

(3s.) **v. 2023 (41)** : 1–11. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.63371

Notions of β -Closure Compatible Topology with an Ideal

V. Beulah D, Jessie Theodore D and D. Premalatha

ABSTRACT: In this paper, we have defined β -local closure function. Its properties and characterizations are analyzed. The set operator is defined and its properties are discussed. The notions of β -closure compatible topology with an ideal \Im are introduced and investigated. Moreover, -dense set and β_{**} -codense ideal are defined and explored.

Key Words: Ideal, β -local closure function, β -open set, β_{**} -codense ideal.

Contents

1	Introduction	1
2	β local closure function in ideal topological space	2
3	$\Psi_{\beta_{**}}$ operator in ideal topological space	4
4	β closure compatible topology with an ideal	6
5	β_{**} codense ideal	7
6	Conclusion	10

1. Introduction

Ahmad Al-Omari and Takashi Noiri [2] characterized local closure function and investigate its properties. In this paper, we have introduced and studied the notions of β -closure compatible topology with an ideal \mathfrak{I} . Also, we define an operator $\beta_{**}(A)(\mathfrak{I}, \tau)$ called β -local closure function of A with respect to \mathfrak{I} and τ as follows: An ideal on a nonempty set X is a collection of subsets of X which satisfies the following properties: (i) $A \in \mathfrak{I}$ and $B \subseteq A$ implies $B \in \mathfrak{I}$ (heredity) (ii) $A \in \mathfrak{I}$ and $B \in \mathfrak{I}$ implies $A \cup B \in \mathfrak{I}$ (finite additivity). An ideal topological space is a topological space (X, τ) with an ideal \mathfrak{I} on X, and is denoted by (X, τ, \mathfrak{I}) . Given a topological space (X, τ) with an ideal \mathfrak{I} on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a *local function* [16] of A with respect to τ and \mathfrak{I} is defined as follows: for $A \subset X$, $A^*(\mathfrak{I}, \tau) = \{x \in X : U \cap A \notin \mathfrak{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$, when there is no chance for confusion $A^*(\mathfrak{I}, \tau)$ is denoted by A^* . For every ideal topological space (X, τ, \mathfrak{I}) there exists a topology τ^* finer than τ , generated by the base $\beta(\mathfrak{I}, \tau) = \{U - K : U \in \tau \text{ and } K \in \mathfrak{I}\}$. In general, $\beta(\mathfrak{I}, \tau)$ is not a topology.

A Kuratowski closure operator $cl^{*}(.)$ for the topology $\tau^{*}(\mathfrak{I}, \tau)$, called the \star -topology finer than τ is defined by $cl^{*}(A)=A \cup A^{*}(\mathfrak{I}, \tau)$ [16]. In an ideal space \mathfrak{I} is said to be codense [6] if $\tau \cap \mathfrak{I} = \{\phi\}$. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $cl^{*}(A)$ and $int^{*}(A)$ will respectively denote the closure and interior of A in (X, τ^{*}) . A subset A of a space (X, τ) is β -open or semi-pre-open [3] set if $A \subset cl(int(cl(A)))$]. The complement of β -open or semi-pre-open set is β -closed or semi-pre-closed. The semi pre-closure of a subset A of X, denoted by spcl(A) or $\beta cl(A)$, is defined to be the intersection of all semi-pre-closed sets containing A. The semi pre-open sets contained in A We have introduced in [10], a set operator $(.)^{**} : P(X) \to P(X)$, called a semi-pre local function or β -local function of A with respect to τ and \mathfrak{I} is defined as follows: for $A \subset X$, $A_{**}(\mathfrak{I}, \tau) = \{x \in X : U \cap A \notin \mathfrak{I} forevery U \in \beta O(x)\}$ where the family of semi-preopen sets

²⁰²⁰ Mathematics Subject Classification: 54A05, 54F65.

Submitted April 26, 2022. Published December 11, 2022

 $\beta O(x) = \{U \in \beta O(X) : x \in U\}$, when there is no ambiguity, we will write simply A_{**} for $A_{**}(\mathfrak{I}, \tau)$. A set A is said to be θ -open [17] if every point of A has an open neighborhood whose closure is contained in A. In [13], Newcomb defines $A = B \mod \mathfrak{I}$ if $(A \setminus B) \cup (B \setminus A) \in \mathfrak{I}$ and observed that "= [mod \mathfrak{I}]" is an equivalence relation and denoted the symmetric difference" $(A \setminus B) \cup (B \setminus A)$ by $A \triangle B$. In [14], the topology τ is compatible with the ideal \mathfrak{I} , denoted $\tau \sim \mathfrak{I}$, if the following holds for every $A \subseteq X$: if for every $x \in A$ there exists a $U \in N(x)$ such that $U \cap A \in \mathfrak{I}$, then $A \in \mathfrak{I}$, where N(x) denotes the open neighborhood system at x.

2. β local closure function in ideal topological space

Definition 2.1. A set A is said to be θ^{β} -open if every point of A has a β -open neighborhood whose closure is contained in A. The θ^{β} -interior of A in X is the union of all θ^{β} -open sets contained in A and is denoted by $int_{\theta^{\beta}}(A)$. Naturally, the complement of a θ^{β} -open set is said to be θ^{β} -closed. The θ^{β} -closure of A in X is the intersection of all θ^{β} -closed sets containing A and is denoted by $cl_{\theta^{\beta}}(A)$. Equivalently, $cl_{\theta^{\beta}}(A) = \{x \in X : cl_{\theta^{\beta}}(U) \cap A \neq \phi \text{ for every } U \in \tau(x)\}$ and the set A is θ^{β} -closed if and only if $A = cl_{\theta^{\beta}}(A)$. Note that all θ^{β} -open sets form a topology on X which is coarser than τ , and is denoted by $\tau_{\theta^{\beta}}$ and that a space (X, τ) is β -regular if and only if $\tau = \tau_{\theta^{\beta}}$. Also, the θ^{β} -closure of a given set need not be a θ^{β} -closed set.

Example 2.2. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and an ideal $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Here $A = \{c, d\} = cl_{\theta^{\beta}}(A), B = \{a, c, d\} = cl_{\theta^{\beta}}(B), C = \{b, c, d\} = cl_{\theta^{\beta}}(C)$ hence A, B, C are θ^{β} -closed and $\tau_{\theta^{\beta}} = \{\{c, d\}, \{a, c, d\}, \{b, c, d\}, X, \phi\}$.

Definition 2.3. Let (X, τ, \mathfrak{I}) be an ideal topological space. For a subset A of X, we define the following operator: $\beta_{**}(A)(\mathfrak{I}, \tau) = \{x \in X : A \cap cl_{\beta}(U) \notin \mathfrak{I} \text{ for every } U \in \beta O(x)\}$, where $\beta O(x) = \{U \in \beta O(X) : x \in U\}$ and in case there is no confusion $\beta_{**}(A)(\mathfrak{I}, \tau)$ is briefly denoted by $\beta_{**}(A)$ and is called the β -local closure function of A with respect to \mathfrak{I} and τ .

For example:

- 1. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}\}$ and an ideal $\mathcal{I} = \{\phi, \{b\}\}$. Here, $\beta O(X) = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X, \phi\}$. Also, $A = \{a\}, \beta_{**}(A) = \{a\}, B = \{b\}, \beta_{**}(B) = \{\phi, C = \{c\}, \beta_{**}(C) = \{c\}, D = \{a, b\}, \beta_{**}(D) = \{a\}, E = \{a, c\}, \beta_{**}(E) = \{a, c\}, F = \{b, c\}, \beta_{**}(F) = \{c\}, G = \phi, \beta_{**}(G) = \phi, H = X, \beta_{**}(H) = \{a, c\}.$
- 2. Consider \mathbb{R} with the usual topology τ_u and the ideal $\mathcal{I} = \{\phi\}$. For the set A = [0,1], $int(A) = (0,1), cl(A) = \mathbb{R}$. Therefore, $A = [0,1] \in \beta O(X)$ and $cl_\beta(A) = \mathbb{R}$. Hence, $\beta_{**}(A) = \mathbb{R}$.
- 3. Consider \mathbb{R} with the topology and any ideal \mathcal{I} . For the set $A = \mathbb{Z}^+$, $int(A) = \phi$, $cl(A) = \mathbb{R}$. Therefore, $A = \mathbb{Z}^+ \in \beta O(X)$ and $cl_\beta(A) = \mathbb{R}$. Hence, $\beta_{**}(A) = \mathbb{R}$.

Lemma 2.4. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then $A_{**} \subseteq \beta_{**}(A)$ for every subset A of X. **Proof:** Let $x \in A_{**}$. Then, $A \cap U \notin \mathfrak{I}$ for every $U \in \beta O(x)$. Since $A \cap U \subseteq A \cap cl_{\beta}(U)$, $A \cap cl_{\beta}(U) \notin \mathfrak{I}$. Thus, $x \in \beta_{**}(A)$.

Example 2.5. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and an ideal $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Here $\beta O(X) = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $A = \{a\}$ then $\beta_{**}(A) = \{a\}$.

Lemma 2.6. Let (X, τ) be a topological space and A be a subset of X. Then

- 1. If A is closed, then $cl(A) = cl_{\theta^{\beta}}(A)$,
- 2. If A is open, then $int(A) = int_{\theta^{\beta}}(A)$

Theorem 2.7. Let (X, τ) be a topological space, J_1 , J_2 be two ideals on X, and let A and B be subsets of X. Then the following properties hold:

1. If $A \subseteq B$, then $\beta_{**}(A) \subseteq \beta_{**}(B)$

Notions of β -Closure Compatible Topology with an Ideal

- 2. If $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$, then $\beta_{**}(A)(\mathfrak{I}_1) \supseteq \beta_{**}(A)(\mathfrak{I}_2)$.
- 3. If $A \subseteq X$, then $\beta_{**}(A) = cl(\beta_{**}(A)) \subseteq cl_{\theta^{\beta}}(A)$ and $\beta_{**}(A)$ is closed.
- 4. If $A \subseteq \beta_{**}(A)$ and $\beta_{**}(A)$ is open, then $\beta_{**}(A) = cl_{\theta^{\beta}}(A)$.
- 5. If $A \in \mathcal{I}$, then $\beta_{**}(A) = \phi$.

Proof:

- 1. Suppose that $x \notin \beta_{**}(B)$. Then there exists $U \in \beta O(x)$ such that $B \cap cl_{\beta}(U) \in \mathfrak{I}$. Since $A \cap cl_{\beta}(U) \subseteq B \cap cl_{\beta}(U)$ implies $A \cap cl_{\beta}(U) \in \mathfrak{I}$. Hence $x \notin \beta_{**}(A)$. Thus $X \beta_{**}(B) \subseteq X \beta_{**}(A)$ that is $\beta_{**}(A) \subseteq \beta_{**}(B)$.
- 2. Suppose that $x \notin \beta_{**}(A)(\mathfrak{I}_1)$. There exists $U \in \beta O(X)$ such that $A \cap cl_{\beta}(U) \in \mathfrak{I}_1$. Since $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$, $A \cap cl_{\beta}(U) \in \mathfrak{I}_2$ and $x \notin \beta_{**}(A)(\mathfrak{I}_2)$. Hence $\beta_{**}(A)(\mathfrak{I}_2) \subseteq \beta_{**}(A)(\mathfrak{I}_1)$.
- 3. We have $\beta_{**}(A) \subseteq cl(\beta_{**}(A))$. Suppose that $x \in cl(\beta_{**}(A))$. Then $\beta_{**}(A) \cap U \neq \phi$ for every $U \in \beta O(X)$. Therefore, there exists some $y \in \beta_{**}(A) \cap U$ and $U \in \beta O(y)$. Since $y \in \beta_{**}(A)$, $A \cap cl_{\beta}(U) \notin \mathcal{I}$ and hence $x \in \beta_{**}(A)$. Therefore, we have $cl(\beta_{**}(A)) \subseteq \beta_{**}(A)$ and hence $\beta_{**}(A) = cl(\beta_{**}(A))$. Now, let $x \in cl_{\beta}(\beta_{**}(A)) = \beta_{**}(A)$, then $A \cap cl_{\beta}(U) \notin \mathcal{I}$ for every $U \in \beta O(x)$ and it implies that $A \cap cl_{\beta}(U) \neq \phi$ for every $U \in \beta O(x)$. Therefore, $x \in cl_{\theta^{\beta}}(A)$. Thus, $\beta_{**}(A) = cl(\beta_{**}(A)) \subseteq cl_{\theta^{\beta}}(A)$.
- 4. For any subset A of X, by (3) we have $\beta_{**}(A) = cl(\beta_{**}(A)) \subseteq cl_{\theta^{\beta}}(A)$. Since $A \subseteq \beta_{**}(A)$ and $\beta_{**}(A)$ is open, then $cl_{\theta^{\beta}}(A) \subseteq cl_{\theta^{\beta}}(\beta_{**}(A)) = cl(\beta_{**}(A)) = \beta_{**}(A) \subseteq cl_{\theta^{\beta}}(A)$, by Lemma 2.6, and hence $\beta_{**}(A) = cl_{\theta^{\beta}}(A)$.
- 5. Suppose that $x \in \beta_{**}(A)$. Then for any $U \in \beta O(x)$, $A \cap cl_{\beta}(U) \notin J$. Since $A \in J$, then $A \cap cl_{\beta}(U) \in J$ for every $U \in \beta O(x)$. This is contradiction. Hence $\beta_{**}(A) = \phi$.

Lemma 2.8. Let (X, τ, \mathfrak{I}) be an ideal topological space. If $U \in \tau_{\theta^{\beta}}$, then $U \cap \beta_{**}(A) = U \cap \beta_{**}(U \cap A) \subseteq \beta_{**}(U \cap A)$ for any subset A of X.

Proof: Suppose that $U \in \tau_{\theta^{\beta}}$ and $x \in U \cap \beta_{**}(A)$. Then $x \in U$ and $x \in \beta_{**}(A)$. Since $U \in \tau_{\theta^{\beta}}$, then there exists $G \in \beta O(x)$ such that $x \in G \subseteq cl(G) \subseteq U$. Let H be any β -open set containing x. Then $H \cap G \in \beta O(x)$ and $cl_{\beta}(H \cap G) \cap A \notin \mathfrak{I}$ and hence $cl_{\beta}(H) \cap (U \cap A) \notin \mathfrak{I}$. This implies that $x \in \beta_{**}(U \cap A)$ and hence we obtain $U \cap \beta_{**}(A) \subseteq \beta_{**}(U \cap A)$. Also, $U \cap \beta_{**}(A) \subseteq U \cap \beta_{**}(U \cap A)$ and by Theorem 2.7, $\beta_{**}(U \cap A) \subseteq \beta_{**}(A)$ and $U \cap \beta_{**}(U \cap A) \subseteq U \cap \beta_{**}(A)$. Thus, $U \cap \beta_{**}(A) = U \cap \beta_{**}(U \cap A)$.

Theorem 2.9. Let (X, τ, J) be an ideal topological space and A, B any subsets of X. Then the following properties hold:

- 1. $\beta_{**}(\phi) = \phi$
- 2. $\beta_{**}(A) \cup \beta_{**}(B) = \beta_{**}(A \cup B).$

Proof:

- 1. The proof is obvious.
- 2. It follows from Theorem 2.7 that $\beta_{**}(A \cup B) \supseteq \beta_{**}(A) \cup \beta_{**}(B)$. Let $x \notin \beta_{**}(A) \cup \beta_{**}(B)$. Then x belongs neither to $\beta_{**}(A)$ nor to $\beta_{**}(B)$ and there exist $U_x, V_x \in \beta O(x)$ such that $A \cap cl_\beta(U_x) \in \mathbb{J}$ and $B \cap cl_\beta(V_x) \in \mathbb{J}$. Since \mathbb{J} is additive, $[A \cap cl_\beta(U_x)] \cup [B \cap cl_\beta(V_x)] \in \mathbb{J}$. Also, by hereditary $[A \cap cl_\beta(U_x)] \cup [B \cap cl_\beta(V_x)] = [(A \cap cl_\beta(U_x)) \cup B] \cap [(A \cap cl_\beta(U_x)) \cup cl_\beta(V_x)] = [(A \cup B) \cap (cl_\beta(U_x) \cup B)] \cap [(A \cup cl_\beta(V_x)) \cap (cl_\beta(U_x) \cup cl_\beta(V_x))] \supseteq cl_\beta(U_x \cap V_x) \cap (A \cup B)$ and $cl_\beta(U_x \cap V_x) \cap (A \cup B) \in \mathbb{J}$. Since $U_x \cap V_x \in \beta O(x), x \notin \beta_{**}(A \cup B)$. Hence $(X \beta_{**}(A)) \cap (X \beta_{**}(B)) \subseteq X \beta_{**}(A \cup B)$ or $\beta_{**}(A \cup B) \subseteq \beta_{**}(A) \cup \beta_{**}(B)$. Thus, $\beta_{**}(A) \cup \beta_{**}(B) = \beta_{**}(A \cup B)$.

Lemma 2.10. Let (X, τ, \mathfrak{I}) be an ideal topological space and A, B any subsets of X. Then $\beta_{**}(A) - \beta_{**}(B) = \beta_{**}(A - B) - \beta_{**}(B)$.

Proof: Let $A, B \subseteq X$ then by Theorem 2.9, $\beta_{**}(A) = \beta_{**}[(A - B) \cup (A \cap B)] = \beta_{**}(A - B) \cup \beta_{**}(A \cap B) \subseteq \beta_{**}(A - B) \cup \beta_{**}(B)$. Thus, $\beta_{**}(A) - \beta_{**}(B) \subseteq \beta_{**}(A - B) - \beta_{**}(B)$. By Theorem 2.7, $\beta_{**}(A - B) \subseteq \beta_{**}(A)$ and hence $\beta_{**}(A - B) - \beta_{**}(B) \subseteq \beta_{**}(A) - \beta_{**}(B)$. Hence, $\beta_{**}(A) - \beta_{**}(B) = \beta_{**}(A - B) - \beta_{**}(B) = \beta_{**}(A) - \beta_{**}(B)$.

Corollary 2.11. Let (X, τ, \mathfrak{I}) be an ideal topological space and A, B be any subsets of X with $B \in \mathfrak{I}$. Then $\beta_{**} (A \cup B) = \beta_{**} (A) = \beta_{**} (A - B)$.

Proof: Since $B \in \mathcal{I}$, by Theorem 2.7, $\beta_{**}(B) = \phi$. By Lemma 2.10, $\beta_{**}(A) = \beta_{**}(A - B)$ and by Theorem 2.9, $\beta_{**}(A \cup B) = \beta_{**}(A) \cup \beta_{**}(B) = \beta_{**}(A)$.

Theorem 2.12. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then $\beta_{**}(A) \supseteq A - \bigcup \{U \subseteq X : U \in \mathfrak{I}\}$ for all $A \subseteq X$.

Proof: Let $B = \bigcup \{ U \subseteq X : U \in J \}$ and $x \in A - B$. Then $x \notin B$ implies that $x \notin U$ for all $U \in J$, so that $\{x\} = \{x\} \cap A \notin J$, because $x \in A$. For every $V \in \beta O(x)$, we have $\{x\} \cap A \subseteq cl_{\beta}(V) \cap A \notin J$, by heredity and hence $x \in \beta_{**}(A)$.

Theorem 2.13. Let (X, τ) be a topological space with ideals \mathfrak{I}_1 and \mathfrak{I}_2 on X and $A \subseteq X$, then $\beta_{**}(A)(\mathfrak{I}_1 \cap \mathfrak{I}_2) \subseteq \beta_{**}(A)(\mathfrak{I}_1) \cap \beta_{**}(A)(\mathfrak{I}_2)$. Moreover, $\beta_{**}(A)(\mathfrak{I}_1 \cap \mathfrak{I}_2) \subseteq \beta_{**}(A)(\mathfrak{I}_1) \cup \beta_{**}(A)(\mathfrak{I}_2)$ **Proof:** Let $x \in \beta_{**}(A)(\mathfrak{I}_1 \cap \mathfrak{I}_2)$. Then $cl_\beta(U) \cap A \notin \mathfrak{I}_1$ and $cl_\beta(U) \cap A \notin \mathfrak{I}_2$ for every $U \in \beta O(x)$. Hence, $x \in \beta_{**}(A)(\mathfrak{I}_1)$ and $x \in \beta_{**}(A)(\mathfrak{I}_2)$ implies $x \in \beta_{**}(A)(\mathfrak{I}_1) \cap \beta_{**}(A)(\mathfrak{I}_2)$. Thus $x \in \beta_{**}(A)(\mathfrak{I}_1) \cup \beta_{**}(A)(\mathfrak{I}_2)$.

3. $\Psi_{\beta_{++}}$ operator in ideal topological space

Definition 3.1. Let (X, τ, \mathfrak{I}) be an ideal topological space. An operator $\Psi_{\beta_{**}} : P(X) \to \tau$ is defined as follows: for every $A \subseteq X$, $\Psi_{\beta_{**}}$ $(A) = \{x \in X : \text{there exists } U \in \beta O(x) \text{ such that } cl_{\beta}(U) - A \in \mathfrak{I}\}$ and observe that $\Psi_{\beta_{**}}(A) = X - \beta_{**}(X - A)$.

For example: Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}\}$ and an ideal $\mathcal{I} = \{\phi, \{b\}\}$. Here $\beta O(X) = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X, \phi\}$. For the set $A = \{a\}, \beta_{**}(A) = \{a\}$ and $\beta_{**}(X - A) = \beta_{**}(\{b, c\}) = X$. Then, $\Psi_{\beta_{**}}(A) = X - \beta_{**}(X - A) = X - X = \phi$.

Theorem 3.2. Let (X, τ, J) be an ideal topological space. Then the following properties hold:

- 1. If $A \subseteq X$, then $\Psi_{\beta_{**}}(A)$ is β -open.
- 2. If $A \subseteq B$, then $\Psi_{\beta_{**}}(A) \subseteq \Psi_{\beta_{**}}(B)$
- 3. If $A, B \in P(X)$, then $\Psi_{\beta_{**}}(A \cap B) = \Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(B)$.
- 4. If $A \subseteq X$, then $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(\Psi_{\beta_{**}}(A))$ if and only if $\beta_{**}(X-A) = \beta_{**}(\beta_{**}(X-A))$.
- 5. If $A \in \mathcal{I}$, then $\Psi_{\beta_{**}}(A) = X \beta_{**}(X)$.
- 6. If $A \subseteq X$, $I \in \mathcal{J}$, then $\Psi_{\beta_{**}}(A-I) = \Psi_{\beta_{**}}(A)$.
- 7. If $A \subseteq X$, $I \in \mathcal{I}$, then $\Psi_{\beta_{**}}(A \cup I) = \Psi_{\beta_{**}}(A)$.
- 8. If $(A B) \cup (B A) \in \mathcal{I}$, then $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(B)$.

Proof:

- 1. Obvious by Definition.
- 2. Let $A \subseteq B$ and $x \in \Psi_{\beta_{**}}(A)$ then there exists $U \in \beta O(x)$ such that $cl_{\beta}(U) A \in \mathcal{I}$. Since $A \subseteq B$ then $cl_{\beta}(U) B \in \mathcal{I}$, for $U \in \beta O(x)$. Hence $x \in \Psi_{\beta_{**}}(B)$.

Notions of β -Closure Compatible Topology with an Ideal

- 3. Let $A, B \in P(X)$. $\Psi_{\beta_{**}}(A \cap B) = X \beta_{**} (X (A \cap B)) = X \beta_{**} [(X A) \cup (X B)] = [X \beta_{**} (X A)] \cap [X \beta_{**} (X B)] = \Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(B).$
- 4. Let $A \subseteq X$ and $\beta_{**}(X A) = \beta_{**}(\beta_{**}(X A))$. Then $\Psi_{\beta_{**}}(A) = X \beta_{**}(X A)$. Now, $\Psi_{\beta_{**}}(\Psi_{\beta_{**}}(A)) = X - \beta_{**}[(X - (X - \beta_{**}(X - A))] = X - \beta_{**}(\beta_{**}(X - A)) = X - \beta_{**}(X - A)$ $A) = \Psi_{\beta_{**}}(A)$. Conversely, assume that $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(\Psi_{\beta_{**}}(A))$. Then $X - \beta_{**}(X - A) = X - \beta_{**}[(X - (X - \beta_{**}(X - A))]$. Hence, $\beta_{**}(X - X) = \beta_{**}(\beta_{**}(X - A))$.
- 5. If $A \in \mathcal{J}$, then $\Psi_{\beta_{**}}(A) = X \beta_{**}(X A) = X \beta_{**}(X)$ by Corollary 2.11.
- 6. If $A \subseteq X$ and $I \in \mathcal{I}$, then $\Psi_{\beta_{**}}(A-I) = X \beta_{**}[X (A-I)] = X \beta_{**}[(X-A) \cup I] = X [\beta_{**}(X-A) \cup \beta_{**}(I)] = X [\beta_{**}(X-A) \cup \phi] = X \beta_{**}(X-A) = \Psi_{\beta_{**}}(A)$ by Theorem 2.7 (5).
- 7. If $A \subseteq X$, $I \in \mathcal{J}$, then $\Psi_{\beta_{**}}(A \cup I) = X \beta_{**} [X (A \cup I)] = X \beta_{**}[(X A) I] = X \beta_{**} (X A) = \Psi_{\beta_{**}}(A)$, by Corollary 2.11.
- 8. Assume that $(A B) \cup (B A) \in \mathcal{I}$. Let A B = I and B A = J. Observe that $I, J \in \mathcal{I}$ by heredity. Also, $B = (A I) \cup J$. Thus $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(A I) = \Psi_{\beta_{**}}[(A I) \cup J] = \Psi_{\beta_{**}}(B)$, by Corollary 2.11.

Corollary 3.3. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then $A \subseteq \Psi_{\beta_{**}}(A)$ for every θ^{β} -open set $A \subseteq X$.

Proof: We know that $\Psi_{\beta_{**}}(A) = X - \beta_{**}(X - A)$. Now, $\beta_{**}(X - A) \subseteq cl_{\theta^{\beta}}(X - A) = X - A$, since X - A is θ^{β} -closed. Therefore, $A = X - (X - A) \subseteq X - \beta_{**}(X - A) = \Psi_{\beta_{**}}(A)$.

The converse of this statement is not true by the following example.

Example 3.4. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and the ideal $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Here $\beta O(X) = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X, \phi\}$. Let $A = \{a\}$. Then $\Psi_{\beta_{**}}(A) = X - \beta_{**}(X - A) = X - \beta_{**}(X - \{a\}) = X - \beta_{**}(\{b, c, d\}) = X - \{d\}$ $= \{a, b, c\}$, since $\beta_{**}(\{b, c, d\}) = \{d\}$. Hence, $A \subseteq \Psi_{\beta_{**}}(A)$ but A is not θ^{β} -open.

Theorem 3.5. Let (X, τ, \mathfrak{I}) be an ideal topological space and $A \subseteq X$. Then the following properties hold: 1. Ψ_{β} $(A) = \bigcup \{ U \in \beta O(X) : cl_{\beta}(U) - A \in \mathfrak{I} \}$

- 1. $\Psi_{\beta_{**}}(A) = \bigcup \{ U \in \mathcal{D} \cup (A) : \mathcal{U}_{\beta}(U) A \in J \}$
- 2. $\Psi_{\beta_{**}}(A) \supseteq \bigcup \{ U \in \beta O(X) : (cl_{\beta}(U) A) \cup (A cl_{\beta}(U)) \in J \}.$

Proof: (a) This follows immediately from the definition of $\Psi_{\beta_{**}}$ -operator. (b) Since \mathfrak{I} is heredity, it is obvious that $\bigcup \{ U \in \beta O(X) : (cl_{\beta}(U) - A) \cup (A - cl_{\beta}(U)) \in \mathfrak{I} \} \subseteq \bigcup \{ U \in \beta O(X) : cl_{\beta}(U) - A \in \mathfrak{I} \} = \Psi_{\beta_{**}}(A)$ for every $A \subseteq X$.

Theorem 3.6. Let (X, τ, J) be an ideal topological space. If $\mu = \{A \subseteq X : A \subseteq \Psi_{\beta_{**}}(A)\}$. Then μ is a topology for X.

Proof: Let $\mu = \{A \subseteq X : A \subseteq \Psi_{\beta_{**}}(A)\}$. Since $\phi \in \mathfrak{I}$, by Theorem 2.6 (5), $\beta_{**}(\phi) = \phi$ and $\Psi_{\beta_{**}}(X) = X - \beta_{**}(X - X) = X - \beta_{**}(\phi) = X$. Also, $\Psi_{\beta_{**}}(\phi) = X - \beta_{**}(X - \phi) = X - X = \phi$. Therefore, we obtain that $\phi \subseteq \Psi_{\beta_{**}}(\phi)$ and $X \subseteq \Psi_{\beta_{**}}(X) = X$ implies ϕ and $X \in \mu$. Now if $A, B \in \mu$, then by Theorem 3.2, $A \cap B \subseteq \Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(B) = \Psi_{\beta_{**}}(A \cap B)$ which implies that $A \cap B \in \mu$. If $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \mu$, then $A_{\alpha} \subseteq \Psi_{\beta_{**}}(A_{\alpha}) \subseteq \Psi_{\beta_{**}}(\cup A_{\alpha})$ for every α and hence $\cup A_{\alpha} \subseteq \Psi_{\beta_{**}}(\cup A_{\alpha})$. This shows that μ is a topology.

Lemma 3.7. If either $A \in \beta O(X)$ or $B \in \beta O(X)$, then $int(cl(A \cap B)) = int(cl(A)) \cap int(cl(B))$. **Theorem 3.8.** Let $\mu_0 = \{A \subseteq X : A \subseteq int(cl(\Psi_{\beta_{-1}}(A)))\}$, then μ_0 is a topology for X.

Proof: For any subset A of X, $\Psi_{\beta_{**}}(A)$ is open and $\mu \subset \mu_0$ by Theorem 3.2. Hence ϕ , $X \in \mu_0$. Let $A, B \in \mu_0$. Then $A \cap B \subset int(cl(\Psi_{\beta_{**}}(A))) \cap int(cl(\Psi_{\beta_{**}}(B))) = int(cl(\Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(B))) = int(cl(\Psi_{\beta_{**}}(A \cap B)))$, by Lemma 3.7 and Theorem 3.2. Hence $A \cap B \in \mu_0$. Let $A_\alpha \in \mu_0$ for each $\alpha \in J$. By Theorem 3.2, for each $\alpha \in J$, $A_\alpha \subseteq int(cl(\Psi_{\beta_{**}}(A_\alpha))) \subseteq int(cl(\Psi_{\beta_{**}}(\cup A_\alpha)))$ implies $\cup A_\alpha \subset int(cl(\Psi_{\beta_{**}}(\cup A_\alpha)))$. Hence $\cup A_\alpha \in \mu_0$. Thus, μ_0 is a topology for X. The above discussion is shown clearly in the set implications: Figure 1.

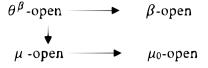


Figure 1: Sets implications

4. β closure compatible topology with an ideal

Definition 4.1. Let (X, τ, \mathfrak{I}) be an ideal topological space. We say the τ is β -closure compatible with the ideal \mathfrak{I} , denoted $\tau \sim_{\beta_{**}} \mathfrak{I}$ if the following holds for every $A \subseteq X$, if for every $x \in A$ there exists $U \in \beta O(x)$ such that $A \cap cl_{\beta}(U) \in \mathfrak{I}$, then $A \in \mathfrak{I}$.

For example: Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and an ideal $\mathfrak{I} = \{\phi, \{b\}\}$. Here $\beta O(X) = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X, \phi\}$. For the set $A_1 = \{a\}$ there exists $U = \{a, c\} \in \beta O(X, a)$ such that $cl_{\beta}(U) \cap A_1 = \{a\} \notin \mathfrak{I}$ and $A_1 \notin \mathfrak{I}$, for the set $A_2 = \{b\}$ there exists $U = \{b, c\} \in \beta O(X, b)$ such that $U \cap A_2 = \{b\} \in \mathfrak{I}$ and $A_2 \in \mathfrak{I}$, for the set $A_3 = \{c\}$ there exists $U = \{b, c\} \in \beta O(X, c)$ such that $U \cap A_3 = \{c\} \notin \mathfrak{I}$ and $A_3 \notin \mathfrak{I}$, and so on. Hence $\tau \sim_{\beta_{**}} \mathfrak{I}$.

Theorem 4.2. Let (X, τ, J) be an ideal topological space, the following properties are equivalent:

- 1. $\tau \sim_{\beta_{**}} \mathfrak{I}$
- 2. If a subset A of X has a cover of open sets each of whose β -closure intersection with A is in J, then $A \in J$.
- 3. For every $A \subseteq X$, $A \cap \beta_{**}(A) = \phi$ implies that $A \in \mathcal{I}$.
- 4. For every $A \subseteq X$, $A \beta_{**}(A) \in \mathfrak{I}$.
- 5. For every $A \subseteq X$, if A contains no nonempty subset B with $B \subseteq \beta_{**}(B)$, then $A \in \mathcal{I}$.

Proof: $(1) \Rightarrow (2)$: The proof is obvious by Definitions.

(2) \Rightarrow (3): Let $A \subseteq X$ and $x \in A$. Then $x \notin \beta_{**}(A)$ and there exists $V_x \in \beta O(x)$ such that $A \cap cl_\beta(V_x) \in \mathcal{J}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \beta O(x)$ and hence by $A \in \mathcal{J}$.

(3) \Rightarrow (4): For any $A \subseteq X$, $A - \beta_{**}(A) \subseteq A$ and $(A - \beta_{**}(A)) \cap \beta_{**}(A - \beta_{**}(A)) \subseteq (A - \beta_{**}(A)) \cap \beta_{**}(A) = \phi$. Hence $A - \beta_{**}(A) \in \mathcal{I}$, by (3).

 $(4) \Rightarrow (5): \text{ For every } A \subseteq X, A - \beta_{**}(A) \in \mathfrak{I}, \text{ by } (4). \text{ Let } A - \beta_{**}(A) = J \in \mathfrak{I}, \text{ then } A = J \cup (A \cap \beta_{**}(A)) \text{ and by Theorem 2.9} (2) \text{ and Theorem 2.6} (5), \beta_{**}(A) = \beta_{**}(J) \cup \beta_{**}(A \cap \beta_{**}(A)) = \beta_{**}(A \cap \beta_{**}(A)) = \beta_{**}(A \cap \beta_{**}(A)). \text{ Therefore, we have } A \cap \beta_{**}(A) = A \cap \beta_{**}(A \cap \beta_{**}(A)) \subseteq \beta_{**}(A \cap \beta_{**}(A)) \text{ and } A \cap \beta_{**}(A) \subseteq A. \text{ By hypothesis, } A \cap \beta_{**}(A) = \phi \text{ and hence } A - \beta_{**}(A) \in \mathfrak{I}.$

 $(5) \Rightarrow (1)$: Let $A \subseteq X$ and assume that for every $x \in A$, there exists $U \in \beta O(x)$ such that $A \cap cl(U) \in \mathcal{J}$. Then $A \cap \beta_{**}(A) \subseteq A$. Hence, $A \cap \beta_{**}(A) = \phi$, by (5). Suppose that A contains B such that $B \subseteq \beta_{**}(B)$. Then $B = B \cap \beta_{**}(B) \subseteq A \cap \beta_{**}(A) = \phi$. Hence, A contains no nonempty subset B with $B \subseteq \beta_{**}(B)$. Thus, $A \in \mathcal{J}$.

Theorem 4.3. Let (X, τ, J) be an ideal topological space. If $\tau \sim_{\beta_{**}} J$, then the following are equivalent.

- 1. For every $A \subseteq X$, $A \cap \beta_{**}(A) = \phi$ implies that $\beta_{**}(A) = \phi$
- 2. For every $A \subseteq X$, $\beta_{**}(A \beta_{**}(A)) = \phi$
- 3. For every $A \subseteq X$, $\beta_{**}(A \cap \beta_{**}(A)) = \beta_{**}(A)$.

Proof: First we show that (1) holds if $\tau \sim_{\beta_{**}} \mathfrak{I}$. For every $A \subseteq X$, and $A \cap \beta_{**}(A) = \phi$, by Theorem 4.2 (3), $A \in \mathfrak{I}$ and by Theorem 2.7 (5), $\beta_{**}(A) = \phi$. (1) \Rightarrow (2): Let $B = A - \beta_{**}(A)$, then $B \cap \beta_{**}(B) = (A - \beta_{**}(A)) \cap \beta_{**}(A - \beta_{**}(A)) = [A \cap (X - \beta_{**}(A))]$ $\beta_{**}(A)] \cap \beta_{**}(A \cap (X - \beta_{**}(A))) \subseteq [A \cap (X - \beta_{**}(A))] \cap [\beta_{**}(A) \cap \beta_{**}(X - \beta_{**}(A))] = \phi.$ This implies $\beta_{**}(B) = \phi$, by hypothesis. Hence, $\beta_{**}(A - \beta_{**}(A)) = \phi.$ (2) \Rightarrow (3): Assume that for every $A \subseteq X$, $\beta_{**}(A - \beta_{**}(A)) = \phi.$ Now, $A = (A - \beta_{**}(A)) \cup (A \cap \beta_{**}(A))$ implies $\beta_{**}(A) = \beta_{**}[(A - \beta_{**}(A)) \cup (A \cap \beta_{**}(A))] = \beta_{**}(A - \beta_{**}(A)) \cup \beta_{**}(A \cap \beta_{**}(A)) = \beta_{**}(A \cap \beta_{**}(A)).$

(3) \Rightarrow (1): Assume that for every $A \subseteq X$, $A \cap \beta_{**}(A) = \phi$ and $\beta_{**}(A \cap \beta_{**}(A)) = \beta_{**}(A)$. This implies that $\phi = \beta_{**}(\phi) = \beta_{**}(A)$.

Theorem 4.4. Let (X, τ, \mathfrak{I}) be an ideal topological space, and $\tau \sim_{\beta_{**}} \mathfrak{I}$. Then for every $G \in \tau_{\theta^{\beta}}$ and any subset A of X, $cl(\beta_{**}(G \cap A)) = \beta_{**}(G \cap A) \subseteq \beta_{**}(G \cap \beta_{**}(A)) \subseteq cl_{\theta^{\beta}} (G \cap \beta_{**}(A))$.

Proof: By Theorem 4.3 (3) and Theorem 2.7, we have $\beta_{**}(G \cap A) = \beta_{**}((G \cap A) \cap \beta_{**}(G \cap A))$ $\subseteq \beta_{**}(G \cap \beta_{**}(A))$. Also, $cl(\beta_{**}(G \cap A)) = \beta_{**}(G \cap A) \subseteq \beta_{**}(G \cap \beta_{**}(A)) \subseteq cl_{\theta^{\beta}}(G \cap \beta_{**}(A))$, by Theorem 2.6.

Theorem 4.5. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then $\tau \sim_{\beta_{**}} \mathfrak{I}$ if and only if $\Psi_{\beta_{**}}(A) - A \in \mathfrak{I}$ for every $A \subseteq X$.

Proof: Necessity: Let $A \subseteq X$. Assume that $\tau \sim_{\beta_{**}} \mathcal{I}$. Observe that $x \in \Psi_{\beta_{**}}(A) - A$ if and only if $x \notin A$ and $x \notin \beta_{**}(X - A)$ if and only if $x \notin A$ and there exists $U_x \in \beta O(x)$ such that $cl_\beta(U_x) - A \in \mathcal{I}$ if and only if there exists $U_x \in \beta O(x)$ such that $x \in cl_\beta(U_x) - A \in \mathcal{I}$. Now, for each $x \in \Psi_{\beta_{**}}(A) - A$ and $U_x \in \beta O(x)$, $cl_\beta(U_x) \cap (\Psi_{\beta_{**}}(A) - A) \in \mathcal{I}$, by heredity and hence $\Psi_{\beta_{**}}(A) - A \in \mathcal{I}$, by assumption that $\tau \sim_{\beta_{**}} \mathcal{I}$.

Sufficiency: Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \beta O(x)$ such that $cl_\beta(U_x) \cap A \in \mathcal{I}$. Observe that $\Psi_{\beta_{**}}(X - A) - (X - A) = A - \beta_{**}(A) = \{x : \text{there exists } U_x \in \beta O(x) \text{ such that } x \in cl_\beta(U_x) \cap A \in \mathcal{I}\}$. Hence $A \subseteq \Psi_{\beta_{**}}(X - A) - (X - A) \in \mathcal{I}$ and implies $A \in \mathcal{I}$, by heredity of \mathcal{I} .

Theorem 4.6. Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$, $A \subseteq X$. If U is a nonempty open subset of $\beta_{**}(A) \cap \Psi_{\beta_{**}}(A)$, then $U - A \in \mathfrak{I}$ and $cl_{\beta}(U) \cap A \notin \mathfrak{I}$. **Proof:** If $U \subseteq \beta_{**}(A) \cap \Psi_{\beta_{**}}(A)$, then $U - A \subseteq \Psi_{\beta_{**}}(A) - A \in \mathfrak{I}$, by Theorem 4.5. Hence, $U - A \in \mathfrak{I}$, by heredity. Since $U \in \beta O(X) - \{\phi\}$ and $U \subseteq \beta_{**}(A)$, we have $cl_{\beta}(U) \cap A \notin \mathfrak{I}$ by the definition of $\beta_{**}(A)$.

5. β_{**} codense ideal

Definition 5.1. Let (X, τ, \mathcal{I}) be an ideal topological space, then an ideal \mathcal{I} is said to be β_{**} -codense if $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$ where $\mathcal{C}\beta O(X) = \{cl_{\beta}(U) : U \in \beta O(X)\}$.

For example: Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and the ideal $\mathcal{I} = \{\phi, \{a\}\}$. Here $\beta O(X) = \{\{b\}, \{c\}, \{b, c\}, X, \phi\}$. Then, $\mathcal{C}\beta O(X) = \{\{b\}, \{c\}, \{b, c\}, X, \phi\}$. Therefore, $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$. Hence our ideal \mathcal{I} is a β_{**} -codense ideal.

Theorem 5.2. Let (X, τ, J) be an ideal topological space. Then the following are equivalent:

- 1. \Im is β_{**} -codense.
- 2. If $I \in \mathcal{I}$, then $int_{\theta^{\beta}}(I) = \phi$
- 3. For every clopen $G, G \subseteq \beta_{**}(G)$
- 4. $X = \beta_{**}(X)$.

Proof: (1) \Rightarrow (2): Let $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$ and $I \in \mathcal{I}$. Suppose that $x \in int_{\theta^{\beta}}(I)$. Then there exists $U \in \tau(x)$ such that $x \in U \subseteq cl(U) \subseteq I$. Since $I \in \mathcal{I}$ and then $\phi \neq \{x\} \subseteq cl(U) \in \mathcal{C}\beta O(X) \cap \mathcal{I}$. This is contradiction to $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$. Hence $int_{\theta^{\beta}}(I) = \phi$.

 $(2) \Rightarrow (3)$: Let $x \in G$. Assume that $x \notin \beta_{**}(G)$, then there exists $U_x \in \beta O(x)$ such that $G \cap cl_{\beta}(U_x) \in \mathcal{I}$ and hence $G \cap U_x \in \mathcal{I}$. Since G is clopen, by (2) and Lemma 2.6, $x \in G \cap U_x = int(G \cap U_x) \subseteq intG \cap cl_{\beta}(U_x) \subseteq int(G \cap cl(U_x)) = int_{\theta^{\beta}}(G \cap cl_{\beta}(U_x) = \phi$. It is a contradiction. Hence $x \in \beta_{**}(G)$. Thus, $G \subseteq \beta_{**}(G)$.

 $\begin{array}{l} (3) \Rightarrow (4): \text{ Since } X \text{ is clopen, then } X = \beta_{**}(X). \\ (4) \Rightarrow (1): X = \beta_{**}(X) = \{x \in X : X \cap cl_{\beta}(U) = cl_{\beta}(U) \notin \mathbb{J} \text{ for every } U \in \beta O(x)\}. \text{ Hence } \mathbb{C}\beta O(X) \cap \mathbb{J} = \phi. \end{array}$

Definition 5.3. Let (X, τ, \mathfrak{I}) be an ideal topological space. A subset A of X is called a *Baire-* β_{**} -set with respect to τ and \mathfrak{I} , denoted by $A \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I})$, if there exists a θ^{β} -open set U such that A = U [mod \mathfrak{I}]. Also, $\mathcal{U}_{\beta_r}(X, \tau, \mathfrak{I})$, denote $\{A \subseteq X :$ there exists $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I}) - \mathfrak{I}$ such that $B \subseteq A\}$. **Lemma 5.4.** Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$. If $U, V \in \tau_{\theta^{\beta}}$ and $\Psi_{\beta_{**}}(U) = \Psi_{\beta_{**}}(V)$, then U = V [mod \mathfrak{I}].

Proof: Since $U \in \tau_{\theta^{\beta}}$, then $U \subseteq \Psi_{\beta_{**}}(U)$, by Corollary 3.3, and hence $U - V \subseteq \Psi_{\beta_{**}}(U) - V \in \mathcal{J}$, by Theorem 4.5. Therefore, $U - V \in \mathcal{I}$. Similarly, $V - U \in \mathcal{I}$. Now, $(U - V) \cup (V - U) \in \mathcal{I}$, by additivity. Hence $U = V \pmod{\mathcal{I}}$.

Theorem 5.5. Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$. If $A, B \in \mathfrak{B}_{\beta_r}(X, \tau, \mathfrak{I})$ and $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(B)$, then $A = B \mod \mathfrak{I}$.

Proof: Let $U, V \in \tau_{\theta^{\beta}}$ be such that $A = U \pmod{\mathfrak{I}}$ and $B = V \pmod{\mathfrak{I}}$. Now, $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(U)$ and $\Psi_{\beta_{**}}(B) = \Psi_{\beta_{**}}(V)$, by Theorem 3.2 (8). Since $\Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(B)$, then $\Psi_{\beta_{**}}(U) = \Psi_{\beta_{**}}(V)$ and $U = V \pmod{\mathfrak{I}}$, by Lemma 5.4. Hence $A = B \pmod{\mathfrak{I}}$, by transitivity.

Proposition 5.6. Let (X, τ, \mathfrak{I}) be an ideal topological space.

- 1. If $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I}) \mathfrak{I}$, then there exists $A \in \tau_{\theta^\beta} \{\phi\}$ such that $B = A \pmod{\mathfrak{I}}$.
- 2. Let $C\beta O(X) \cap J = \phi$, then $B \in B_{\beta_r}(X, \tau, J) J$ if and only if there exists $A \in \tau_{\theta^\beta} \{\phi\}$ such that $B = A \mod J$.

Proof: (1) Assume that $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I}) - \mathfrak{I}$ then $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I})$. Then there exists $A \in \tau_{\theta^\beta}$ such that $B = A \mod \mathfrak{I}$. If $A = \phi$, then we have $B = \phi \mod \mathfrak{I}$. This implies that $B \in \mathfrak{I}$. It is contradiction. (2) Assume that there exists $A \in \tau_{\theta^\beta} - \{\phi\}$ such that $B = A \mod \mathfrak{I}$. Hence by Definition 4.11, $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I})$. So, $A = (B - J) \cup I$, where J = B - A, $I = A - B \in \mathfrak{I}$. If $B \in \mathfrak{I}$, then $A \in \mathfrak{I}$, by heredity and additivity. Since $A \in \tau_{\theta^\beta} - \{\phi\}$, $A \neq \phi$ and there exists $U \in \beta O(X)$ such that $\phi \neq U \subseteq cl_\beta(U) \subseteq A$. Since $A \in \mathfrak{I}$, $cl_\beta(U) \in \mathfrak{I}$. Therefore, $cl_\beta(U) \in \mathcal{C}\beta O(X) \cap \mathfrak{I}$. This contradicts that $\mathcal{C}\beta O(X) \cap \mathfrak{I} = \phi$.

Proposition 5.7. Let (X, τ, \mathfrak{I}) be an ideal topological space and \mathfrak{I} be β_{**} -codense. If $B \in \mathfrak{B}_{\beta_r}(X, \tau, \mathfrak{I})$ - \mathfrak{I} , then $\Psi_{\beta_{**}}(B) \cap int_{\theta^\beta}(\beta_{**}(B)) \neq \phi$.

Proof: Assume that $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I}) - \mathfrak{I}$, then by Proposition 5.6 (1), there exists $A \in \tau_{\theta^\beta} - \{\phi\}$ such that $B = A \mod \mathfrak{I}$. By Theorem 5.2 and Lemma 2.8, $A = A \cap X = A \cap \beta_{**}(X) \subseteq \beta_{**}(A \cap X) = \beta_{**}(A)$. This implies that $\phi \neq A \subseteq \beta_{**}(A) = \beta_{**}((B - \mathfrak{I}) \cup \mathfrak{I}) = \beta_{**}(B)$, where $\mathfrak{I} = B - A$, $\mathfrak{I} = A - B \in \mathfrak{I}$, by Corollary 2.11. Since $A \in \tau_{\theta^\beta}$, $A \subseteq int_{\theta^\beta}(\beta_{**}(B))$. Also, $\phi \neq A \subseteq \Psi_{\beta_{**}}(A) = \Psi_{\beta_{**}}(B)$, by Corollary 3.3 and Theorem 3.2 (8). Consequently, we obtain $A \subseteq \Psi_{\beta_{**}}(B) \cap int_{\theta^\beta}(\beta_{**}(B))$.

Proposition 5.8. Let (X, τ, \mathfrak{I}) be an ideal topological space and \mathfrak{I} be β_{**} -codense. If $\tau = \tau_{\theta^{\beta}}$, then the following statements are equivalent:

- 1. $A \in \mathcal{U}_{\beta_n}(X, \tau, \mathcal{I})$
- 2. $\Psi_{\beta_{**}}(A) \cap int_{\theta^{\beta}}(\beta_{**}(A)) \neq \phi$
- 3. $\Psi_{\beta_{**}}(A) \cap \beta_{**}(A) \neq \phi$
- 4. $\Psi_{\beta_{**}}(A) \neq \phi$
- 5. $int_{**}(A) \neq \phi$
- 6. There exists $G \in \beta O(X) \{\phi\}$ such that $G A \in \mathfrak{I}$ and $G \cap A \notin \mathfrak{I}$.

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (4): The proof is obvious.

 $\begin{array}{l} (4) \Rightarrow (5): \text{ If } \Psi_{\beta_{**}}(A) \neq \phi, \text{ then there exists } U \in \beta O(X) - \{\phi\} \text{ such that } U - A \in \mathfrak{I}. \text{ Since } U \notin \mathfrak{I} \text{ and } U \\ = (U - A) \cup (U \cap A), \text{ we have } U \cap A \notin \mathfrak{I}. \text{ By Theorem 3.2}, \phi \neq (U \cap A) \subseteq \Psi_{\beta_{**}}(U) \cap A = \Psi_{\beta_{**}}((U - A) \cap (U \cap A)) \cap A = \Psi_{\beta_{**}}(U \cap A) \cap A \subseteq \Psi_{\beta_{**}}(A) \cap A = int_{**}(A). \text{ Hence, } int_{**}(A) \neq \phi. \\ (5) \Rightarrow (6): \text{ If } int_{**}(A) \neq \phi, \text{ then there exists } G \in \beta O(X) - \{\phi\} \text{ and } I \in \mathfrak{I} \text{ such that } \phi \neq G - I \subseteq A. \end{array}$

Since every open set is β -open, we have $G - A \in \mathcal{I}$, $G = (G - A) \cup (G \cap A)$ and $G \notin \mathcal{I}$. This implies that $G \cap A \notin \mathcal{I}$.

(6) \Rightarrow (1): Let $B = G \cap A \notin \mathfrak{I}$ with $G \in \tau_{\theta^{\beta}} - \{\phi\}$ and $G - A \in \mathfrak{I}$. Then $B \in \mathcal{B}_{\beta_r}(X, \tau, \mathfrak{I}) - \mathfrak{I}$, since $B \notin \mathfrak{I}$ and $(B - G) \cup (G - B) = G - A \in \mathfrak{I}$.

Theorem 5.9. Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$ and \mathfrak{I} be β_{**} -codense. Then for $A \subseteq X, \Psi_{\beta_{**}}(A) \subseteq \beta_{**}(A)$.

Proof: Suppose that $x \in \Psi_{\beta_{**}}(A)$ and $x \notin \beta_{**}(A)$. Then there exists a nonempty neighborhood $U_x \in \beta O(x)$ such that $cl_{\beta}(U_x) \cap A \in \mathcal{I}$. Since $x \in \Psi_{\beta_{**}}(A)$, by Theorem 3.5, $x \in \bigcup \{U \in \beta O(X): cl_{\beta}(U) - A \in \mathcal{I}\}$ and there exists $V \in \beta O(x)$ and $cl_{\beta}(V) - A \in \mathcal{I}$. Now, we have $U_x \cap V \in \beta O(x), cl_{\beta}(U_x \cap V) \cap A \in \mathcal{I}$ and $cl_{\beta}(U_x \cap V) - A \in \mathcal{I}$, by heredity. Hence, by finite additivity, we have $(cl_{\beta}(U_x \cap V) \cap A) \cup (cl_{\beta}(U_x \cap V) - A) = cl_{\beta}(U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V) \in \beta O(x)$, this is contrary to $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$. Therefore, $x \in \beta_{**}(A)$. This implies that $\Psi_{\beta_{**}}(A) \subseteq \beta_{**}(A)$.

Theorem 5.10. Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$ and \mathfrak{I} be β_{**} -codense. Then $\Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(X-A) = \phi$ for every subset A of X.

Proof: Let $x \in \Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(X - A)$ for some $x \in X$, then there exist β -open sets G, F containing x such that $cl_{\beta}(G) - A \in \mathcal{I}$ and $cl_{\beta}(F) \cap A \in \mathcal{I}$ respectively. Hence, $cl_{\beta}(G \cap F) \cap A \in \mathcal{I}$ and $cl_{\beta}(G \cap F) - A \in \mathcal{I}$, by heredity, so $cl_{\beta}(G \cap F) \in \mathcal{I}$. Since $G \cap F \in \beta O(x)$, this is contrary to $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$. Thus, $\Psi_{\beta_{**}}(A) \cap \Psi_{\beta_{**}}(X - A) = \phi$.

Corollary 5.11. Let (X, τ, \mathfrak{I}) be an ideal topological space with $\tau \sim_{\beta_{**}} \mathfrak{I}$ and \mathfrak{I} be β_{**} -codense. Then β_{**} (A) $\cup \beta_{**}$ (X - A) = X for every subset A of X.

Theorem 5.12. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then the following properties are equivalent:

- 1. \mathcal{I} is β_{**} -codense.
- 2. $\Psi_{\beta_{**}}(\phi) = \phi$
- 3. If $A \subseteq X$ is β -closed, then $\Psi_{\beta_{**}}(A) A = \phi$
- 4. If $J \in \mathcal{I}$, then $\Psi_{\beta_{**}}(J) = \phi$.

Proof: (1) \Rightarrow (2): Since $\mathcal{C}\beta O(X) \cap \mathcal{I} = \phi$, then $\Psi_{\beta_{**}}(\phi) = \bigcup \{U \in \beta O(X) \text{ such that } cl_{\beta}(U) - \phi = cl_{\beta}(U) \in \mathcal{I}\} = \phi$, by Theorem 3.5.

(2) \Rightarrow (3): Assume that $x \in \Psi_{\beta_{**}}(A) - A$, then there exists a $U_x \in \beta O(x)$ such that $x \in cl_\beta(U_x) - A \in \mathcal{J}$ and $cl_\beta(U_x) - A \in \beta O(x)$. But $cl_\beta(U_x) - A \in \{U \in \beta O(x) : cl_\beta(U) \in J\} = \Psi_{\beta_{**}}(\phi)$ implies that $\Psi_{\beta_{**}}(\phi) \neq \phi$. It is a contradiction. Hence, $\Psi_{\beta_{**}}(A) - A = \phi$.

(3) \Rightarrow (4): Let $J \in \mathfrak{I}$ and by hypothesis ϕ is β -closed, then $\Psi_{\beta_{**}}(J) = \Psi_{\beta_{**}}(J \cup \phi) = \Psi_{\beta_{**}}(\phi) = \phi$. (4) \Rightarrow (1): Assume that $A \in \mathcal{C}\beta O(X) \cap \mathfrak{I}$, then $A \in \mathfrak{I}$ and by (4), $\Psi_{\beta_{**}}(A) = \phi$. Since $A \in \mathcal{C}\beta O(X)$, then $A \subseteq \Psi_{\beta_{**}}(A) = \phi$ by Corollary 3.3. Hence $\mathcal{C}\beta O(X) \cap \mathfrak{I} = \phi$.

Definition 5.13. A subset A in an ideal topological space (X, τ, J) is said to be $\mathcal{I}_{\beta_{**}}$ -dense set if $\beta_{**}(A) = X$. The collection of all $\mathcal{I}_{\beta_{**}}$ -dense sets in (X, τ, J) is denoted by $\mathcal{I}_{\beta_{**}}D(X, \tau)$. The collection of all dense sets in (X, τ) is denoted by $D(X, \tau)$.

For example: Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ and the ideal $\mathcal{I} = \{\phi, f\}$

 $\{a\}, \{b\}, \{a, b\}\}. \quad \text{Here, } \beta O(X) = \{\{a\}, \{a, b\}, \{a, c\}, X, \phi\}. \quad \text{Then, } A = \{a\}, \ \beta_{**}(A) = \phi, \ B = \{b\}, \ \beta_{**}(B) = \phi, \ C = \{c\}, \beta_{**}(C) = X, \ D = \{a, b\}, \beta_{**}(D) = \phi, \ E = \{a, c\}, \beta_{**}(E) = X, \ F = \{b, c\}, \beta_{**}(F) = X, \ G = \phi, \beta_{**}(G) = \phi, \ H = X, \ \beta_{**}(H) = X. \ \text{Hence, } \ \mathcal{I}_{\beta_{**}}D(X, \ \tau) = \{c\}, \ \{a, c\}, \{b, c\}, X\}.$

Lemma 5.14. $\tau_{**}(\mathfrak{I})$ is a topology on X, generated by the sub basis $\{cl_{\beta}(U) - E : U \in \beta O(X) \text{ and } E \in \mathfrak{I}\}$ or equivalently $\tau_{**}(\mathfrak{I}) = \{U \subset X : cl_{\beta}(X - U) = \beta_{**}(X - U)\}.$

Remark 5.15. The closure operator cl_{**} for a topology $\tau_{**}(\mathfrak{I})$ defined as follows: for $A \subseteq X$, $cl_{**}(A) = A \cup \beta_{**}(A)(\mathfrak{I}, \tau)$ and $int_{**}(A)$ denote the interior of the set A in $(X, \tau_{**}, \mathfrak{I})$. It is known that $\tau \subseteq \tau_{**}(\mathfrak{I})$. Clearly if $A \subset \beta_{**}(A)$, then $\beta_{**}(A) = cl_{**}(A)$. Also, $cl_{**}(X - A) = X - int_{**}(A)$.

Theorem 5.16. Let (X, τ, \mathfrak{I}) be an ideal topological space. If \mathfrak{I} is β_{**} -codense, then $\mathfrak{I}_{\beta_{**}}D(X, \tau) = D(X, \tau_{**})$, where $D(X, \tau_{**})$ is the collection of all dense sets in $(X, \tau_{**}, \mathfrak{I})$.

Proof: Let $A \in \mathcal{J}_{\beta_{**}} D(X, \tau)$. Then $cl_{**}(A) = A \cup \beta_{**}(A) = X$ implies $A \in D(X, \tau_{**})$. Hence $\mathcal{J}_{\beta_{**}} D(X, \tau) \subseteq D(X, \tau_{**})$. Now, let $A \in D(X, \tau_{**})$. Then, $cl_{**}(A) = A \cup \beta_{**}(A) = X$. We prove that $\beta_{**}(A) = X$. Let $x \in X$ such that $x \notin A_{**}$. Then there exists $\phi \neq U \in \beta O(X)$ such that $cl_{\beta}(U) \cap A \in \mathcal{J}$. Since $cl_{\beta}(U) \notin \mathcal{J}$, $cl_{\beta}(U) \cap (X - A) \notin \mathcal{J}$. So, $cl_{\beta}(U) \cap (X - A) \neq \phi$. Let $x_0 \in cl_{\beta}(U) \cap (X - A)$. Then $x_0 \notin A$ and also $x_0 \notin A_{**}$. Because $x_0 \in A_{**}$ implies that $cl_{\beta}(U) \cap A \notin \mathcal{J}$ which is contrary to $cl_{\beta}(U) \cap A \in \mathcal{J}$. Hence, $x_0 \notin A \cup \beta_{**}(A) = cl_{**}(A) = X$. This is contradiction, and it implies that $A \in \mathcal{J}_{\beta_{**}} D(X, \tau)$. Therefore, $D(X, \tau_{**}) \subseteq \mathcal{J}_{\beta_{**}} D(X, \tau)$. Thus, $\mathcal{J}_{\beta_{**}} D(X, \tau) = D(X, \tau_{**})$.

Theorem 5.17. Let (X, τ, \mathfrak{I}) be an ideal topological space. Then for $x \in X$, $X - \{x\}$ is $\mathfrak{I}_{\beta_{**}}$ -dense if and only if $\Psi_{\beta_{**}}$ $(\{x\}) = \phi$.

Proof: Follows from the definition of $\mathcal{I}_{\beta_{**}}$ -dense set, since $\Psi_{\beta_{**}}(\{x\}) = X - \beta_{**}(X - \{x\}) = \phi$ if and only if $X = \beta_{**}(X - \{x\})$.

Theorem 5.18. Let (X, τ, \mathfrak{I}) be an ideal topological space and \mathfrak{I} be β_{**} -codense. Then $\Psi_{\beta_{**}}(A) \neq \phi$ if and only if A contains the nonempty τ_{**} -interior.

Proof: Suppose that $\Psi_{\beta_{**}}(A) \neq \phi$ then $\Psi_{\beta_{**}}(A) = \bigcup \{ U \in \beta O(X) \text{ such that } cl_{\beta}(U) - A \in \mathcal{I} \}$ by Theorem 3.5 (1), and there exists a nonempty set $U \in \beta O(X)$ such that $cl_{\beta}(U) - A \in \mathcal{I}$. Let $cl_{\beta}(U) - A = J$, where $J \in \mathcal{I}$. Hence, $cl_{\beta}(U) - J \subseteq A$ implies $cl_{\beta}(U) - J \in \tau_{**}$ and A contains the nonempty τ_{**} -interior by Lemma 5.14. Conversely, suppose that A contains the nonempty τ_{**} -interior. Then there exists $U \in \beta O(X)$ and $J \in \mathcal{I}$ such that $cl_{\beta}(U) - J \subseteq A$. Hence, $cl_{\beta}(U) - A \subseteq J$. Let $G = cl_{\beta}(U) - A \subseteq J$, then $G \in \mathcal{I}$. Thus, $\bigcup \{ U \in \beta O(X) : cl_{\beta}(U) - A \in \mathcal{I} \} = \Psi_{\beta_{**}}(A) \neq \phi$.

6. Conclusion

In this paper, we have introduced and discussed the salient features of β -local closure function, a set operator $\Psi_{\beta_{**}}$, β_{**} -codense ideals and $\mathcal{I}_{\beta_{**}}$ -dense sets. The notions of the β -closure compatible topology τ with the ideal \mathcal{I} are explored in the ideal topological space (X, τ, \mathcal{I}) . Furthermore, we have shown that the heredity nature of ideals is imported under β -local closure function. These results are some modes of future development in ideal topological spaces.

Conflicts of interest

The authors declare that there is no conflict of interests.

References

- Abd EI-Monsef .M. E., Lashien E. F. and Nasef.A.A, Some topological operators via ideals, Kyungpook Mathematical Journal, Vol 32, No. 2, (1992).
- Ahmad Al-Omari, Takashi Noiri, Local closure function in ideal topological spaces. Novi Sad J. Math. Vol. 43, No. 2, (2013), 139-149.
- 3. Andrijevic. D, Semi-preopen sets, Mat. Vesnik, Vol.38, (1986), 24-32.
- 4. Belal Nairat, On Some Properties of β -open sets, International Journal of Applied Engineering Research, Vol.13, No.6, (2018), 3670-3672.
- Dlaska. K, Ergun. N and Ganster. M, On the topology generated by semi-regular sets, Indian J. Pure Appl. Math., Vol.25 (1994), no.11, 1163 – 1170.

- 6. Dontchev.J, Ganster.M and Rose.D, Ideal resolvability, Topology and its Applications, 93 (1999), 1-16.
- 7. Hatir.E, Keskin.A and Noiri.T, On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 3 (2003), no.1, 53 64,.
- 8. Hayashi. E, Topologies defined by local properties, Math. Ann. 156 (1964), 205-215,
- 9. Jankovic. D, Hamlett. T.R, New topologies from old via ideals, American. Math. Monthly, 97 (1990), no.4, 295 310.
- Jessie Theodore and Beulah. V, On g_{β*} I-closed sets in the ideal topological spaces, Global Journal of Pure and Applied Mathematics, 13 (2017), no.9, 6155 – 6165.
- 11. Kuratowski. K, Topology I, Warszawa, (1933).
- 12. Levine. N, Semi-open sets and semi-continuity in topological spaces, American. Math. Monthly, 70 (1963), 36 41.
- Newcomb. R. L, Topologies which are compact modulo an ideal, Ph.D.dissertation, Univ. of Cal. at Santa Barbara, (1967).
- 14. Njastad. O, Remarks on topologies defined by local properties, Avh. Norske Vid. Akad. Oslo, 1 (1966), no.8, 1 16.
- 15. Vaidyanathaswamy. R, Set Topology, Chelsea Publishing Company, (1960).
- 16. Vaidyanathaswamy. R, The localization theory in Set-topology, Proc. Indian Acad. Sci. 20 (1945), 51 61.
- 17. Veličko. N. V, H-closed topological spaces, American Mathematical Society Translations, 78 (1968), 103 118.

V. Beulah (Correspondin author), Faculty of Mathematics, Sarah Tucker College and Research scholar (Reg.No:19121172092015) of PG and Research Department of Mathematics, Rani Anna Government College for Women, Affiliated with Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India. E-mail address: beulahsamuel260gmail.com

and

Jessie Theodore, Department of Mathematics, Sarah Tucker College, Tirunelveli-627012, Tamilnadu, India. E-mail address: jessielawrence2703@gmail.com

and

D. Premalatha, Department of Mathematics, Rani Anna Government College for Women, Affiliated with Manonmaniam Sundaranar University Abishekapatti, Tirunelveli-627012, Tamilnadu, India. E-mail address: lathaaedward@gmail.com