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abstract: The main purpose of the paper is to bring together two areas in which strong relation, graph
theory and topological spaces. And derive interesting formula for the set that contains all minimal dominating
sets(MDS) and (γ-set). Some separation axioms are discussed in topological graph theory, especially in a cycle
graph Cn.
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1. Introduction

In graph theory a simple graph G is a non-empty finite set V(G) of elements called vertices (or nodes),
and a finite set E(G) of distinct unordered pairs of distinct elements of V(G) called edges[1]. A set S ⊆V
of vertices in graph G=(V,E) is called dominating set if every vertex v∈V is either an element of S or is
adjacent to an element of S , S is called minimal set if no proper subset S” ⊆S is a dominating set [2].
Smallest cardinality of minimal dominating sets called minimum dominating set(γ-set).
Almost previous research papers studied the relation among vertices and edges in dominating set. But
not take care the family of dominating sets and relations between any two of them. Although, this will
give us image of how many time will get dominating set in the graph. Despite the importance of this
research.But benefit of minimum dominating set is not possible in sometime especially in real life. So
must be interest the family of all minimal dominating sets . In this paper we take the family of all
minimal dominating sets of a graph G. And study some topological relation on that family. For that
introduced some new definitions such T0-MDS graph ,T1-MDS graph , T2-MDS graph. Also use minimum
dominating sets (γ-sets) to satisfy hausdorff axiom of cycle Cn.

2. Definitions

Definition 2.1. Minimal dominating set[2]: A set S ⊆V of vertices in graph G=(V,E) is called domi-
nating set if every vertex v∈V is either an element of S or is adjacent to an element of S , S is called
minimal dominating set if no proper subset S”⊆S is a dominating set.

Definition 2.2. T0-topology[4]: A topological space X satisfy T0 axiom if each one of any two points of
X has a neighbourhood that dose not contain the other point. more formally ∀ x,y∈X , x 6=y ∃ Uy : x /∈
Uy, y ∈ Uy.

Definition 2.3. T1-topology [5]:A topological space X is said to be T1 if for any two distinct points x
and y of X there is neighbourhood of x which dose not contain y and neighbourhood of y which dose not
contain x.
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Definition 2.4. T2-topology (Hausdorff Topology)[5]:A topological space X is said to be T2 if given any
two distinct point x and y of X , there are open sets U and V such that x∈U , y ∈V , and U

⋂
V=φ.

3. New Definitions

Introduce some new definitions and theorems related with that definitions:

Definition 3.1. T0-MDS: A graph G is called T0-MDS if ∀ u,v ∈ G ∃ D minimal dominating set such
that u∈D , v/∈D or u/∈D , v∈D.

Definition 3.2. T1-MDS :A graph G is called T1-MDS if ∀ u,v ∈ G ∃ D1,D2 minimal dominating sets
such that u∈ D1 , v/∈ D1 and v∈ D2 , u/∈ D2.

Definition 3.3. T2-MDS (Hausdorff-MDS):A graph G is called T2-MDS if ∀ u,v ∈ G ∃ D1,D2 disjoint
minimal dominating sets such that u∈ D1 and v∈ D2.

4. Main Results

Theorem 4.1. If a graph G is Ti-MDS then it is Tj-MDS when i ≥ j.

Proof. Let G is T2-MDS then for all two distinct vertices u , v there are two disjoint MDS D1, D2 such
that u∈D1 and v∈D2. To prove G is T1-MDS it is clearly for all two vertices u , v there are two MDS D1,
D2 such that u∈ D1 , v/∈ D1 and v∈ D2 , u/∈ D2 , thus G is T1-MDS. Similarly to prove G is T0-MDS
for all two vertices u , v there are two MDS D1, D2 such that u∈ D1 , v/∈ D1 , thus G is T0-MDS. �

Proposition 4.1. Converse of theorem 4.1 is not true.

Proof. We will prove by counter example. A graph in figure
1 is not T1-MDS but it is T0-MDS,and to show that take the
family of all MDS of G as follows:
D1 = {v1,v4 } D2 = {v2,v4 } D3 = {v3,v4 },since v4 belong to
all MDS there is no MDS contains v1 and not contains v4 thus
G is not G T1-MDS graph and clearly G is T0-MDS graph. �

Figure 1: T0-MDS but not T1-MDS

Proposition 4.2. If G be a graph and |V(G)| ≥3 and G has only two disjoint MDS. then G is not
T0-MDS graph.

Proof. Since G has only two disjoint MDS. (say D1 , D2 and D1 ∩ D2 = φ). Since V(G)≥3, at least
two of these vertices belong to one MDS.thus exist two vertices belong to only one MDS. Hence G is not
T0-MDS graph. �

Remark 4.2. S3 is not T0-MDS graph.

Proof. Since S3 has only two disjoint MDS and order of it
equal 3, thus by proposition 4.2 we get the result. �

Figure 2: S3 is not T0-MDS.

Proposition 4.3. For any graph G with |V(G)| ≥2 and G has isolated vertex then G is not Ti-MDS
graph , i=1,2.

Proof. Let u be isolated vertex of graph G , u belong to all MDS of G. Since |V(G)| ≥2 , G contains
more than one vertex.Then exist another vertex (say v) such that u , v ∈ D MDS. And there is no MDS
contains one of them. Hence G is not T1-MDS graph. �

In the following theorem we deal with minimum dominating sets (γ-sets) in stead of minimal domi-
nating sets (MDS).
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Theorem 4.3. If G is a cycle of order n, n≥4 then G is not T0-MDS graph if n≡0(mod3) otherwise G
is T2-MDS graph.

Proof. There are three cases depend on n modulo three as follows:
Case(1): If n≡ 0(mod3)
In this case there are exactly three γ-set D0, D1, D2 where Di contains all vertices that labelled equivalent
to i modulo n (i=0,1,2)
it is clear that Di ∩ Dj = φ ∀ i6=j and ∀ Di , i=0,1,2 contains at least two different vertices say u6=v .
so, there is no open set contains u and not contains v.
Thus, Cn is not T0-MDS and then not T1-MDS and not T2-MDS.
Case(2): If n≡ 1(mod3
Let vi , vj be two different vertices of Cn such that i<j, thus we have three cases depend on distance
between vi and vj modulo 3 as follows:
(i) If d(vi, vj)= m ≡1(mod3)
There are three sub-cases depend on the index of vi modulo 3 as follows:
(a)If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi, v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }

Dj ={vj, v(j+2+3k)(modN) | k=0,1,...,n−m
3 -1} ∪ { v(i+1+3k)(modN)|k=0,1,...,m−1

3 -1}
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤ k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤ k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure 3
. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 3: n=22, i=3, j=10,
d(vi,vj)=7

(b)If i≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }

Dj = { vj , v(j+2+3k)(modN) | k=0,1,...,n−m
3 -1 } ∪ { v(i+1+3k)(modN)| k=0,1,...,m−1

3 -1}
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤ k<i then k ≡ 2(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure 4.
There is no any vertex in intersection,that means Di ∩ Dj=φ.

Figure 4: n=22, i=4, j=11,
d(vi,vj)=7

(c) If i≡ 2(mod3)
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We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }

Dj = { vj , v(j+2+3k)(modN) | k=0,1,...,n−m
3 -1 } ∪ { v(i+1+3k)(modN)| k=0,1,...,m−1

3 -1}
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure 5.
There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 5: n=22, i=5, j=12,
d(vi,vj)=7

(ii) If d(vi, vj)= m ≡ 2(mod3)
There are three sub-cases depend on the index of vi modulo 3:
(a)If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure 6.
There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 6: n=22, i=3, j=11,
d(vi,vj)=8

(b)If i ≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
now to prove Di ∩ Dj = φ
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let vk ∈ Di we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure 7.
There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 7: n=22, i=4, j=12,
d(vi,vj)=8

(c)If i≡ 2(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure 8.
There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 8: n=22, i=5, j=13,
d(vi,vj)=8

(iii) If d(vi, vj)= m ≡ 0(mod3)
There are three sub-cases depend on the index of vi modulo 3 :
(a)If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }
Dj = { v(j+3k)(modN) | k=0,1,...,⌈ n−m

3 ⌉ -1 } ∪ { v(i+1+3k)(modN)| k=0,1,..., m
3 -1 }

now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure 9.
There is no any vertex in intersection, that means Di ∩Dj=φ.

Figure 9: n=22, i=3, j=9,
d(vi,vj)=6
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(b)If i≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+1+3k)(modN)| k=0,1,...,⌈ n

3 ⌉-2 }
Dj = { v(j+3k)(modN)| k=0,1,...,⌈ n−m

3 ⌉ -1 }∪ { v(i+2+3k)(modN)| k=0,1,..., m
3 -1 }

now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure
10. There is no any vertex in intersection, that means Di∩ Dj=φ.

Figure 10: n=22,i=4,j=10,
d(vi,vj)=6

(c)If i ≡ 2(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+1+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }
Dj = { v(j+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure
11. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 11: n=22,i=5,j=11,
d(vi,vj)=6

Case(3): If n ≡ 2(mod3)
Let vi , vj be and two different vertices of Cn such that i<j
thus we have three cases depend on distance between vi and vj modulo 3 as follows:
(i) If d(vi, vj)= m ≡ 1(mod3)
There are three sub-cases depend on the index of vi modulo 3 as follows:
(a) If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -2 }
now to prove Di∩ Dj = φ
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let vk ∈ Di we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure
12. There is no any vertex in intersection, that means Di ∩Dj=φ.

Figure 12: n=23,i=3,j=10,
d(vi,vj)=7

(b) If i≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure
13. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 13: n=23,i=4,j=11,
d(vi,vj)=7

(c) If i≡ 2(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN)| k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure
14. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 14: n=23,i=5,j=12,
d(vi,vj)=7

(ii) If d(vi, vj)= m ≡ 2(mod3)
now we have three sub-cases depend on the index of vi modulo 3 :
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(a) If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN)| k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+2+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure
15. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 15: n=23,i=3,j=11,
d(vi,vj)=8

(b) If i≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure
16. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 16: n=23,i=4,j=12,
d(vi,vj)=8

(c) If i≡ 2(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { v(i+3k)(modN)| k=0,1,...,⌈ n

3 ⌉-1 }
Dj = { v(j+2+3k)(modN)| k=0,1,...,⌈ n

3 ⌉ -1 }
now to prove Di∩ Dj = φ
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let vk ∈ Di we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure
17. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 17: n=23,i=5,j=13,
d(vi,vj)=8

(iii) If d(vi, vj)= m ≡ 0(mod3)
now we have three sub-cases depend on the index of vi modulo 3 :
(a) If i≡ 0(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉-2 }
Dj = { vj , v(j+1+3k)(modN) | k=0,1,...,⌈ n−m

3 ⌉ -1 } ∪ { v(i+1+3k)(modN)| k=0,1,...,m
3 -1 }

now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

Thus, from each cases to position of vertices above as shown in figure
18. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 18: n=23,i=3,j=9,
d(vi,vj)=6

(b) If i≡ 1(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉ -2 }
Dj = { vj , v(j+1+3k)(modN) | k=0,1,...,⌈ n−m

3 ⌉ -1 } ∪ { v(i+1+3k)(modN)| k=0,1,..., m
3 -1 }

now to prove Di∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 0(mod3)
if i < k < j then k ≡ 2(mod3)
if j < k < 0 then k ≡ 2(mod3)

Thus, from each cases to position of vertices above as shown in figure
19. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 19: n=23,i=4,j=10,
d(vi,vj)=6
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(c) If i≡ 2(mod3)
We can take γ-sets Di, Dj of G as follows :
Di = { vi , v(i+2+3k)(modN) | k=0,1,...,⌈ n

3 ⌉ -2 }
Dj = { vj , v(j+1+3k)(modN) | k=0,1,...,⌈ n−m

3 ⌉ -1 } ∪{ v(i+1+3k)(modN) | k=0,1,..., m
3 -1 }

now to prove Di ∩ Dj = φ
let vk ∈ Di we have the following cases :

if 0 ≤k < i then k ≡ 2(mod3)
if i < k < j then k ≡ 1(mod3)
if j < k < 0 then k ≡ 1(mod3)

let vk ∈ Dj we have the following cases :
if 0 ≤k < i then k ≡ 1(mod3)
if i < k < j then k ≡ 0(mod3)
if j < k < 0 then k ≡ 0(mod3)

Thus, from each cases to position of vertices above as shown in figure
20. There is no any vertex in intersection, that means Di ∩ Dj=φ.

Figure 20: n=23,i=5,j=11,
d(vi,vj)=6

from case(2) and case (3) we get for each two different vertices vi and vj

there are two disjoint γ-sets Di, Dj such that vi ∈ Di and vj ∈ Dj

thus Cn is T2-MDS when n≡ 1(mod3) and n≡ 2(mod3) �

5. Conclusion

his paper discusses topological properties of the family dominating sets. And if the graph G satisfy
T0 property on that family is called T0-MDS. In same manner G is called T1-MDS , T2-MDS if satisfy
T1 , T2 properties respectively. And we give some condition on the graph to be T0-MDS , T1-MDS and
T2-MDS. Also we get the cycle Cn is not T2-MDS, if n ≡ 0(mod3).Otherwise, Cn is T2-MDS when use
γ-sets, but when using minimal dominating sets of cycle then Cn is T2-MDS for all n≥3.
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