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abstract: We obtain sufficient conditions to know if given a positive even integer number and a set of
positive integer numbers being all even or all odd, such a number can be expressed as sum of two elements
of this set. As consequence we obtain a result which would prove Goldbach´ s Conjecture for sequences with
contractive distribution functions, provided that certain conditions are satisfied. These hypotheses, in the
context of prime numbers, include Prime Consecutive Conjecture, which is a generalized form of Twin Prime
Conjecture. In addition, we extend these results to sets of positive real numbers, even for two different sets.
We also obtain a recurrent approximation of π(x) for enough large x ∈ R, being π the distribution function of
the prime number set, which uses whichever expression of x as product of enough large factors. We also state
this approximation in a more general context, give upper and lower bounds for the error, and show that this
approximation is asymptotically equivalent to π(x).
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1. Introduction

We investigate sufficient conditions to determine if given a positive even integer number and a set
of positive integer numbers being all even or all odd, such a number can be expressed as sum of two
elements of this set. In our research, for the particular case of the prime numbers set, we obtain a result
which may be used to prove (Strong) Goldbach´ s Conjecture for sequences with contractive distribution
functions, stated in fact in a more general setting (see Corollary 2.2 and Corollary 7.2 ). One of the
hypothesis of this result is the consecutive prime conjecture, which includes Twin Prime Conjecture as a
particular case. In addition, we generalize these results to the general setting of positive real numbers,
for sums of two elements of the same set and for the ones of two elements belonging every one of them
to different sets.

We also obtain an approximation of the distribution function of prime numbers set using whatever
factorization of the argument whenever its factors are enough large, and we study the quality of this
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approximation under certain hypotheses. This approximation is also stated in a more general context.
For the case consisting of two factors this approximation is:

π(x y) ≈
x y π(x) π(y)

x π(y) + y π(x)
for each x, y ∈ R, x, y ≥ k0, (1.1)

and it is based on
π(x) ≈

x

log x
, x → +∞.

We give upper and lower bounds for the error in the generalized approximation (1.1) for m ≥ 2 factors,
prove that this approximation is asymptotic to π(x), and apply these results to approximate π(x) when
x is the product of prime numbers.

We establish some notation. We denote Z
+ := {m ∈ Z |m > 0}. Given A ⊆ R

n, we denote
the indicator function of A with respect to R

n by χA, and define xA := {a x | a ∈ A}, A + B :=
{a+ b | a ∈ A, b ∈ B} for every B ⊆ R

n. Given m ∈ N, a1, ..., am ∈ R, we denote their product by
Prodm

i=1 ai. We denote by P the set of prime numbers, and P
∗ := P \ {2}. We denote the number of

elements of a set A by Card(A). Given x ∈ R we denote by E(x) its integer part. We also denote the
set of positive real numbers by R

+.

1.1. Definitions

We work with the concepts of distribution function and discriminant function of a set of natural
numbers P. We also use other concepts which help us to determine whether a given even natural number
is or not a sum of two elements of P.

Definition 1.1. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+.

1. a := p1 = min {pi | i ∈ Z
+} ∈ Z

+.

2. r0 := min {pi+1 − pi | i ∈ Z
+} = min {q − p | p, q ∈ P, p < q} ≥ 1.

3. N≥a := {n ∈ N | n ≥ a} ⊆ Z
+, 2N≥a := {2n | n ∈ N, n ≥ a}.

4. The function π := πP : (0, +∞) → R defined by

π(x) := Card ({p ∈ P | p ≤ x}) = Card (P ∩ (0, x]) ,

for each x ∈ (0, +∞), is called the distribution function of P. π is monotonically increasing.

Remark 1.2. Observe these consequences of the definition of π:

1. For every n ∈ Z
+ we have

{
p1, ..., pπ(n)

}
⊆ [1, n], and then pπ(n) ≤ n.

2.
(
p ≤ n ⇔ p ≤ pπ(n)

)
for every n ∈ Z

+, p ∈ P.

Definition 1.3. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N+1.

Then r0 is even and r0 ≥ 2.

1. Let k ∈ 2N, k ≥ r0. Define the function πk : (0, +∞) → R by

πk(x) := Card ({p ∈ P | (p+ k ≤ x, p+ k ∈ P)}) ≤ π(x),

for each x ∈ (0, +∞).

2. Let x ∈ (0, +∞). Dif (P) (x) := {pi+1 − pi : i ∈ Z
+, pi+1 ≤ x} is called the difference set of P

until x. Notice that

Dif (P) (x) ⊆ 2N≥
r0
2

= {2s | (s ∈ N, 2s ≥ r0)} = {r0, r0 + 2, r0 + 4, ...} .

Observe that if P = P, then π2 is the distribution function of the twin prime numbers.
Using Definition 1.1 we can formulate (Strong) Goldbach´ s Conjecture:
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Conjecture 1.4 ((Strong) Goldbach´ s Conjecture).

2N≥3 ⊆ P
∗ + P

∗.

In 2014 Harald Andres Helfgott proved the Ternary (also called Odd) Goldbach´ s Conjecture, which
we can formulate as follows:

Theorem 1.5 (Ternary Goldbach´ s Conjecture (see [7])).

2N≥4 + 1 ⊆ P
∗ + P

∗ + P
∗.

This is, every odd integer greater or equal than 9 is the sum of three odd prime numbers.
Let P = (pi)i∈Z+ be a strictly increasing sequence in Z

+. Let m ∈ N≥a, where a = p1. We wonder
if 2m ∈ P + P. Obviously, if m ∈ P (the trivial case), then 2m = m + m ∈ P + P and the answer is
affirmative. The question is what happens if m /∈ P. Suppose that 2m ∈ P + P, with m /∈ P. There
exist p, q ∈ P, with p ≤ q, such that 2m = p + q. Then 2m ≥ 2p and, consequently, p ≤ m, or what is
equivalent, p ≤ pπ(m). Thus we have that p ∈ P, 2m−p ∈ P and p ≤ pπ(m). So these last three conditions
altogether are equivalent to 2m ∈ P + P when m /∈ P (of course it is also true for m ∈ P).

Definition 1.6 (Discriminant function). Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+, and

define a := p1. The function ψ : N≥a → N defined by

ψ(m) :=

π(m)∑

i=1

π(2m− pi) =
∑

p∈P, p≤m

π(2m− p) for all m ∈ N≥a,

is called the discriminant function of P.

1.2. Results

Our main results are the following theorems.

Theorem 1.7. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N+1.

Suppose that there exists a constant C > 0 such that

π(x) − π(y) ≥ C π(x− y) for all x, y ∈ [1, +∞), x ≥ y.

Define a := p1, and consider the function f : N≥a \ P → N defined by

f(m) :=
∑

k∈Dif(P)(m)

π(k + 2) πk(m) for every m ∈ N≥a \ P.

Then:

1. ψ(m)−ψ(m−1) ≥ π(m)+C f(m)−π(2m−a−2) ≥ π(m)+C f(m)−π(2m) for every m ∈ N≥a \P.

2. Let m ∈ N≥a \ P. If π(m) + C f(m) − π(2m− a− 2) > 0, then 2m ∈ P + P.

3. If lim infm→+∞, m/∈P

π(m)+C f(m)
π(2m) ≥ L ∈ (1, +∞], then there exists m0 ∈ N≥a \ P such that 2m ∈

P + P for each m ∈ N≥a \ P, m ≥ m0.

Remark 1.8. Obviously in Theorem 3.5 we can replace the function f by a positive function g : N≥a\P →
Z

+ verifying that f(m) ≥ g(m) for all m ∈ N≥a \P whenever such a function exists. This is more suitable
in practice as we will show in the next section (see Corollary 2.2).

Given a sequence of real numbers greater or equal than 1, the following two theorems give us an
approximation of the values of its distribution function, π(x), depending on the factors of x, namely:

π(x) ≈
x Prodm

j=1π (xj)
∑m

j=1 xj Prodm
i=1, i6=jπ (xi)

,

with x = x1 · ... · xm, m ≥ 2. We may apply both of them to prime numbers set P with A = 1, B =
1.1, x0 = 60184 (see [4], and also [3] p. 37).
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Theorem 1.9. Let P = (pi)i∈Z+ be a strictly increasing sequence in R
+, and let π : (0, +∞) → R be its

distribution function. Suppose that there exist constants x0, A, B ∈ R, x0 ≥ 1, 0 < A ≤ B < log x0, such
that

x

log x−A
≤ π(x) ≤

x

log x−B
for all x ∈ [x0, +∞).

Let m ∈ N, m ≥ 2, x1, ..., xm ∈ [x0, +∞). Define x := Prodm
i=1 xi ∈ [x0, +∞) and

g(x1, ..., xm, C,D) :=
Prodm

j=1 (log xj −D)
∑m

j=1 (log xj) − C

m∑

j=1

1

Prodm
i=1, i6=j (log xi − C)

for all C, D ∈ R. Then we have:

1. g(x1, ..., xm, A,B) ≤ π(x)
x P rodm

j=1
π(xj)∑

m

j=1
xj P rodm

i=1, i6=j
π(xi)

≤ g(x1, ..., xm, B,A).

2. limx1→+∞,...,xm→+∞
π(x)

x P rodm
j=1

π(xj)∑
m

j=1
xj P rodm

i=1, i6=j
π(xi)

= 1.

Theorem 1.10. Let P = (pi)i∈Z+ be a strictly increasing sequence in R
+, and let π : (0, +∞) → R be

its distribution function. Suppose that there exist constants x0, A, B ∈ R, x0 ≥ 1, 0 < A ≤ B < log x0,
such that

x

log x−A
≤ π(x) ≤

x

log x−B
for all x ∈ [x0, +∞).

Let m ∈ N, m ≥ 2, x1, ..., xm ∈ [x0, +∞). Define x := Prodm
i=1 xi ∈ [x0, +∞) and

h(x1, ..., xm, C,D) :=
1

∑m
j=1

P rodm
i=1

(log xi−C)

P rodm
i=1, i6=j

(log xi−D)

,

l(x1, ..., xm, C,D) :=
1∑m

j=1 log xj −D
− h(x1, ..., xm, C,D)

for all C, D ∈ R. Then we have:

1. x l(x1, ..., xm, B,A) ≤ π(x) −
x P rodm

j=1π(xj)∑
m

j=1
xj P rodm

i=1, i6=j
π(xi)

≤ x l(x1, ..., xm, A,B).

2.

lim
x1→+∞,...,xm→+∞

l(x1, ..., xm, B,A) =

= lim
x1→+∞,...,xm→+∞

l(x1, ..., xm, A,B) = 0

lim
x1→+∞,...,xm→+∞

x l(x1, ..., xm, B,A) =

= lim
x1→+∞,...,xm→+∞

x l(x1, ..., xm, A,B) = +∞.

3. limx1→+∞,...,xm→+∞

π(x)−
x P rodm

j=1
π(xj)∑

m

j=1
xj P rodm

i=1, i6=j
π(xi)

x∑
1≤i,j≤m

(log xi)(log xj)

= 1.

The paper is structured as follows. Section 1 contains definitions and the main results. In section 2
we prove Theorem 1.7 and we obtain as consequence a result which may be applied to prove Goldbach´ s
Conjecture for sequences with contractive distribution functions (Corollary 2.2 and Corollary 7.2). In
section 3 we generalize Theorem 1.7 to positive real numbers setting, obtaining Theorem 3.5. In section
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4 we obtain sufficient conditions to determine, given two sets of positive real numbers A, B, when a given
positive real number is a sum of an element of A and an element of B. In section 5 we prove Theorem
1.9 and we obtain some consequences for prime numbers. Section 6 is devoted to the proof of Theorem
1.10. Finally, in section 7 we state slight generalizations of Theorem 1.7 and Corollary 2.2 for sequences
of natural numbers whose distribution functions are quasi-contractive.

2. Proof of Theorem 1.7 and consequences.

In this section we will prove Theorem 1.7. First we need the following result which justifies the name
of discriminant fucntion.

Lemma 2.1. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N + 1.

Define a := p1, and let m ∈ N≥a, m /∈ P be. Then:

1. ψ(m) −ψ(m− 1) =
∑

p∈P, p≤m χP(2m− p) ≥ 0 is the number of times that 2m can be expressed as
sum of two elements of P (considering the same form p+ q and q + p for all p, q ∈ P).

2. ψ(m) − ψ(m− 1) > 0 ⇔ 2m ∈ P + P.

Proof. Since m /∈ P, then π(m) = π(m− 1). Therefore:

ψ(m) − ψ(m− 1) =

π(m)∑

i=1

π(2m− pi) −

π(m−1)∑

i=1

π (2(m− 1) − pi) =

=

π(m−1)∑

i=1

π(2m− pi) −

π(m−1)∑

i=1

π ((2m− pi) − 2) =

=

π(m−1)∑

i=1

[π(2m− pi) − π ((2m− pi) − 2)] =

π(m−1)∑

i=1

χP(2m− pi) =

=

π(m)∑

i=1

χP(2m− pi) =
∑

p∈P, p≤m

χP(2m− p) ≥ 0,

where the fifth equality, the key step, is because of 2m− pi and 2m− pi − 2 are both even or both odd.
�

Proof of Theorem 1.7.

1. Let m ∈ N≥a \ P. Then π(m) = π(m− 1). Therefore:

ψ(m) − ψ(m− 1) =

π(m)∑

i=1

π(2m− pi) −

π(m−1)∑

i=1

π (2(m− 1) − pi)

=

π(m)∑

i=1

π(2m− pi) −

π(m−1)∑

i=1

π (2m− (pi + 2))

=

π(m)∑

i=1

π(2m− pi) −

π(m)∑

i=1

π (2m− (pi + 2))

=

π(m)∑

i=1

π(2m− pi) −

π(m)−1∑

j=0

π (2m− (pj+1 + 2))
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=π(2m− pπ(m)) − π (2m− (p1 + 2))

+

π(m)−1∑

i=1

π(2m− pi) −

π(m)−1∑

j=1

π (2m− (pj+1 + 2))

= π(2m− pπ(m)) − π (2m− (p1 + 2))

+

π(m)−1∑

i=1

[π(2m− pi) − π (2m− (pi+1 + 2))] .

Since pπ(m) ≤ m, then 2m− pπ(m) ≥ m, and thus π(2m− pπ(m)) ≥ π(m). On the other hand, let
i ∈ {1, ..., π (m) − 1} be. Then

π(2m− pi) − π (2m− (pi+1 + 2)) ≥

≥ C π ((2m− pi) − (2m− (pi+1 + 2))) =

= C π (pi+1 − pi + 2) .

Hence

ψ(m) − ψ(m− 1) ≥ π(m) − π(2m− a− 2) + C

π(m)−1∑

i=1

π (pi+1 − pi + 2) .

Since

π(m)−1∑

i=1

π (pi+1 − pi + 2) =
∑

p, q∈P consecutive, p<q≤m

π(q − p+ 2) =

=
∑

k∈Dif(P)(m)

π(k + 2) πk(m) = f(m),

then we have

ψ(m) − ψ(m− 1) ≥ π(m) + C f(m) − π(2m− a− 2) ≥

≥ π(m) + C f(m) − π(2m).

2. It is an immediate consequence of the previous item and the second item of Lemma 2.1.

3. Let m ∈ N≥a \ P. If π(m) +C f(m) − π(2m) > 0, then by the previous item we have 2m ∈ P + P.
From this fact we obtain the result.

�

Corollary 2.2. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N+1.

Suppose that there exists a constant C1 > 0 such that

π(x) − π(y) ≥ C1 π(x − y) for all x, y ∈ [1, +∞), x ≥ y.

Define a := p1. Let α ∈ R
+. Suppose that

1. There exist constants C2 > 0, m0 ∈ N≥a \ P such that

Card (Dif (P) (m)) ≥ C2 logα(m)

for every m ∈ N≥a \ P, m ≥ m0.
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2. There exist constants m1 ∈ N≥a \ P, A, B, C3 ∈ R, C3 > 0 such that

πk(m) ≥
C3 m

(log(m) +A)α+1 +B

for every m ∈ N≥a \ P, m ≥ m1, and every k ∈
{

2, 4, ..., 2E
(

C2 logα(m)
2

)}
.

3. limn→+∞, n∈N

π(n)
n

log n

= 1.

4. C1 · C2 · C3 > 1.

Then there exists m2 ∈ N≥a \ P such that 2m ∈ P + P for all m ∈ N≥a \ P, m ≥ m2.

Proof. The assumption (3) implies that limn→+∞, n∈N

π(2n)
2n

log(n)+log 2

= 1.

Define s0 := max {m0, m1}. Let x0 ∈ Z
+ be an even integer such that x0 ≥ 4 and π(x0) ≥ 1. Let

m ∈ N≥a \ P, m ≥ s0, be such that Card (Dif (P) (m)) ≥ x0

2 − 2. Then

f(m) :=
∑

k∈Dif(P)(m)

π(k + 2) πk(m) ≥
∑

k∈Dif(P)(m), k≥x0−2

π(x0) πk(m) ≥

≥
C3 m

(log(m) +A)
α+1

+B
·
(
Card (Dif (P) (m)) −

x0

2
+ 2

)
≥

≥ C3 m
C2 logα(m) − x0

2 + 2

(log(m) +A)
α+1

+B
=: g(m).

Hence

lim inf
m→+∞

π(m) + C1 g(m)

π(2m)
= lim inf

m→+∞

m
log m + C1 C3 m

C2 logα(m)−
x0
2 +2

(log(m)+A)α+1+B

2m
log(m)+log 2

=

=
1 + C1 C2 C3

2
∈ (1, +∞].

We obtain the result as consequence of Theorem 1.7. �

Remark 2.3. Observe that for α = 1, and in the context of the prime numbers, the second hypothesis
is called the Consecutive Prime Conjecture, and for k = 2 it is a Hardy and Littlewood´ s conjecture for
the distribution of the twin prime numbers (for example, see [6], [8] and [1]). In addition, the third
hypothesis is Prime Number Theorem (see [5] and [2]).

In the two following sections we generalize the results of the first section to positive real numbers.

3. On the existence of an expression of a positive real number as sum of two elements of a

given set of positive real numbers.

3.1. Definitions

Definition 3.1. Let P = (pi)i∈Z+ be a strictly increasing sequence in R
+ such that it is uniformly discrete

(briefly, u.d.), this is, infi∈Z+ {pi+1 − pi} > 0.

1. a := p1 = min {pi | i ∈ Z
+} ∈ R

+.

2. R≥a := {x ∈ R | x ≥ a} ⊆ R
+, 2R≥a := {2x | x ∈ R, x ≥ a}.

3. The function π := πP : (0, +∞) → R defined by

π(x) := Card ({p ∈ P | p ≤ x}) = Card (P ∩ (0, x]) ,

for each x ∈ (0, +∞), is called the distribution function of P. π is monotonically increasing.
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Remark 3.2. Notice these consequences of the definition of π:

1. For every x ∈ R
+ we have

{
p1, ..., pπ(x)

}
⊆ (0, x], and then pπ(x) ≤ x.

2.
(
p ≤ x ⇔ p ≤ pπ(x)

)
for every x ∈ R

+, p ∈ P.

Definition 3.3. Let P = (pi)i∈Z+ be a strictly increasing and u.d. sequence in R
+.

1. Dif (P) := {pn+1 − pn : n ∈ Z
+} ⊆ R

+ is called the difference set of P.

2. Let x ∈ (0, +∞). Dif (P) (x) := {pn+1 − pn : n ∈ Z
+, pn+1 ≤ x} is called the difference set of P

until x.

3. Let p, q ∈ P, p < q. We say that p and q are consecutive respect to P if (p, q) ∩ P = ∅.

4. Let p, q ∈ P, p < q, k ∈ R
+. We say that p and q are k-consecutive if q − p = k.

5. Let k ∈ Dif (P). We define the function πk := πk,P : (0, +∞) → R by

πk(x) := Card ({p ∈ P | (p+ k ≤ x, p+ k ∈ P)}) ≤ π(x),

for each x ∈ (0, +∞). πk := πk,P is called the distribution function of the k-consecutive elements
of P, and it is also called the distribution function of the k-differences of elements of P.

Let P = (pi)i∈Z+ be a strictly increasing and u.d. sequence in R
+. We define a := p1. Let (bm)m∈Z+

be a strictly increasing sequence in R
+ such that there exists m ∈ N, m ≥ 2 verifying bm ≥ a. Let

m ∈ N, m ≥ 2 be, with bm ≥ a. We wonder if 2bm ∈ P + P. If bm ∈ P (the trivial case), then
2bm = bm + bm ∈ P + P and the answer is affirmative. The question is what happens if bm /∈ P. Assume
that 2bm ∈ P+P, with bm /∈ P. There exist p, q ∈ P, with p ≤ q, such that 2bm = p+ q. Then 2bm ≥ 2p,
and therefore p ≤ bm, or what is equivalent, p ≤ pπ(bm). Thus we have that p ∈ P, 2bm − p ∈ P and
p ≤ pπ(bm). So these last three conditions altogether are equivalent to 2bm ∈ P + P when bm /∈ P (notice
it is also true for bm ∈ P).

Definition 3.4 (Discriminant function). Let P = (pi)i∈Z+ be a strictly increasing and u.d. sequence in
R

+, and define a := p1. Let (bm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists

m ∈ N, m ≥ 2 verifying bm ≥ a. The function ψ : Z+ → N defined by

ψ(t) :=

π(bt)∑

i=1

π(2bt − pi) =
∑

p∈P, p≤bt

π(2bt − p) for all t ∈ Z
+,

is called the discriminant function of P respect to (bm)m∈Z+.

3.2. Results

We have the following result.

Theorem 3.5. Let P = (pi)i∈Z+ be a strictly increasing and uniformly discrete sequence in R
+, and

define a := p1. Let (bm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists m ∈ N, m ≥ 2

verifying bm ≥ a. Define inf(b) := infm∈Z+ (bm+1 − bm) ≥ 0. Let m ∈ N, m ≥ 2 verifying bm ≥ a.
Suppose that bm /∈ P, π (bm) = π (bm−1), and

π (2bm − pi) − π (2bm−1 − pi) = χP (2bm − pi) for each i ∈ {1, ..., π (bm−1)} .

Also assume that there exists a constant C > 0 such that

π(x) − π(y) ≥ C π(x− y) for all x, y ∈ (0, +∞), x ≥ y.

Define
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f(m) :=
∑

k∈Dif(P)(m)

π (k + 2 (bm − bm−1)) πk(m) ≥

≥
∑

k∈Dif(P)(m)

π (k + 2 inf(b)) πk(m) =: g(m) ≥ 0.

Then:

1.

ψ(m) − ψ(m− 1) ≥ π (bm) + C f(m) − π (2bm−1 − a) ≥

≥ π (bm) + C g(m) − π (2bm−1 − a) .

2. If π (bm) + C f(m) − π (2bm−1 − a) > 0, then 2bm ∈ P + P.

3. If π (bm) + C g(m) − π (2bm−1 − a) > 0, then 2bm ∈ P + P.

We need the following lemma:

Lemma 3.6. Let P = (pi)i∈Z+ be a strictly increasing and u.d. sequence in R
+, and define a := p1.

Let (bm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists m ∈ N, m ≥ 2 verifying that

bm ≥ a. Let m ∈ N, m ≥ 2 be such that bm ≥ a. Suppose that bm /∈ P, π (bm) = π (bm−1), and

π (2bm − pi) − π (2bm−1 − pi) = χP (2bm − pi) for each i ∈ {1, ..., π (bm−1)} .

Then:

1. ψ(m) − ψ(m− 1) =
∑

p∈P, p≤bm
χP(2bm − p) ≥ 0 is the number of times that 2bm can be expressed

as sum of two elements of P (considering the same form p+ q and q + p for all p, q ∈ P).

2. ψ(m) − ψ(m− 1) > 0 ⇔ 2bm ∈ P + P.

Proof.

ψ(m) − ψ(m− 1) =

π(bm)∑

i=1

π(2bm − pi) −

π(bm−1)∑

i=1

π (2bm−1 − pi) =

=

π(bm−1)∑

i=1

π(bm − pi) −

π(bm−1)∑

i=1

π (2bm − pi) =

=

π(bm−1)∑

i=1

[π(2bm − pi) − π (2bm − pi)] =

π(bm−1)∑

i=1

χP(2bm − pi) =

=

π(bm)∑

i=1

χP(2bm − pi) =
∑

p∈P, p≤bm

χP(2bm − p) ≥ 0.

Therefore the next conditions are equivalent:

i) ψ(m) − ψ(m− 1) > 0.

ii) There exists p ∈ P, p ≤ bm, such that χP(2bm − p) > 0.

iii) 2bm ∈ P + P.

�
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Proof of Theorem 3.5.

1. Since π (bm) = π (bm−1), then:

ψ(m) − ψ(m− 1) =

π(bm)∑

i=1

π(2bm − pi) −

π(bm−1)∑

i=1

π (2bm−1 − pi) =

=

π(bm)∑

i=1

π(2bm − pi) −

π(bm−1)−1∑

j=0

π (2bm−1 − pj+1) =

=

π(bm)∑

i=1

π(2bm − pi) −

π(bm)−1∑

j=0

π (2bm−1 − pj+1) =

= π(2bm − pπ(bm)) − π (2bm−1 − p1) +

+

π(bm)−1∑

i=1

π(2bm − pi) −

π(bm)−1∑

j=1

π (2bm−1 − pj+1) =

= π(2bm − pπ(bm)) − π (2bm−1 − p1) +

+

π(bm)−1∑

i=1

[π (2bm − pi) − π (2bm−1 − pi+1)] .

Since pπ(bm) ≤ bm, then 2bm − pπ(bm) ≥ bm, and thus π
(
2bm − pπ(bm)

)
≥ π (bm).

On the other hand, let i ∈ {1, ..., π (bm) − 1} be. Then

π (2bm − pi) − π (2bm−1 − pi+1) ≥

≥ C π ((2bm − pi) − (2bm−1 − pi+1)) =

= C π (pi+1 − pi + 2 (bm − bm−1)) ,

where we have used that 2bm − pi ≥ 2bm−1 − pi+1 because of pi+1 − pi > 0 > 2 (bm−1 − bm).

Hence

ψ(m) − ψ(m− 1) ≥ π (bm) − π (2bm−1 − p1) +

+C

π(bm)−1∑

i=1

π (pi+1 − pi + 2 (bm − bm−1)) .

Since

π(bm)−1∑

i=1

π (pi+1 − pi + 2 (bm − bm−1)) =

=
∑

p, q∈P consecutive, p<q≤m

π (q − p+ 2 (bm − bm−1)) =

=
∑

k∈Dif(P)(m)

π(k + 2 (bm − bm−1)) πk(m) = f(m),

then we have

ψ(m) − ψ(m− 1) ≥ π (bm) + C f(m) − π (2bm−1 − a) ≥

≥ π (bm) + C g(m) − π (2bm−1 − a) ≥

≥ π (bm) + C g(m) − π (2bm−1) .
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2. It is an immediate consequence of the previous item and the second item of Lemma 3.6.

3. It is obvious from the previous item.

�

Analogously we can prove the following result:

Proposition 3.7. Let P = (pi)i∈Z+ be a strictly increasing and uniformly discrete sequence in R
+, and

define a := p1. Let (bm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists m ∈ N, m ≥ 2

verifying bm ≥ a. Let m ∈ N, m ≥ 2 be such that bm ≥ a. Suppose that bm /∈ P, π (bm) = π (bm−1), and

π (2bm − pi) − π (2bm−1 − pi) = χP (2bm − pi) for each i ∈ {1, ..., π (bm−1)} .

Also assume that there exists a constant D > 0 such that

π(x) − π(y) ≤ D π(x− y) for all x, y ∈ (0, +∞), x ≥ y.

Define

f(m) :=
∑

k∈Dif(P)(m)

π (k + 2 (bm − bm−1)) πk(m).

Then:

1.

0 ≤ ψ(m) − ψ(m− 1) ≤ π
(
2bm − pπ(bm)

)
+D f(m) − π (2bm−1 − a) .

Hence, if π
(
2bm − pπ(bm)

)
+D f(m) − π (2bm−1 − a) = 0, then 2bm /∈ P + P.

2. Assume that there exists Em ∈ (0, 1) such that (Em · bm, bm) ∩ P 6= ∅. Then:

0 ≤ ψ(m) − ψ(m− 1) ≤ π ((2 − Em) bm) +D f(m) − π (2bm−1 − a) .

Thus, if π ((2 − Em) bm) +D f(m) − π (2bm−1 − a) = 0, then 2bm /∈ P + P.

Proof.

1. The proof of this item is analogous to the proof of Theorem 3.5.

2. In this case Em · bm < pπ(bm) < bm (observe that bm /∈ P because π (bm) = π (bm−1)). Then
2bm − Em · bm > 2bm − pπ(bm) > bm and therefore

π
(
2bm − pπ(bm)

)
≤ π ((2 − Em) bm) .

�

Obviously, the constant D > 0 must be minimum, and this minimum exists if the distribution function
π is not constant.
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4. A positive real number as sum of two elements where every one belongs to a given set

of positive real numbers.

In this section we will need Definition 3.1, Remark 3.2 and Definition 3.3.
Let A = (ai)i∈Z+ , B = (bi)i∈Z+ be strictly increasing and u.d. sequences in R

+. We define a′ := a1,
b′ := b1. Let (cm)m∈Z+ be a strictly increasing sequence in R

+ such that there exists m ∈ N, m ≥ 2
verifying 2cm ≥ a′ + b′. Let m ∈ N, m ≥ 2 be, with 2cm ≥ a′ + b′. We wonder if 2cm ∈ A + B.
Obviously, if cm ∈ A ∩ B (the trivial case), then 2cm = cm + cm ∈ A + B and the answer is affirmative.
The question is what happens if cm /∈ A ∩ B. Suppose that 2cm ∈ A + B, with cm /∈ A ∩ B. There exist
a ∈ A, b ∈ B such that 2cm = a+ b.

• If a ≤ b: then 2a ≤ a+ b = 2cm, thus a ≤ cm, what is equivalent to a ≤ aπA(cm).

• If b ≤ a: then 2b ≤ a+ b = 2cm, therefore b ≤ cm, what is equivalent to b ≤ bπB(cm).

Observe that a 6= b. Indeed, if a = b, then 2cm = 2a = 2b, and therefore cm = a = b ∈ A ∩ B, which
is a contradiction with our assumption.
Conclusion: the cases a ≤ b and b ≤ a are mutually exclusive because the equality a = b is not true.

Definition 4.1 (Discriminant function). Let A = (ai)i∈Z+ , B = (bi)i∈Z+ and C = (ct)t∈Z+ be strictly
increasing sequences in R

+. Assume that A and B are uniformly discrete. The function ψ : Z+ → N

defined by

ψ(t) :=
∑

a∈A, a≤ct

πB(2ct − a) +
∑

b∈B, b≤ct

πA(2ct − b) =

=

πA(ct)∑

iA=1

πB(2ct − aiA) +

πB(ct)∑

iB=1

πA(2ct − biB) for all t ∈ Z
+,

is called the discriminant function of {A, B} respect to C.

We have the following result.

Theorem 4.2. Let A = (ai)i∈Z+ , B = (bi)i∈Z+ be strictly increasing and u.d. sequences in R
+. We

define a′ := a1, b′ := b1. Let (cm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists

m0 ∈ N, m0 ≥ 2 verifying 2cm0 ≥ a′ + b′. Let m ∈ N, m ≥ 2 be, and verifying that 2cm ≥ a′ + b′. Suppose
that cm /∈ A ∩ B, πA (cm) = πA (cm−1), πB (cm) = πB (cm−1) and

πB (2cm − aiA) − πB (2cm−1 − aiA) = χB (2cm − aiA) for each iA ∈ {1, ..., πA (cm−1)} ,

πA (2cm − biB) − πA (2cm−1 − biB) = χA (2cm − biB) for each iB ∈ {1, ..., πB (cm−1)} .

Define inf(c) := infi∈Z+ (ci+1 − ci) ≥ 0.
Also assume that there exist constants CA, CB > 0 such that

πA(x) − πA(y) ≥ CA πA(x− y),

πB(x) − πB(y) ≥ CB πB(x − y),

for all x, y ∈ (0, +∞), x ≥ y.
We define

f(m) := CB

∑

k∈Dif(A)(m)

πB (k + 2 (cm − cm−1)) πk,A(m)+

+CA

∑

l∈Dif(B)(m)

πA (l + 2 (cm − cm−1)) πl,B(m) ≥

≥ CB

∑

k∈Dif(A)(m)

πB (k + 2 inf(c)) πk,A(m)+

+CA

∑

l∈Dif(B)(m)

πA (l + 2 inf(c)) πl,B(m) =: g(m) ≥ 0.

Then:
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1.

ψ(m) − ψ(m− 1) ≥ πB (cm) + πA (cm) +

+f(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) ≥

≥ πB (cm) + πA (cm) +

+g(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) .

2. If πB (cm) + πA (cm) + f(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) > 0, then 2bm ∈ A + B.

3. If πB (cm) + πA (cm) + g(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) > 0, then 2bm ∈ A + B.

We need the following result:

Lemma 4.3. Let A = (ai)i∈Z+ , B = (bi)i∈Z+ be strictly increasing and u.d. sequences in R
+. We

define a′ := a1, b′ := b1. Let (cm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists

m0 ∈ N, m0 ≥ 2 verifying 2cm0 ≥ a′ + b′. Let m ∈ N be such that m ≥ 2, 2cm ≥ a′ + b′. Suppose that
cm /∈ A ∩ B, πA (cm) = πA (cm−1), πB (cm) = πB (cm−1) and

πB (2cm − aiA) − πB (2cm−1 − aiA) = χB (2cm − aiA) for each iA ∈ {1, ..., πA (cm−1)} ,

πA (2cm − biB) − πA (2cm−1 − biB) = χA (2cm − biB) for each iB ∈ {1, ..., πB (cm−1)} .

Then:

1. ψ(m) −ψ(m− 1) =
∑

a∈A, a≤cm
χB(2cm − a) +

∑
b∈B, b≤cm

χA(2cm − b) ≥ 0 is the number of times
that 2cm can be expressed as sum of one element of A and one element of B (considering the same
form a+ b and b+ a for all a ∈ A, b ∈ B).

2. ψ(m) − ψ(m− 1) > 0 ⇔ 2cm ∈ A + B.

Proof.

ψ(m) − ψ(m− 1) =

πA(cm)∑

iA=1

πB(2cm − aiA) +

πB(cm)∑

iB=1

πA(2cm − biB)−

−

πA(cm−1)∑

iA=1

πB(2cm−1 − aiA) −

πB(cm−1)∑

iB=1

πA(2cm−1 − biB) =

=

πA(cm−1)∑

iA=1

[πB (2cm − aiA) − πB (2cm−1 − aiA)] +

+

πB(cm−1)∑

iB=1

[πA (2cm − biB) − πA (2cm−1 − biB)] =

=

πA(cm−1)∑

iA=1

χB (2cm − aiA) +

πB(cm−1)∑

iB=1

χA (2cm − biB) =

=
∑

a∈A, a≤cm

χB(2cm − a) +
∑

b∈B, b≤cm

χA(2cm − b) ≥ 0.

Therefore the next conditions are equivalent:

i) ψ(m) − ψ(m− 1) = 0.

ii) χB (2cm − a) = 0 for all a ∈ A, a ≤ cm, and χA (2cm − b) = 0 for all b ∈ B, b ≤ cm.

iii) 2cm /∈ A + B.
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From here we obtain the result. �

Proof of Theorem 4.2.

1.

ψ(m) − ψ(m− 1) =

πA(cm)∑

iA=1

πB(2cm − aiA) +

πB(cm)∑

iB=1

πA(2cm − biB)−

−

πA(cm−1)∑

iA=1

πB(2cm−1 − aiA) −

πB(cm−1)∑

iB=1

πA(2cm−1 − biB) =

=




πA(cm)∑

iA=1

πB(2cm − aiA) −

πA(cm−1)∑

iA=1

πB(2cm−1 − aiA)


 +

+




πB(cm)∑

iB=1

πA(2cm − biB) −

πB(cm−1)∑

iB=1

πA (2cm−1 − biB)


 .

Define

RBA :=

πA(cm)∑

iA=1

πB(2cm − aiA) −

πA(cm−1)∑

iA=1

πB(2cm−1 − aiA),

RAB :=

πB(cm)∑

iB=1

πA(2cm − biB) −

πB(cm−1)∑

iB=1

πA (2cm−1 − biB) .

As we did in the proof of Theorem 3.5 (Proof 3.2), using that πA (cm) = πA (cm−1), we obtain:

RBA ≥ πB (cm) − πB (2cm−1 − a′) + CB

π(cm)−1∑

i=1

πB (ai+1 − ai + 2 (cm − cm−1)) =

= πB (cm) − πB (2cm−1 − a′) + CB

π(cm)−1∑

i=1

πB (ai+1 − ai + 2 (cm − cm−1)) =

= πB (cm) − πB (2cm−1 − a′) +

+CB

∑

a, ã∈A consecutive, a<ã≤cm

π (ã− a+ 2 (cm − cm−1)) =

= πB (cm) − πB (2cm−1 − a′) + CB

∑

k∈Dif(A)(m)

πB(k + 2 (cm − cm−1)) πk,A(m).

Analogously, using that πB (cm) = πB (cm−1), we have:

RAB ≥ πA (cm) − πA (2cm−1 − b′) +

+CA

∑

l∈Dif(B)(m)

πA(l + 2 (cm − cm−1)) πl,B(m).
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Hence

ψ(m) − ψ(m− 1) = RBA +RAB ≥ πB (cm) − πB (2cm−1 − a′) +

+CB

∑

k∈Dif(A)(m)

πB(k + 2 (cm − cm−1)) πk,A(m)+

+πA (cm) − πA (2cm−1 − b′) +

+CA

∑

l∈Dif(B)(m)

πA(l + 2 (cm − cm−1)) πl,B(m) = πB (cm) +

+πA (cm) + f(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) .

2. It is an immediate consequence of the previous item and the second item of Lemma 4.3.

3. It is an immediate consequence of the previous item.

�

Analogously we can prove the next complementary result.

Proposition 4.4. Let A = (ai)i∈Z+ , B = (bi)i∈Z+ be strictly increasing and u.d. sequences in R
+. We

define a′ := a1, b′ := b1. Let (cm)m∈Z+ be a strictly increasing sequence in R
+ such that there exists

m0 ∈ N, m0 ≥ 2 verifying 2cm0 ≥ a′ + b′. Let m ∈ N, m ≥ 2 be such that 2cm ≥ a′ + b′. Suppose that
cm /∈ A ∩ B , πA (cm) = πA (cm−1), πB (cm) = πB (cm−1) and

πB (2cm − aiA) − πB (2cm−1 − aiA) = χB (2cm − aiA) for each iA ∈ {1, ..., πA (cm−1)} ,

πA (2cm − biB) − πA (2cm−1 − biB) = χA (2cm − biB) for each iB ∈ {1, ..., πB (cm−1)} .

Also assume that there exist constants DA, DB > 0 such that

πA(x) − πA(y) ≤ DA πA(x − y),

πB(x) − πB(y) ≤ DB πB(x− y),

for all x, y ∈ (0, +∞), x ≥ y.
We define

f(m) := DB

∑

k∈Dif(A)(m)

πB (k + 2 (cm − cm−1)) πk,A(m)+

+DA

∑

l∈Dif(B)(m)

πA (l + 2 (cm − cm−1)) πl,B(m).

Then:

1.

0 ≤ ψ(m) − ψ(m− 1) ≤ πB

(
2cm − aπA(cm)

)
+ πA

(
2cm − bπB(cm)

)
+

+f(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) .

2. If πB

(
2cm − aπA(cm)

)
+ πA

(
2cm − bπB(cm)

)
+

+ f(m) − πA (2cm−1 − b′) − πB (2cm−1 − a′) = 0, then 2bm /∈ A + B.

As in the previous section, the constants DA, DB > 0 must be minimum, and both minima exist if
every distribution function πA, πB is not constant. See also Proof 3.2.
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5. Proof of Theorem 1.9 and consequences.

In this section we will prove Theorem 1.9.

Proof of Theorem 1.9.

1. It is consequence of the inequalities

x∑m
j=1 log xj −A

≤ π(x) ≤
x∑m

j=1 log xj −B
, (5.1)

and
xj

log xj −A
≤ π (xj) ≤

xj

log xj −B
for every j ∈ {1, ...,m} . (5.2)

Hence

x

Prodm
j=1 (log xj −A)

≤ Prodm
j=1π (xj) ≤

x

Prodm
j=1 (log xj −B)

,

and then

x2

Prodm
j=1 (log xj −A)

≤ x Prodm
j=1π (xj) ≤

x2

Prodm
j=1 (log xj −B)

.

So we have
Prodm

j=1 (log xj −B)

x2
≤

1

x Prodm
j=1π (xj)

≤
Prodm

j=1 (log xj −A)

x2
. (5.3)

Let j ∈ {1, ...,m}. From inequalities (5.2) we obtain:

Prodm
i=1, i6=j xi

Prodm
i=1, i6=j (log xi −A)

≤ Prodm
i=1, i6=j π (xi) ≤

Prodm
i=1, i6=j xi

Prodm
i=1, i6=j (log xi −B)

Multiplying by xj we have

x

Prodm
i=1, i6=j (log xi −A)

≤ xj · Prodm
i=1, i6=j π (xi) ≤

x

Prodm
i=1, i6=j (log xi −B)

.

Thus

x
m∑

j=1

1

Prodm
i=1, i6=j (log xi −A)

≤
m∑

j=1

xj Prod
m
i=1, i6=jπ (xi) ≤

≤ x
m∑

j=1

1

Prodm
i=1, i6=j (log xi −B)

.

Multiplying these inequalities and (5.1) we obtain

x2 1∑m
j=1 log xj −A

m∑

j=1

1

Prodm
i=1, i6=j (log xi −A)

≤

≤ π(x)




m∑

j=1

xj Prod
m
i=1, i6=jπ (xi)



 ≤

≤ x2 1∑m
j=1 log xj −B

m∑

j=1

1

Prodm
i=1, i6=j (log xi −B)

.
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Finally, multiplying these inequalities and the ones of (5.3) we have

g(x1, ..., xm, A,B) ≤
π(x)

x P rodm
j=1

π(xj)∑
m

j=1
xj P rodm

i=1, i6=j
π(xi)

≤ g(x1, ..., xm, B,A)

2. It is an immediate consequence of the previous item.

3. It is an immediate consequence of the first item.

�

Corollary 5.1. Consider the sequence of number primes

P = {p1 = 2, p2 = 3, p3 = 5, ...} .

Let x0, A, B ∈ R, x0 ≥ 1, 0 < A < B < log x0 be constants such that

x

log x−A
≤ π(x) ≤

x

log x−B
for all x ∈ [x0, +∞).

Let n ∈ Z
+ be such that pn ≥ x0, and let m ∈ Z

+ be. Then:

n pm−1
n

m log pn −A

(log pn −B)
m

(log pn −A)m−1 ≤ π (pm
n ) ≤

n pm−1
n

m log pn −B

(log pn −A)
m

(log pn −B)m−1 .

Proof. It is an immediate consequence of Theorem 1.9 for x = pm
n and of the fact consisting of π (pk) = k

for every k ∈ Z
+. �

Corollary 5.2. Consider the sequence of number primes

P = {p1 = 2, p2 = 3, p3 = 5, ...} .

Let x0, A, B ∈ R, x0 ≥ 1, 0 < A < B < log x0 be constants such that

x

log x−A
≤ π(x) ≤

x

log x−B
for all x ∈ [x0, +∞).

Let m ∈ Z
+, and let n1, ..., nm ∈ Z

+ be such that pn1 , ..., pnm
≥ x0. Then:

g(pn1 , ..., pnm
, A,B) ≤

π (pn1 · ... · pnm
)

pn1 ·...·pnm ·n1·...·nm∑
m

j=1
pnj

P rodm
i=1, i6=j

ni

≤ g(pn1 , ..., pnm
, B,A),

where the function g is defined in Theorem 1.9.

Proof. This is consequence of Theorem 1.9 for x = pn1 · ... · pnm
and of the fact consisting of π (pk) = k

for every k ∈ Z
+. �

Corollary 5.3. Consider the sequence of number primes

P = {p1 = 2, p2 = 3, p3 = 5, ...} .

Then:

lim
n1→+∞,...,nm→+∞

π (pn1 · ... · pnm
)

pn1 ·...·pnm ·n1·...·nm∑
m

j=1
pnj

P rodm
i=1, i6=j

ni

= 1.
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6. Proof of Theorem 1.10.

Proof of Theorem 1.10.

1. It is consequence of the inequalities

x∑m
j=1 log xj −A

≤ π(x) ≤
x∑m

j=1 log xj −B
, (6.1)

and
xj

log xj −A
≤ π (xj) ≤

xj

log xj −B
for every j ∈ {1, ...,m} . (6.2)

Indeed
x2

Prodm
j=1 (log xj −A)

≤ x Prodm
j=1π (xj) ≤

x2

Prodm
j=1 (log xj −B)

. (6.3)

Let j ∈ {1, ...,m}. From inequalities (5.2) we obtain:

Prodm
i=1, i6=j xi

Prodm
i=1, i6=j (log xi −A)

≤ Prodm
i=1, i6=j π (xi) ≤

Prodm
i=1, i6=j xi

Prodm
i=1, i6=j (log xi −B)

.

Multiplying by xj we have

x

Prodm
i=1, i6=j (log xi −A)

≤ xj · Prodm
i=1, i6=j π (xi) ≤

≤
x

Prodm
i=1, i6=j (log xi −B)

.

Thus

x
m∑

j=1

1

Prodm
i=1, i6=j (log xi −A)

≤
m∑

j=1

xj Prod
m
i=1, i6=jπ (xi) ≤

≤ x
m∑

j=1

1

Prodm
i=1, i6=j (log xi −B)

.

Then

1

x

1∑m
j=1

1
P rodm

i=1, i6=j
(log xi−B)

≤
1∑m

j=1 xj Prodm
i=1, i6=jπ (xi)

≤

≤
1

x

1∑m
j=1

1
P rodm

i=1, i6=j
(log xi−A)

.

Multiplying the inequalities (6.3) and the previous ones we obtain

x h(x1, ..., xm, A,B) ≤
x Prodm

j=1π (xj)
∑m

j=1 xj Prodm
i=1, i6=jπ (xi)

≤ x h(x1, ..., xm, B,A)

So

−x h(x1, ..., xm, B,A) ≤ −
x Prodm

j=1π (xj)
∑m

j=1 xj Prodm
i=1, i6=jπ (xi)

≤ −x h(x1, ..., xm, A,B)
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Finally we sum these inequalities to inequalities (6.1), and obtain

x l(x1, ..., xm, B,A) ≤ π(x) −
x Prodm

j=1π (xj)
∑m

j=1 xj Prodm
i=1, i6=jπ (xi)

≤ x l(x1, ..., xm, A,B).

2. It is obvious.

3. It is obvious.

4. It is an immediate consequence of the first item.

�

7. Appendix

A slight generalization of Theorem 1.7 and Corollary 2.2 are the following results, with analogous
proofs.

Theorem 7.1. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N+1.

Assume that there exist constants C > 0, D ≥ 0 such that

π(x) − π(y) ≥ C π(x− y) −D for every x, y ∈ [1, +∞), x ≥ y.

Define a := p1, and consider the function f : N≥a \ P → N defined by

f(m) :=
∑

k∈Dif(P)(m)

π(k + 2) πk(m) for every m ∈ N≥a \ P.

Then:

1. ψ(m) − ψ(m− 1) ≥ (1 −D) π(m) +D + C f(m) − π(2m− a− 2) for all m ∈ N≥a \ P.

2. Let m ∈ N≥a \ P. If (1 −D) π(m) +D + C f(m) − π(2m− a− 2) > 0, then 2m ∈ P + P.

3. If lim infm→+∞, m/∈P

(1−D) π(m)+C f(m)
π(2m) ≥ L ∈ (1, +∞], then there exists m0 ∈ N≥a \ P such that

2m ∈ P + P for each m ∈ N≥a \ P, m ≥ m0.

Corollary 7.2. Let P = (pi)i∈Z+ be a strictly increasing sequence in Z
+ such that P ⊆ 2N or P ⊆ 2N+1.

Suppose that there exist constants C1 > 0, D ≥ 0 such that

π(x) − π(y) ≥ C1 π(x− y) −D for all x, y ∈ [1, +∞), x ≥ y.

Define a := p1. Let α ∈ R
+. Suppose that

1. There exist constants C2 > 0, m0 ∈ N≥a \ P such that

Card (Dif (P) (m)) ≥ C2 logα(m)

for every m ∈ N≥a \ P, m ≥ m0.

2. There exist constants m1 ∈ N≥a \ P, A, B, C3 ∈ R, C3 > 0 such that

πk(m) ≥
C3 m

(log(m) +A)
α+1

+B

for every m ∈ N≥a \ P, m ≥ m1, and every k ∈
{

2, 4, ..., 2E
(

C2 logα(m)
2

)}
.

3. limn→+∞, n∈N

π(n)
n

log n

= 1.

4. C1 · C2 · C3 > 1 +D.

Then there exists m2 ∈ N≥a \ P such that 2m ∈ P + P for all m ∈ N≥a \ P, m ≥ m2.
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