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On the Existence of Almost Automorphic Generalized Solutions to Some Differential
Equations

M. Elomari, M. Chaib and S. Melliani

abstract: This paper is devoted to study some regularity of almost automorphic and asymptotic almost
automorphic generalized solution of the differential equation d

dt
u(t) = A u(t) + f(t), in the framework of the

Colombeau algebras. Under certain assumptions about the second member we showed that the generalized
solution is an asmptotically almost automorphic in the sense of genaralized functions.
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1. Introduction

We have explored new properties of the almost automorphic functions in the framework of the gen-
eralized functions. In 1982,J.F.Colombeau introduced an algebra G of generalized functions to deal with
the multiplication problem for distributions, see [5], [4]. This algebra G is differential which contains the
space D

′

of distributions. Furthermore, nonlinear operations more general than the multiplication make
sense in the algebra G. Therefore the algebra G is a very convenient one to find and study solutions of
nonlinear differential equations with singular data and coefficients. After Schwartz’ “impossibility result”
[11] for algebras of generalized functions with a prescribed list of (natural) assumptions, several new
approaches have appeared with the aim of applications in nonlinear problems. We refer to the recent
monograph [7] for the historical background as well as for the list of relevant references, mainly for al-
gebras of generalized functions today called Colombeau type algebras. (see [1], [4]). Colombeau and all
other successors introduce algebras of generalized functions through various analytical methods. By now,
these algebras have become an important tool in the theory of PDEs, stochastic analysis, differential
geometry and general relativity. We show that such algebras fit in the general theory of well-known
sequence spaces forming appropriate algebras. Several interesting works deal with the concept of almost
automorphy, namely the book by Diagana [6] and that of N’Gu´er´ekata [10] and the series of papers
by Shen and Yi [12]. Within the framework of Colombeau’s algebra, work on almost periodic, almost
automorphic and asymptotically almost automorphic functions remains somewhat rare, except for the
work of C.Bouzar et al see [3] noting that C.Bouzar who was constructed for the first time the classes
of Colombeau algebra compatible with almost periodic, almost automorphic and asymptotically almost
automorphic functions. Our paper is inspired by his work in order to add some properties missing from
them, namely the properties of the solution of the equation presented in the abstract above. We study
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here the following system of singular differential equations, The aim of this work is to studies the gener-
alized differential equation d

dtu(t) = A u(t)+f(t) in two cases: the first we assume that A is a generalized
complex number where we showed that if f has a representative (fε)ε∈(0,1]is an almost automorphic func-
tion, then it’s the case of the generalized solution of this differential equation. The second case we assume
that A is an infinitesimal generator of a strongly continuous one-parameter group, where we proved also
that if any representative of the generalized one parameter group is continuous for every real number x
and (fε)ε is Bouchner integrable. then the generaized solution is is asymptotically almost automorphic.
This work is organized in the following way. In the section two we recall various basics definitions and
important properties about the algebras of generalized functions,to get some working knowledge. The
section three is reserved to the recal the notions of almost automorphic functions, and the asymptotically
almost automorphic functions. In section four we recal the definition and basics properties of the almost
automorphic functions, and the asymptotically almost automorphic functions in the framework of the
Colmbeau’s algebra, (see [3] ). Finally in the setion five we present our main results.

2. Preliminaries

Let Cb denote the space of bounded continuous complex-valued functions defined on R, endowed with
the norm of uniform convergence on R, it is well known that(Cb, ‖ . ‖∞) is a Banach algebra.

Definition 2.1. Let ω ∈ R, the translation operator τω is defined by τωf(.) = f(. + ω).

We recall some properties of almost automorphic functions, see [2], [13], and [14].

Definition 2.2. A complex-valued function g defined and continuous on R is called almost automorphic
if for any sequence (sm)m∈N ⊂ R; one can extract a subsequence (smk

)k∈N ⊂ R such that

g̃(x) = lim
k−→∞

g(x + smk
) exists for every x ∈ R. (2.1)

And
lim

k−→∞
g̃(x − smk

) = g(x) exists for every x ∈ R. (2.2)

The space of almost automorphic functions on R is denoted by Caa.
We note that the function g̃ is not continuous, but g ∈ L∞.
we cite some important properties of the space Caa.

Proposition 2.3. 1. The space (Caa, ‖ . ‖∞) is a Banach subalgebra of Cb.
2. τωCaa ⊂ Caa ∀ω ∈ R.
3. Caa ∗ L1 ⊂ Caa.
4. A primitive of an almost automorphic function is almost automorphic if and only if it is bounded.

Proof For 1. it is enough to show taht Caa is a closed subspace of Cb, and 3. is based on the
definition of the convolution product, And the proof of 4. is given in [13], it remains to show 2.
2. Let f be an element of Caa, and ω a real number, we have to prove that τωf is an element
of Caa. we have for any sequence (sm)m∈N, there exists asubsequence (smk

)k∈N, such that f̃(x) :=
lim

k−→∞
f(x + smk

) exists for every x ∈ R, and lim
k−→∞

f̃(x − smk
) = f(x) exists for every x ∈ R

hold, then it is the same for
g̃(x) := lim

k−→∞
f(x+ω +smk

) , and lim
k−→∞

g̃(x+ω −smk
) = f(x) exist , which means that for the some

subsequence (smk
)k, we have g̃(x) = lim

k−→∞
τωf(x+ω +smk

) , and lim
k−→∞

g̃(x+ω −smk
) = τωf(x) exist ,

and therefore τωf ∈ Caa.

2.1. Smooth almost automorphic functions

Let J = [0, +∞) be the half real line, and let E(I) be the space of infinitely derivable functions on
I = R or J, define the space

DLp(I) :=
{

ϕ ∈ E(I) : ∀j ∈ N,ϕ
(j) ∈ Lp(I)

}

, p ∈ [1, +∞],
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that we endow with the topology defined by the family of norms

|ϕ|k,p,I :=
∑

j≤k

‖ϕ(i)‖Lp (I), k ∈ N,ϕ ∈ DLP (I).

So,DLp(I) is a Frechet subalgebra of E(I). We denote B(I) = DL∞(I). Let B be the closure in B=B(R)
of the space D of smooth functions with compact support.

Definition 2.4. We define the space of smooth almost automorphic functions bay:

Baa =
{

ϕ ∈ E : ∀j ∈ Z+, ϕ(j) ∈ Caa

}

.

we give the important properties in the following

Proposition 2.5. 1.The space Baa is a Frechet subalgebra of B.
2.τωBaa ⊂ Baa, ∀ω ∈ R.
3.Baa ∗ L1 ⊂ Baa.

Proof. 1. As the topology of Baa ⊂ DL∞ is given by the countable family of submultiplicative norms
|.|k,∞, k ∈ N, it remains to show the completeness of Baa. Let (fm)m∈N ⊂ Baa be a Cauchy sequence,

it is clear that, ∀i ∈ N, (f
(i)
m )m∈N is a Cauchy sequence in Caa the space of almost continuous functions,

which is complete with respect to the norm of unform convergence, then ∀i ∈ N, f
(i)
m m converges

uniformly to fi ∈ Caa, setting f0 = f , we obtain, due to the uniform convergence, that f ∈ C∞,
∀i ∈ N, f (i) = fi ∈ Caa, i.e. (fm)m∈N converges to f in the topology of Baa, which means that Baa is
complete.
2. Let f ∈ Baa, and let ω be a real number, we have to prove that τωf is an element of Baa, because the
translation of any smooth function is also a smooth function, it remains to show that τωf is an almost
automorphic function, which is obvious by the definition.
3. If h ∈ L1 and f ∈ Baa, then (f ∗ h) ∈ C∞ and ∀i ∈ N, (f ∗ h)(i) = f (i) ∗ h ∈ Caa. The following result
is a consequence of the last proposition. �

Corollary 2.6. Let f ∈ DL∞, then f ∈ Baa if and only if ∀ϕ ∈ D, f ∗ ϕ ∈ Caa.

Before presenting our main results, we recall here some notations and formulas to be used later. The
elements of Colombeau algebras G are equivalence classes of regularizations, i.e., sequences of smooth
functions satisfying asymptotic conditions in the regularization parameter. Therefore, for any set X , the
family of sequences (uε)ε∈(0,1) of elements of a set X will be denoted by X(0,1), such sequences will also
be called nets and simply written as uε. see [7].
Let Ω be an open subset of Rn. The basic objects of the theory as we use it are families (uε)ε∈(0;1) of
smooth functions uε ∈ C∞(Ω) for 0 < ε < 1. We single out the following subalgebras of
Moderate families, denoted by EM (Ω), are defined by the property

∀K ⊂ Ω, ∀α ∈ Nn
0 , ∃p ≥ 0 : sup

x∈K
|∂αuε(x)| = Oε→0(ε−p).

Null families, denoted by EM (Ω), are defned by the property

∀K ⊂ Ω, ∀α ∈ Nn
0 , ∀q ≥ 0 : sup

x∈K
|∂αuε(x)| = Oε→0(εq).

Thus moderate families satisfy a locally uniform polynomial estimate as ε → 0, together with all
derivatives, while null functionals vanish faster than any power of ε in the same situation. The null
families from a differential ideal in the collection of moderate families.
The Colombeau algebra is the factor algebra

G(Ω) = EM (Ω)/N(Ω).



4 M. Elomari, M. Chaib and S. Melliani

The algebra G(Ω) just defined coincides with the special Colombeau algebra in [7], where the notation
Gs(Ω) has been employed. It was called the simplified Colombeau algebra in [7]. The Colombeau
algebra on a closed half space Rn × [0, 1) is defined in a similary way. The restriction of an element
u ∈ G(Rn × [0, 1)) to the line {t = 0} is defined on representatives by

u/{t = 0} = Class of (uε(·, 0))ε∈(0,1).

Similary, restrictions of the elements of G(Ω) to open subsets of Ω are defined on representatives. One
can see that Ω −→ G(Ω) is a sheaf of differential algebras on Rn. The space of compactly supported
distributions is imbedded in G(Ω) by convolution :

i : E
′

(Ω) −→ G(Ω), i(ω) = class of (ω ∗ (φε)/Ω)ε∈(0,1).

where
φε(x) = ε−nφ(

x

ε
).

is obtained by scaling a fixed test function S(Rn) of integral one with all moments vanishing. By the
sheaf property, this can be extended in a unique way to an imbedding of the space of distributions D(Ω).
One of the main features of the Colombeau construction is the fact that this imbedding renders C∞(Ω)
a faithful subalgebra. In fact, given f ∈ C∞(Ω), one can define a corresponding element of G(Ω) by the
constant imbedding

σ(f) = class of [(ε, x) −→ f(x)].

Then the important equality i(f) = σ(f) holds in G(Ω).

If u ∈ G(Ω) and f is a smooth function which is of at most polynomial growth at infinity, together
with all its derivatives, the superposition f(u) is a well-defined element of G(Ω).

In the literature of Colombeau algebras the regularity theory is based on the subalgebra G∞(Ω)
of regular generalized functions in G(Ω). It is defined by those elements which have a representative
satisfying

∀K ⊂ Ω, ∀α ∈ Nn
0 , ∃p ≥ 0 : sup

x∈K
|∂αuε(x)| = Oε−→0(ε−p).

Observe the change of quantifiers with respect to the last formula, locally, all derivatives of a regular
generalized function have the same order of growth in ε > 0. One has that (see [8]).

G∞(Ω) ∩ D
′

(Ω) = C∞(Ω).

For the purpose of describing the regularity of Colombeau generalized functions, G∞(Ω) plays the same
role as C∞(Ω) does in the setting of distributions.
A net (rε)ε∈(0,1] of complex numbers is called a slow scale net if

|rε|p = O(ε−1) as ε → 0.

for every p ≥ 0. We refer to [8] for a detailed discussion of slow scale nets.

3. Almost automorphic generalized functions

We start this section by presenting a class of Colombeau algebras, which will be compatible with the
theory of almost automorphic functions. For more information about this class see for example [3].

Definition 3.1. We define the space of moderate elements by

Maa =
{

(uε)ε ∈ (Baa)I : ∀k ∈ N, ∃m ∈ N, |uε|k,∞ = O(ε−m), ε → 0
}

,

and the space of null elements by

Naa =
{

(uε)ε ∈ (Baa)I : ∀k ∈ N, ∀m ∈ N, |uε|k,∞ = O(εm), ε → 0
}

.
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The following result gives a null characterization of Naa.

Proposition 3.2. We have

Naa = {(uε)ε ∈ Maa : ∀m ∈ N, |uε|0,∞ = O(εm) as ε → 0} .

The proof of this result you can see [7] which it’s given in the general case.

Definition 3.3. The algebra of almost automorphic generalized functions is defined as the quotient algebra

Gaa = Maa/Naa.

3.1. Asymptotically almost automorphic generalized functions

We introduce the algebra of asymptotically almost automorphic generalized functions as in the case
of Gaa where we replace the algebra of moderate functions Maa, and the algebra of negligeable functions
Naa by Maaa, and Naa, respectively.

Definition 3.4. We define the space of moderate elements by

Maaa =
{

(uε)ε ∈ (Baaa)I : ∀k ∈ N, ∃m ∈ N, |uε|k,∞ = O(ε−m), ε → 0
}

,

where Baaa is the algebra of asumptotically almost automorphic smooth functions, and the space of
null elements by

Naaa =
{

(uε)ε ∈ (Baaa)I : ∀k ∈ N, ∀m ∈ N, |uε|k,∞ = O(εm), ε → 0
}

The algebra of asymptotically almost automorphic generalized functions is defined as the quotient algebra

Gaaa = Maaa/Naaa,

for more details on this algebra we can see [3].

4. Main results

We consider in the algebra of almost automorphic generalized functions the differential equation

d

dt
u(t) = A u(t) + f(t). (4.1)

We present the various conditions for ensuring almost automorphy in the frame of colombeau’s algebra
of the strong and mild solutions.

4.1. The case A ∈ C̃ (A is a generalized comlex number):

We consider linear system of ordinary differential equation 4.1
where A = [(λε)ε] ∈ C̃ (λε = λ ∈ C) is a generalized comolex number, u ∈ Gaa, and f = [(fε)ε] ∈ Gaa.

Definition 4.1. A generalized function u ∈ Gaa is called solution of 4.1 on J = [0, ∞) if it satisfies

(

u
′

ε(t) − λuε(t) − fε(t)
)

ε
∈ Naa.

where λ = λε ∀ε ∈ I, and f = [(fε(t))].

Theorem 4.2. With the notation of the abouve definition, and if λ ∈ C, fε : R −→ C be an almost
automorphic generalized function, then the solution of 4.1 is given by the almost automorphic generalized
function

u1(t) =
(

−
∫ +∞

t

eλ(t−s)fε(s)ds
)

ε
+ Naa if Reλ > 0.

u2(t) =
(

∫ t

−∞

eλ(t−s)fε(s)ds
)

ε
+ Naa if Reλ < 0.
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Proof. we have to show first that if u(t) is a well defined element of Gaa, then this is the case for d
dtu(t),

indeed: A representative of uj(t), j = 1, 2 is given by

uj,ε(t) = −
∫ ∞

t

eλ(t−r) fε(r)dr if Re (λ) > 0 and j = 1, 2,

we have (uj,ε)ε(t) ∈ Maa, which means that

∀k ∈ N , ∀m > 0, ∃c > 0, ∃ε0 ∈ I |uj,ε|k,∞ ≤ c−ε ∀ε < ε0,

we have for j = 1, 2

|u′

j,ε|k,∞ =
∑

j≤k

‖ (u
′

j,ε)(j) ‖∞

=
∑

j≤k

‖ (u
′

j,ε)(j+1) ‖∞

=
∑

l≤k+1

‖ (u
′

j,ε)(l) ‖∞

=
∑

l≤k+1

‖ (u
′

j,ε)(l) ‖∞

= |uj,ε|k+1,∞.

Sicne k is arbitrary in the definition of Maa, we obtain |u′

j,ε|k,∞ = O(ε−m) for some m > 0. which prove

that u
′

j j = 1, 2 is also an element of Maa. It is oubvious that u1(t) and u2(t) are solutions of 4.1 in
the sense of the previous definition. It remains to prove that they are almost automorphic generalized
functions.
Let s = t − r, then we can write

uj,ε(t) = −
∫ 0

−∞

eλsfε(t − s)ds. j = 1, 2.

Let (sn)n be a sequence of real numbers. Since for all ε ∈ I where I is a set of index, fε is an almost
automorphic function, there exists a subsequence (snk(ε)

)k of (sn)n such that

lim
k→+∞

fε(t + snk(ε)
) = gε(t) and lim

k→+∞
gε(t − snk(ε)

) = fε(t) pointwise on R.

We have u1,ε(t) = −
∫ 0

−∞ eλsf(t − s + snk
)ds, let us prove that there exists c > 0 such that |eλsf(t − . +

snk
)|k,∞ ≤ c eRe λ s for each s ∈ R. Indeed, we have for any k ∈ N

|eλsfε(t − s + snk
)|k,∞ =

∑

j≤k

‖ f (j)
ε ‖∞ .

by the classical Landau-Kolomogorov inequality: ‖ f (p) ‖∞≤ 2π ‖ f ‖1−p/n
∞ ‖ f (n) ‖p/n

∞ where 0 < p <
n ∈ N, and f is of class Cn. In particular for p = j, and n = 2j, we obtain for all k ∈ N

|eλ s f(t − s + snk
)|k,∞ ≤ e(Re λ)

∑

j≤k

(2π) ‖ fε ‖1−1/2
∞ ‖ f (2j)

ε ‖1/2
∞

≤ e(Reλ) s 2π(|fε|0,∞)1/2
∑

j≤k

‖ f (2j)
ε ‖1/2

∞

=
(

2π(|fε|0,∞)1/2
∑

j≤k

‖ f (2j)
ε ‖1/2

∞

)

e(Reλ)

≤
(

2πc1/2 c
1/2
2 ε−m1/2εm2/2

)

e(Reλ).
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Since the term between bracket in the right-hand side of the last inequality is a constant which does not
depend on the variable s, so the right term is in L1(−∞, 0), furthermore Re λ > 0, and the cost we can
apply the Lebesque dominated convergence theorem, sicnce gε is bounded and measurable function on
R, we get

lim
k→+∞

u1,ε(t + snk
) = −

∫ 0

−∞

eλ s gε(t − s)ds := yε(t) for each t ∈ R,

defining a function yε(t), and we apply the same reasoning to obtain

lim
k→+∞

yε(t − snk
) = −

∫ 0

−∞

eλ s gε(t − s)ds := u1,ε(t) for each t ∈ R,

which prove that u1(t) = [(u1,ε(t))ε] is an almost automorphic generalized function. �

4.2. The case A is the infinitesimal generator of a C0-group of operators

In this paragraph we will need the notion of generalized semigroup, which is defined in [9] by

Definition 4.3. SXM ([0, ∞) : L(X)) is the space of nets (Tε)ε of strongly continuous mappings
Tε : [0, ∞) → L(X), ε ∈ (0, 1) with the property that for every T > 0 there exists a ∈ R such that

sup
t∈[0,T )

‖Tε(t)‖ = O (εa) , as ε → 0. (4.2)

where X is a Banach algebra.
SN([0, ∞) : L(X)) is the space of nets (Nε)ε of strongly continuous mappings

Nε : [0, ∞) → L(X), ε ∈ (0, 1), with the properties: For every b ∈ R and T > 0

sup
t∈[0,T )

‖Nε(t)‖ = O
(

εb
)

, as ε → 0. (4.3)

There exist t0 > 0 and a ∈ R such that

sup
t<t0

∥

∥

∥

∥

Nε(t)

t

∥

∥

∥

∥

= O (εa) . (4.4)

There exists a net (Hε)ε in L(X) and ε0 ∈ (0, 1) such that

lim
t→0

Nε(t)

t
x = Hεx, x ∈ E, ε < ε0. (4.5)

For every b > 0,
‖Hε‖ = O

(

εb
)

, as ε → 0. (4.6)

Now we define Colombeau type algebra as the factor algebra

SG([0, ∞) : L(X)) = SXM ([0, ∞) : L(X))/SN([0, ∞) : L(X)).

SG([0, ∞) : L(X)) called the algebra of Colombeau C0 semigroup for more details see ( [9]).

We assume that f ∈ Gaa and A generates a generalized C0-group of linear operators
T (t) = [(Tε(t))t∈R]. Let us first recall the following definition

Definition 4.4. A function u(t) = [(uε(t))] ∈ Gaa with the integral representation

uε(t) = Tε(t)u(0) +

∫ t

0

Tε(t − s)fε(s)ds ∀ε ∈ I. (4.7)

will be said mild solution of the diferential equation (4.1).
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Theorem 4.5. Assume that any representative (Tε(t)) of the generalized C0−group (T (t))t∈R satisfy
Tε(t) x is an almost automorphic function from R to a Banach algebra X. and that f = [(fε)ε] ∈ G(R),
and whose representative (fε)ε∈I in G(R) is an element of L1(J; X).
Then every mild solution of (4.1) restricted to J is asymptotically almost automorphic.

Proof. Let xε(t) = Tε(t)u(0) +
∫ t

0 Tε(t − s)fε(s)ds ∀ε ∈ I be a representative of the mild solution of
(4.1) and consider vε(t) : R −→ X defined by

vε(t) =

∫ +∞

t

Tε(t − s)fε(s)ds.

vε(t) is well-defined and continuous on R+, and lim
t→∞

‖ vε(t) ‖= 0. Indeed, since (T (t))t∈R is a C0-group

we have
sup
t∈R

‖ Tε(t) ‖< ∞,

using the uniform boundedness principle. Hence,

‖ vε(t) ‖≤ M

∫ +∞

t

‖ fε(s) ‖ ds −→ 0, as t −→ ∞.

And it is oubvious that vε is continous on R.
on the other hand the function u(t)

uε(t) = Tε(t) x(0) +

∫ ∞

0

Tε(t − s)fε(s)ds

= Tε(t)
(

x(0) +

∫ ∞

0

Tε(−s)fε(s)ds.

is almost automorphic since Tε(−t)f(t) : R −→ X is a continuous function and

∫ ∞

0

‖ Tε(−s) fε(s) ‖ ds ≤ M

∫ ∞

0

‖ f(s) ‖ ds.

Therefore
∫∞

0 Tε(−s) f(s)ds exists in X. Now we observe that x(t) = u(t) + v(t) ∀t ∈ J, so that x(t) is
asymptotically almost automorphic. �

Corollary 4.6. In last theorem, if in addition we assume that the A is an invertible operator, then we
have the uniqueness of the almost automorphic generalized solution.

Definition 4.7. we say in the classical case that a C0-semigroup T (t)t∈R+ is exponentially stable if there
exist M ≥ 1 and α > 0 such that

‖ T (t) ‖ M e−α t for every t ≥ 0. (4.8)

Theorem 4.8. Assume that A is the infinitesimal generator of a generalized C0-semigroup exponentially
stable and f is an almost automorphic generalized function Then 4.1 has a unique almost automorphic
generalized mild solution.

Proof. Let u
′

ε(t) = Aεuε(t) − fε(t) be the regularization of the equation 4.1 in terms of representatives,
in the algebra Maa. We know that this equation admits a mild solution defined by

xε(t) = Tε(t − s) xε(t0) +

∫ t

t0

Tε(t − s) fε(s)ds t ≥ t0.

We have to prove that its a well defined element of the algebra Maa, and if we take another solution yε

we will prove that (xε(t) − yε(t))ε is an element of Naa.
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First we will prove that xε is almost automorphic. Indeed
Let us consider the function uε(t) =

∫ t

−∞
Tε(t − s) fε(s)ds Thank’s to the property 4.8, we obtain

‖ uε(t) ‖ = ‖
∫ t

−∞

Tε(t − s)fε(s)ds ‖

≤ M ‖
∫ t

−∞

exp(α(t − s))fε(s)ds ‖

≤ M ‖ fε ‖∞ Cα,

where Cα is a positive constant depends on α, which proves that the integral

∫ t

−∞

Tε(t − s)fε(s)ds.

is absolutely convergent, therefore it converges. And thus u(t) exists and

‖ uε(t) ‖≤ M ‖ fε ‖∞ Cα t ≥ 0.

Now, let (τ
′

n)n be a sequence of real numbers. Since f ∈ Gaa, there is a subsequence (τn)n of (τ
′

n)n

such that
lim

n→∞
fε (t + τn) = f̄ε(t).

is well defined for every t ∈ R, and we have

lim
t→∞

f̄ε (t − τn) = fε(t), ∀t ∈ R.

We consider

uε (t + τn) =

∫ t+τn

−∞

Tε (t + τn − (s)) fε(s)ds

=

∫ t+τn

−∞

Tε (t + τn − (r + τn)) fε (r + τn) dr

=

∫ t

−∞

Tε(t − r)fε (r + τn) dr

=

∫ t

−∞

Tε(t − r)fε,n(r)dr,

where fε,n(r) = fε (r + τn) , n = 0, 1, · · · . We have also,

‖uε (t + τn)‖ ≤ K‖fε‖∞Cα, ∀n ∈ N,

by the continuity of the semigroup,

lim
n→∞

Tε(t − r)fε,n(r) = Tε(t − r)f̄ε(r), ∀r ∈ R and r ≤ t.

Let

ūε(t) =

∫ t

−∞

Tε(t − s) ūε(s)ds,

we observe that the integral is absolutely convergent for each t ∈ R. Therefore, according to Lebesgue’s
dominated convergence theorem, we have

lim
n−→∞

uε(t + τ ) = ūε(t) ∀t ∈ R.
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Similarly, we can prove that
lim

n−→∞
ūε(t − τ ) = uε(t) ∀t ∈ R.

This proves that uε(t) is almost automorphic function.
Now let a ∈ R be given. So we have

uε(a) =

∫ a

−∞

Tε(a − s) fε(s)ds.

Then, for every t ≥ , we by using the property of continuity of semigroup,

Tε(t − a) uε(a) =

∫ a

−∞

Tε(a − s) fε(s)ds,

and thus
∫ t

a

T ε(t − s) fε(s)ds =

∫ t

−∞

T ε(t − s) fε(s)ds −
∫ a

−∞

T ε(t − s) fε(s)ds

= uε(t) − Tε(t − a) uε(a).

Hence

uε(t) = Tε(t − a) uε(a) +

∫ t

a

Tε(t − s) fε(s)ds.

If we take x(a) = u(a) , we get x(t) = u(t), then (xε)ε ∈ Maa. It remains to prove the uniqueness of the
generalized mild solution in Gaa. Let x = (xε)ε + Naa and y = (yε)ε + Naa are two mild solutions of the
equation 4.1, and assume that both generalized solutions are almost automorphic, let z = x − y. Then
z = [(zε)ε] = (xε − yε)ε + Naa is a well defined element of Gaa, and satisfied

d

dt
u(t) = A u(t).

Then we have zε(t) = Tε(t − s)wε(s) ∀t, s ∈ R t ≥ s. Also we hae

‖ zε(t) ‖≤ M e−α(t−s) ‖ zε(s) ‖ ∀t ≥ s.

By the elementary properties of the exponential yields.

lim
n−→∞

‖ zε(nτ ) ‖= 0, for all τ > 0.

Hence, for all q ∈ N, there is a constant c > 0 such that ‖ zε(t) ‖≤ c εq as ε, then (zε)ε, is negligeable
element, because if t 7−→ Tε(t)x0, x0 ∈ R is almost automorphic, then we have the following alternative

inf
t∈R

‖ x(t) ‖> 0, or x(t) = 0, ∀t ∈ R.

Therefore x = y in Gaa. �

4.3. Example

We consider the differential equation
(

d

dt
+ λt

)

u(t) = 0. (4.9)

Where u(t) = [(uε(t))ε] ∈ G((R)), and λ = [(2/ε)] ∈ C̃ is a complex real number. It is well known
that the Gaussian functions

gε,s(t) =
1√
πs

e−t2/ε, t ∈ R, and ε ∈ (0, 1).
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And let ϕε the test function defined by

ϕε(.) =
1

ε
ϕ(.),

where ϕ is a smooth function with compact support. The function gε(t) ∗ ϕε(t) satisfy the analogous
equation

(

d

dt
+ λt

)

uε(x) = 0,

on the real line R. Therefore in seeking a solution to equation (4.9) we consider the functions

uε,s(t) =

∞
∑

k=−∞

gε,s(t + 2πk),

that are parameterised by ε, to which we apply the operator d
dt + 2

ε t and obtain

Uε,s(t) =

(

d

dt
+

2

ε
t

)

uε,s(t) =

∞
∑

k=−∞

(

d

dt
+

2

ε
t

)

gε,s(t + 2πk)

=
1√
πs

∞
∑

k=−∞

(

−2

ε
t − 4

ε
πk +

2

ε
t

)

e−(t+2πk)2/ε

= −4
√

π

ε
√

s

∞
∑

k=−∞

ke−(t+2πk)2/ε.

Hence the function Uε;s(t) is bounded above by the estimate,

|Uε,s(t)| ≤ 4
√

π

ε
√

s

(∣

∣

∣

∣

∣

−1
∑

k=−∞

ke−(t+2πk)2/ε

∣

∣

∣

∣

∣

+
∞
∑

k=1

∣

∣

∣
ke−(t+2πk)2/ε

∣

∣

∣

)

,

and on the interval t ∈ [−π, π]

|Uε,s(t)| ≤ 8
√

π

ε
√

ε

∞
∑

k=1

ke−π2(2k−1)2/ε =
8
√

π

ε
√

ε
e−π2/ε

∞
∑

k=1

k
(

e−π2/s
)4k(k−1)

,

where the first few terms in the final sum are given explicitly in the square brackets of the relation

|Uε,s(t)| ≤ 8
√

π

ε
√

ε
e−π2/ε

[

1 + 2
(

e−π2/ε
)8

+ 3
(

e−π2/ε
)24

+ . . . . . .

]

= O(ε−C), as ε → 0 with C > 0,

which implies that (Uε,s(t)) is an element of the moderate space Maa. And therefore u(t) is an almost
automorphic generalized function, u(t) ∈ Gaa.
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