of generalized (S+) type of [7] and the

theory of the generalized Sobolev spaces, we establish the existence of weak solution u in W
1,p(x)
0 (Ω) for

the problem (1.1).
The remainder of the paper is organized as follows. In Section 2, we review some fundamental

preliminaries about the functional framework where we will treat our problems. In Section 3, we introduce
some classes of operators, as well as the topological degree methods for a class of demicontinuous operators
of generalized (S+). Finally, Section 4 is devoted to discussing the existence of weak solution to (1.1).

2. Preliminaries

In this section, we recall the most important and relevant properties and notations about generalized
Sobolev spaces W 1,p(x)(Ω), that we will need in our analysis of the problem (1.1), by that, referring to
[10,16,17,18,19] for more details.

Let Ω be a smooth bounded domain in R
N (N > 1), with a Lipschitz boundary denoted by ∂Ω. Set

C+(Ω) =
{

p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω
}

.

For each p ∈ C+(Ω), we define

p+ := max
{

p(x), x ∈ Ω
}

and p− := min
{

p(x), x ∈ Ω
}

.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{

u : Ω → R is measurable such that

∫

Ω

|u(x)|p(x)dx < +∞
}

,

equipped with the Luxemburg norm

|u|p(x) = inf
{

λ > 0 : ρp(x)

(u

λ

)

≤ 1
}

,

where

ρp(x)(u) =

∫

Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).
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Proposition 2.1. [10, Theorem 1.3 and Theorem 1.4] Let (un) be a sequence and u ∈ Lp(x)(Ω), then

|u|p(x) < 1(resp. = 1;> 1) ⇔ ρp(x)(u) < 1(resp. = 1;> 1), (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [13, Theorem 2.5 and Corollary 2.7] The space
(

Lp(x)(Ω), | · |p(x)

)

is a separable and

reflexive Banach spaces.

Proposition 2.4. [13, Theorem 2.1] The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x) + 1

p′(x) = 1

for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-type inequality

∣

∣

∣

∫

Ω

uv dx
∣

∣

∣
≤

( 1

p−
+

1

p
′−

)

|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. [10, Theorem 1.11] If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there exists
the continuous embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)
}

,

equipped with the norm
||u|| = |u|p(x) + |∇u|p(x).

We also define W
1,p(x)
0 (Ω) as the subspace of W 1,p(x)(Ω), which is the closure of C∞

0 (Ω) with respect to
the norm || · ||.

Proposition 2.6. [13, Theorem 4.3] If the exponent p(x) satisfies the log-Hölder continuity condition,

i.e. there is a constant b > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤
1

2
one has

|p(x) − p(y)| ≤
b

− log |x− y|
, (2.8)

then we have the Poincaré inequality, i.e. there exists a constant C > 0 depending only on Ω and the
function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈ W
1,p(x)
0 (Ω). (2.9)

In this paper we will use the following equivalent norm on W
1,p(x)
0 (Ω)

|u|1,p(x) = |∇u|p(x),

which is equivalent to || · ||.

Furthermore, we have the compact embedding W
1,p(x)
0 (Ω) →֒ Lp(x)(Ω)(see [13]).
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Proposition 2.7. [13, Theorem 3.1] The spaces
(

W 1,p(x)(Ω), | · |1,p(x)

)

and
(

W
1,p(x)
0 (Ω), | · |1,p(x)

)

are

separable and reflexive Banach spaces.

Remark 2.8. The dual space of W
1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with the norm

|u|−1,p′(x) = inf
{

|u0|p′(x) +

N
∑

i=1

|ui|p′(x)

}

,

where the infinimum is taken on all possible decompositions u = u0 − divF with u0 ∈ Lp′(x)(Ω) and
F = (u1, . . . , uN) ∈ (Lp′(x)(Ω))N .

3. A review on some classes of mappings and topological degree theory

We start by defining some classes of mappings. In what follows, let X be a real separable reflexive
Banach space and X∗ be its dual space with dual pairing 〈 · , · 〉 and given a nonempty subset Ω of X .
Strong (weak) convergence is represented by the symbol → (⇀).

Definition 3.1. Let Y be another real Banach space. A operator F : Ω ⊂ X → Y is said to be :

1. bounded, if it takes any bounded set into a bounded set.

2. demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies F (un) ⇀ F (u).

3. compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 3.2. A mapping F : Ω ⊂ X → X∗ is said to be :

1. of class (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, we have

un → u.

2. quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have lim sup
n→∞

〈Fun, un − u〉 ≥ 0.

Definition 3.3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For any operator
F : Ω ⊂ X → X, we say that

1. F of class (S+)T , if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and
lim sup

n→∞

〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y, we have
lim sup

n→∞

〈Fun, y − yn〉 ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) :=
{

F : Ω → X∗ : F is bounded, demicontinuous and of class (S+)
}

,

FT (Ω) :=
{

F : Ω → X : F is demicontinuous and of class (S+)T

}

,

FT,B(Ω) :=
{

F ∈ FT (Ω) : F is bounded
}

,

for any Ω ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{

F ∈ FT (E) : E ∈ O, T ∈ F1(E)
}

,

where, T ∈ F1(E) is called an essential inner map to F .
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Lemma 3.4. [12, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X be demicontinuous
such that T (E) ⊂ D(S), where E is a bounded open set in a real reflexive Banach space X. Then the
following statements are true :

1. If S is quasimonotone, then I + SoT ∈ FT (E), where I denotes the identity operator.

2. If S is of class (S+), then SoT ∈ FT (E).

Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space X, T ∈ F1(E)
is continuous and F, S ∈ FT (E). Then the affine homotopy H : [0, 1] × E → X defined by

H(t, u) := (1 − t)Fu+ tSu, for (t, u) ∈ [0, 1] × E

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 3.6. [12, Lemma 2.5] The above affine homotopy is of class (S+)T .

As in [12] we give the topological degree for the class F(X).

Theorem 3.7. Let

M =
{

(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F (∂E)
}

.

Then, there exists a unique degree function d : M −→ Z that satisfies the following properties:

1. (Normalization) For any h ∈ E, we have

d(I, E, h) = 1.

2. (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that h 6∈
F (E\(E1 ∪ E2)), then we have

d(F,E, h) = d(F,E1, h) + d(F,E2, h).

3. (Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible affine homotopy with a
common continuous essential inner map and h: [0, 1] → X is a continuous path in X such that
h(t) 6∈ H(t, ∂E) for all t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = const for all t ∈ [0, 1].

4. (Existence) If d(F,E, h) 6= 0, then the equation Fu = h has a solution in E.

5. ( Boundary dependence) If F, S ∈ FT(E) coincide on ∂E and h 6∈ F (∂E), then

d(F,E, h) = d(S,E, h)

Definition 3.8. [12, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |
E0
, E0, h),

where dB is the Berkovits degree [7] and E0 is any open subset of E with F−1(h) ⊂ E0 and F is bounded
on E0.
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4. Existence result

In this section, we will discuss the existence of weak solution of (1.1). For this, we list our assumptions
associated with our problem to show the existence result.

From new on, we always assume that Ω ⊂ R
N (N > 1) is a bounded domain with a Lipschitz

boundary ∂Ω, δ, R ∈ L∞(Ω), p ∈ C+(Ω) satisfy the log-Hölder continuity condition (2.8), ζ, α ∈ C+(Ω)
with 1 < ζ− ≤ ζ(x) ≤ ζ+ < p− and 1 < α− ≤ α(x) ≤ α+ < p−, g : Ω × R → R and f : Ω × R × R

N → R

are functions such that:

(A1) f is a Carathéodory function.

(A2) There exists ̺ > 0 and γ ∈ Lp′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ ̺(γ(x) + |ζ|k(x)−1 + |ξ|k(x)−1).

(A3) g is a Carathéodory function.

(A4) There are σ > 0 and ν ∈ Lp′(x)(Ω) such that

|g(x, ζ)| ≤ σ(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R × R
N , where k, s ∈ C+(Ω) with 1 < k− ≤ k(x) ≤ k+ < p− and

1 < s− ≤ s(x) ≤ s+ < p−.

Remark 4.1. • Note that for all ϑ ∈ W
1,p(x)
0 (Ω)

∫

Ω

(

|∇u|p(x)−2∇u∇ϑ+ a(x)|∇u|q(x)−2∇u∇ϑ
)

dx

is well defined (see [11,14]).

• δ(x)|u|ζ(x)−2u, R(x)|u|α(x)−2u, µ g(x, u) and λ f(x, u,∇u) are belongs to Lp′(x)(Ω) under u ∈

W
1,p(x)
0 (Ω), the assumptions (A2) and (A4) and the given hypotheses about the exponents p, α, q

and s because: γ ∈ Lp′(x)(Ω), ν ∈ Lp′(x)(Ω), r(x) = (q(x) − 1)p′(x) ∈ C+(Ω) with r(x) < p(x),
β(x) = (ζ(x)−1)p′(x) ∈ C+(Ω) with β(x) < p(x), k(x) = (α(x)−1)p′(x) ∈ C+(Ω) with k(x) < p(x)
and κ(x) = (s(x) − 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).
Then, by Remark 2.5 we can conclude that

Lp(x) →֒ Lr(x), Lp(x) →֒ Lβ(x), Lp(x) →֒ Lk(x) and Lp(x) →֒ Lκ(x).

Hence, since ϑ ∈ Lp(x)(Ω), we have
(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µg(x, u) + λ f(x, u,∇u)
)

ϑ ∈ L1(Ω).

This implies that, the integral
∫

Ω

(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)

ϑdx

exists.

Then, we shall use the definition of weak solution for (1.1) in the following sense:

Definition 4.2. We say that a function u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1.1), if for any

ϑ ∈ W
1,p(x)
0 (Ω), it satisfies the following:

∫

Ω

(

|∇u|p(x)−2∇u∇ϑ+ a(x)|∇u|q(x)−2∇u∇ϑ
)

dx

=

∫

Ω

(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)

ϑdx.
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Before giving the existence result for the problem (1.1), we first give two lemmas that will be used in
the proof of this result.
Let us consider the following functional:

J(u) :=

∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

Ω

a(x)

q(x)
|∇u|q(x)dx.

From [11,14], it is obvious that the derivative operator of the functional J in the weak sense at the point

u ∈ W
1,p(x)
0 (Ω) is the functional T(u) := J′(u) ∈ W−1,p′(x)(Ω), given by

〈Tu, ϑ〉 =

∫

Ω

(

|∇u|p(x)−2∇u∇ϑ+ a(x)|∇u|q(x)−2∇u∇ϑ
)

dx,

for all u, ϑ ∈ W
1,p(x)
0 (Ω) where 〈·, ·〉 the duality pairing between W−1,p′(x)(Ω) and W

1,p(x)
0 (Ω). Further-

more, the properties of the operator T are summarized in the following lemma (see [11, Theorem 3.1]
and [14, Proposition 3.1]).

Lemma 4.3. The mapping

T : W
1,p(x)
0 (Ω) −→ W−1,p′(x)(Ω)

〈Tu, ϑ〉 =

∫

Ω

(

|∇u|p(x)−2∇u∇ϑ+ a(x)|∇u|q(x)−2∇u∇ϑ
)

dx,
(4.1)

is a continuous, bounded, strictly monotone operator, and is a mapping of class (S+).

Lemma 4.4. Assume that the assumptions (A1) − (A2) hold, then the operator

S : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω)

〈Su, ϑ〉 = −

∫

Ω

(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)

ϑdx,
(4.2)

for all u, ϑ ∈ W
1,p(x)
0 (Ω), is compact.

Proof. In order to prove this lemma, we proceed in five steps.

Step 1 : We define the operator Ψ1 : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) by

Ψ1u(x) := δ(x)|u(x)|ζ(x)−2u(x).

We will prove that Ψ1 is bounded and continuous.
It is clear that Ψ1 is continuous. Next we show that Ψ1 is bounded.
Let u ∈ W

1,p(x)
0 (Ω) and using (2.5) and (2.6), we obtain

|Ψ1u|p′(x) ≤ ρp′(x)(Ψ1u) + 1

=

∫

Ω

|δ(x)|p
′(x)|u|(ζ(x)−1)p′(x)dx+ 1

≤ ||δ||p
′

L∞(Ω)

∫

Ω

|u|β(x)dx+ 1

= ||δ||p
′

L∞(Ω)ρβ(x)(u) + 1

≤ ||δ||p
′

L∞(Ω)

(

|u|β
−

β(x) + |u|β
+

β(x)

)

+ 1.

Hence, we deduce from Lp(x) →֒ Lβ(x) and (2.9) that

|Ψ1u|p′(x) ≤ const
(

|u|β
−

1,p(x) + |u|β
+

1,p(x)

)

+ 1,
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and consequently, Ψ1 is bounded on W
1,p(x)
0 (Ω).

Step 2 : Let Ψ2 : W
1,p(x)
0 (Ω) → Lp′(x)(Ω) be an operator defined by

Ψ2u(x) := −R(x)|u(x)|α(x)−2u(x).

In this step, we will show that Ψ2 is bounded and continuous.
First, it is obvious that Ψ2 is continuous. Second, we show that Ψ2 is bounded.

Let u ∈ W
1,p(x)
0 (Ω) and using (2.5) and (2.6), we obtain

|Ψ2u|p′(x) ≤ ρp′(x)(Ψ2u) + 1

=

∫

Ω

|R(x)|p
′(x)|u|(α(x)−1)p′(x)dx + 1

≤ ||R||p
′

L∞(Ω)

∫

Ω

|u|k(x)dx+ 1

≤ ||R||p
′

L∞(Ω)ρk(x)(u) + 1

≤ ||R||p
′

L∞(Ω)

(

|u|k
−

k(x) + |u|k
+

k(x)

)

+ 1.

Thus, from Lp(x) →֒ Lk(x) and (2.9), we deduce that

|Ψ2u|p′(x) ≤ const
(

|u|k
−

1,p(x) + |u|k
+

1,p(x)

)

+ 1,

and then Ψ2 is bounded on W
1,p(x)
0 (Ω).

Step 3 : Let Ψ3 : W 1,p(x)(Ω) → Lp′(x)(Ω) be an operator defined by

Ψ3u(x) := −µg(x, u).

In this step, we prove that the operator Ψ3 is bounded and continuous.
First, let u ∈ W 1,p(x)(Ω), bearing (A4) in mind and using (2.5) and (2.6), we infer

|Ψ3u|p′(x) ≤ ρp′(x)(Ψ3u) + 1

=

∫

Ω

|µg(x, u(x))|p
′(x)dx+ 1

=

∫

Ω

|µ|p
′(x)|g(x, u(x)|p

′(x)dx+ 1

≤
(

|µ|p
′−

+ |µ|p
′+

)

∫

Ω

|σ
(

ν(x) + |u|s(x)−1
)

|p
′(x)dx+ 1

≤ const
(

|µ|p
′−

+ |µ|p
′+

)

∫

Ω

(

|ν(x)|p
′(x) + |u|κ(x)

)

dx+ 1

≤ const
(

|µ|p
′−

+ |µ|p
′+

)(

ρp′(x)(ν) + ρκ(x)(u)
)

+ 1

≤ const
(

|ν|p
′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)

+ 1.

Then, we deduce from (2.9) and Lp(x) →֒ Lκ(x), that

|Ψ3u|p′(x) ≤ const
(

|ν|p
′+

p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)

+ 1,

that means Ψ3 is bounded on W 1,p(x)(Ω).
Second, we show that the operator Ψ3 is continuous.
To this purpose let un → u in W 1,p(x)(Ω). We need to show that Ψ3un → Ψ3u in Lp′(x)(Ω). We will
apply the Lebesgue’s theorem.
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Note that if un → u in W 1,p(x)(Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence (uk) of
(un) and φ in Lp(x)(Ω) such that

uk(x) → u(x) and |uk(x)| ≤ φ(x), (4.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (4.3), we have

|g(x, uk(x))| ≤ σ(ν(x) + |φ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.3), we get, as k −→ ∞

g(x, uk(x)) → g(x, u(x)) a.e. x ∈ Ω.

Seeing that

ν + |φ|s(x)−1 ∈ Lp′(x)(Ω) and ρp′(x)(Ψ3uk − Ψ3u) =

∫

Ω

|g(x, uk(x)) − g(x, u(x))|p
′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.4), we have

Ψ3uk → Ψ3u in Lp′(x)(Ω),

and consequently
Ψ3un → Ψ3u in Lp′(x)(Ω),

that is, Ψ3 is continuous.
Step 4 : Let us define the operator Ψ4 : W 1,p(x)(Ω) → Lp′(x)(Ω) by

Ψ4u(x) := −λ f(x, u(x),∇u(x)).

We will show that Ψ4 is bounded and continuous.
Let u ∈ W 1,p(x)(Ω). According to (A2) and the inequalities (2.5) and (2.6), we obtain

|Ψ4u|p′(x) ≤ ρp′(x)(Ψ4u) + 1

=

∫

Ω

|λ f(x, u(x),∇u(x))|p
′(x)dx+ 1

=

∫

Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p

′(x)dx+ 1

≤
(

|λ|p
′−

+ |λ|p
′+

)

∫

Ω

|̺
(

γ(x) + |u|q(x)−1 + |∇u|q(x)−1
)

|p
′(x)dx+ 1

≤ const
(

|λ|p
′−

+ |λ|p
′+

)

∫

Ω

(

|γ(x)|p
′(x) + |u|r(x) + |∇u|r(x)

)

dx+ 1

≤ const
(

|λ|p
′−

+ |λ|p
′+

)(

ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)
)

+ 1

≤ const
(

|γ|p
′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r
+

r(x) + |∇u|r
−

r(x)

)

+ 1.

Taking into account that Lp(x) →֒ Lr(x) and (2.9), we have then

|Ψ4u|p′(x) ≤ const
(

|γ|p
′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)

+ 1,

and consequently Ψ4 is bounded on W 1,p(x)(Ω).
It remains to show that Ψ4 is continuous. Let un → u in W 1,p(x)(Ω), we need to show that Ψ4un → Ψ4u

in Lp′(x)(Ω). We will apply the Lebesgue’s theorem.
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Note that if un → u in W 1,p(x)(Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N . Hence,
there exist a subsequence (uk) and φ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

uk(x) → u(x) and ∇uk(x) → ∇u(x), (4.4)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.5)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (4.4), we get, as k −→ ∞

f(x, uk(x),∇uk(x)) → f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (4.5), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ ̺(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ + |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(Ψ4uk − Ψ4u) =

∫

Ω

|f(x, uk(x),∇uk(x)) − f(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.4) that

Ψ4uk → Ψ4u in Lp′(x)(Ω),

and consequently

Ψ4un → Ψ4u in Lp′(x)(Ω),

and then Ψ4 is continuous.
Step 4: Let I∗ : Lp′(x)(Ω) → W−1,p′(x)(Ω) be the adjoint operator of the operator
I : W 1,p(x)(Ω) → Lp(x)(Ω).
We then define

I∗oΨ1 : W 1,p(x)(Ω) → W−1,p′(x)(Ω),

I∗oΨ2 : W 1,p(x)(Ω) → W−1,p′(x)(Ω),

I∗oΨ3 : W 1,p(x)(Ω) → W−1,p′(x)(Ω),

and

I∗oΨ4 : W 1,p(x)(Ω) → W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the compositions
I∗oΨ1, I∗oΨ2, I∗oΨ3 and I∗oΨ4 are compact, that means S = I∗oΨ1 + I∗oΨ2 + I∗oΨ3 + I∗oΨ4 is
compact. With this last step the proof of Lemma 4.4 is completed. �

We are now in the position to get the existence result of weak solution for (1.1).

Theorem 4.5. Assume that the assumptions (A1) − (A4) hold, then the problem (1.1) possesses at least

one weak solution u in W
1,p(x)
0 (Ω).

Proof. The basic idea of our proof is to reduce the problem (1.1) to a new one governed by a Hammerstein
equation, and apply the theory of topological degree introduced in Section 3 to show the existence of a
weak solutions to the state problem.
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First, for all u, ϑ ∈ W
1,p(x)
0 (Ω), we define the operators T and S, as defined in (4.1) and (4.2) respec-

tively,

T : W
1,p(x)
0 (Ω) −→ W−1,p′(x)(Ω)

〈Tu, ϑ〉 =

∫

Ω

(

|∇u|p(x)−2∇u∇ϑ+ a(x)|∇u|q(x)−2∇u∇ϑ
)

dx,

S : W
1,p(x)
0 (Ω) −→ W−1,p′(x)(Ω)

〈Su, ϑ〉 = −

∫

Ω

(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)

ϑdx.

Consequently, the problem (1.1) is equivalent to the equation

Tu = −Su, u ∈ W
1,p(x)
0 (Ω). (4.6)

Taking into account that, by Lemma 4.3, the operator T is a continuous, bounded, strictly monotone and
of class (S+), then, by [27, Theorem 26 A], the inverse operator

L := T−1 : W−1,p′(x)(Ω) → W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of class (S+).
On another side, according to Lemma 4.4, we have that the operator S is bounded, continuous and quasi-
monotone.
Consequently, following Zeidler’s terminology [27], the equation (4.6) is equivalent to the following ab-
stract Hammerstein equation

u = Lϑ and ϑ+ SoLϑ = 0, u ∈ W
1,p(x)
0 (Ω) and ϑ ∈ W−1,p′(x)(Ω). (4.7)

Seeing that (4.6) is equivalent to (4.7), then to solve (4.6) it is thus enough to solve (4.7). In order to
solve (4.7), we will apply the Berkovits topological degree introducing in Section 3.
First, let us set

B :=
{

ϑ ∈ W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that ϑ+ tSoLϑ = 0
}

.

Next, we show that B is bounded in ∈ W−1,p′(x)(Ω).
Let us put u := Lϑ for all ϑ ∈ B. Taking into account that |Lϑ|1,p(x) = |∇u|p(x), then we have the
following two cases:

First case : If |∇u|p(x) ≤ 1, then |Lϑ|1,p(x) ≤ 1, that means
{

Lϑ : ϑ ∈ B

}

is bounded.

Second case : If |∇u|p(x) > 1, then, we deduce from (2.2), (A2) and (A4), the inequalities (2.7) and
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(2.6) and the Young’s inequality that

|Lϑ|p
−

1,p(x) = |∇u|p−

p(x)

≤ ρp(x)(∇u)

= 〈Tu, u〉

= 〈ϑ, Lϑ〉

= −t〈SoLϑ, Lϑ〉

= t

∫

Ω

(

− δ(x)|u|ζ(x)−2u+R(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)

udx

≤ const
(

∫

Ω

|u|ζ(x)dx+

∫

Ω

|u|α(x)dx +

∫

Ω

|ν(x)u(x)|dx +

∫

Ω

|u(x)|s(x)dx

+

∫

Ω

|γ(x)u(x)|dx +

∫

Ω

|u(x)|q(x)dx+

∫

Ω

|∇u|q(x)−1|u|dx
)

≤ const
(

ρζ(x)(u) + ρα(x)(u) +

∫

Ω

|ν(x)u(x)|dx +

∫

Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫

Ω

|∇u|q(x)−1|u|dx
)

≤ const
(

|u|ζ
−

ζ(x) + |u|ζ
+

ζ(x) + |u|α
−

α(x) + |u|α
+

α(x) + |ν|p′(x)|u|p(x) + |γ|p′(x)|u|p(x)

+ |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x) +
1

q′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)

≤ const
(

|u|ζ
−

ζ(x) + |u|ζ
+

ζ(x) + |u|α
−

α(x) + |u|α
+

α(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x)

+ |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)

,

then, according to Lp(x) →֒ Lζ(x), Lp(x) →֒ Lα(x), Lp(x) →֒ Ls(x) and Lp(x) →֒ Lq(x), we get

|Lϑ|p
−

1,p(x) ≤ const
(

|Lϑ|ζ
+

1,p(x) + |Lϑ|α
+

1,p(x) + |Lϑ|1,p(x) + |Lϑ|s
+

1,p(x) + |Lϑ|q
+

1,p(x)

)

,

what implies that
{

Lϑ : ϑ ∈ B

}

is bounded.

On the other hand, we have that the operator is S is bounded, then SoLϑ is bounded. Thus, thanks to
(4.7), we have that B is bounded in W−1,p′(x)(Ω).
However, ∃ r > 0 such that

|ϑ|−1,p′(x) < r for all ϑ ∈ B,

which leads to

ϑ+ tSoLϑ 6= 0, ϑ ∈ ∂Br(0) and t ∈ [0, 1],

where Br(0) is the ball of center 0 and radius r in W−1,p′(x)(Ω).
Moreover, by Lemma 3.4, we conclude that

I + SoL ∈ FL(Br(0)) and I = ToL ∈ FL(Br(0)).

On another side, taking into account that I, S and L are bounded, then I + SoL is bounded. Hence, we
infer that

I + SoL ∈ FL,B(Br(0)) and I = ToL ∈ FL,B(Br(0)).

Next, we define the homotopy

H : [0, 1] × Br(0) → W−1,p′(x)(Ω)
(t, ϑ) 7→ H(t, ϑ) := ϑ+ tSoLϑ.
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Hence, thanks to the properties of the degree d seen in Theorem 3.7, we obtain

d(I + SoL,Br(0), 0) = d(I,Br(0), 0) = 1 6= 0,

what implies that there exists ϑ ∈ Br(0) which verifies

ϑ+ SoLϑ = 0.

Finally, we infer that u = Lϑ is a weak solutions of (1.1). The proof is completed. �
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5. A. Bahrouni, V. D. Rǎdulescu, D. D. Repoveš, Double phase transonic flow problems with variable growth: Nonlinear
patterns and stationary waves, Nonlinearity 32 (2019), no. 7, 2481–2495.

6. V. Benci, P. D’Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick’s problem and infinitely
many solutions, Arch. Ration. Mech. Anal. 154 (2000), no. 4, 297–324.

7. J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J Differ. Equ. 234 (2007),
289–310.

8. Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math.
66 (2006), 1383–1406.

9. L. Cherfils, Y. Il’yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian,
Commun. Pure Appl. Anal. 4 (2005), 9–22.

10. X. L. Fan, D. Zhao, On the Spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal, Appl. 263 (2001) 424–446.

11. X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–
1852.

12. I. S. Kim, S. J. Hong, A topological degree for operators of generalized (S+) type, Fixed Point Theory and Appl. 1

(2015), 1–16.
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