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abstract: In this paper, we introduce a new class of open sets in a topological space (X, τ) called h-open
sets. Also, introduce and study topological properties of h-interior, h-closure, h-limit points, h-derived, h-
interior points, h-border, h-frontier and h-exterior by using the concept of h-open sets. Moreover, introduce
the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally continuous functions,
h-contra-continuous functions, h-homeomorphism and investigate some properties of these functions and study
some properties, remarks related to them.
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1. Introduction and Preliminaries

The concept of open sets is now well-known important notions in topology and its applications. For
a subset A of a topological space (X, τ ), the closure of A, the interior of A with respect to τ are denoted
by Cl(A) and Int(A) respectively. The complement of A is denoted by Ac. A subset A of a topological
space (X, τ) is said to be clopen set, if A is open and closed. This work consists of two sections. In
section one, we will introduce and study a new class of open sets which is called h-open set and introduce
the notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and
h-exterior by using the concept of h-open sets, and study their topological properties. In section two,
we will present the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally
continuous functions, h-contra-continuous functions, h-homeomorphism and investigate some properties
of these functions and study some properties, remarks related to them.

2. h-open sets

In this section, we introduce a new class of open sets which is called h-open set and introduce the
notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and h-
exterior by using the concept of h-open sets, and study their topological properties.

Definition 2.1. A subset A of the topological space (X, τ) is called h-open set if for every non-empty set
U in X, U , X and U ∈ τ , A ⊆ Int(A ∪ U). The complement of the h-open set is called h-closed. We
denote the family of all h-open sets of a topological space (X, τ ) by τh.

Example 2.2. Let X = {a, b, c, d}, τ = {∅, X, {a}, {a, b}, {a, c}, {a, b, c}}.
Then τh = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {b, c, d}}.

Example 2.3. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.
Then τh = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Remark 2.4. From Example.2.1, and Example.2.2. Note that τ ⊆ τh.
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Theorem 2.5. Every open set in any topological space (X, τ ) is h-open set.

Proof. Let (X, τ ) be any topological space and let A ⊆ X be any open set. Therefore, A = Int(A) ⊆
Int(A ∪ U), for every non-empty set U , X and U ∈ τ . Thus, A is h-open set. �

Remark 2.6. The converse of the Theorem.2.1, need, not be true as shown in the following example.

Example 2.7. In Example.2.1, {b}, {c}, {b, c}, {b, c, d} are h-open sets but not open sets.

Theorem 2.8. Let (X, τ) be a topological space and let A, B be two h-open sets. Then

1. A ∩ B is h-open set.

2. A ∪ B is h-open set.

Proof. 1) Let A and B be two h-open sets. Then from Definition.2.1, A ⊆ Int(A∪U) and B ⊆ Int(B∪U),
for every non-empty set U , X , U ∈ τ . Then A∪B ⊆ Int(A∪U)∪Int(B ∪U) ⊆ Int((A∪U)∪(B ∪U)) =
Int((A ∪ B) ∪ U). Therefore, A ∪ B is h-open set.
2) Let A and B be two h-open sets. Then from Definition.2.1, A ⊆ Int(A ∪ U) and B ⊆ Int(B ∪ U), for
every non-empty set U , X , U ∈ τ . Then A ∩ B ⊆ Int(A ∪ U) ∩ Int(B ∪ U) = Int((A ∪ U) ∩ (B ∪ U)) =
Int(((A ∪ U) ∩ B) ∪ ((A ∪ U) ∩ U)) ⊆ Int((A ∩ B) ∪ U). Therefore, A ∩ B is h-open set. �

Definition 2.9. Let (X, τ ) be a topological space and let A ⊆ X. The h-interior of A is defined as the
union of all h-open sets in X and is denoted by Inth(A). It is clear that Inth(A) is h-open set, for any
subset A of X.

Proposition 2.10. Let (X, τ ) be a topological space and let A ⊆ B ⊆ X. Then

1. Inth(A) ⊆ Inth(B).

2. Inth(A) ⊆ A.

3. A is h-open if and only if A = Inth(A).

Definition 2.11. Let (X, τ) be a topological space and let A ⊆ X. The h-closure of A is defined as the
intersection of all h-closed sets in X containing A, and is denoted by Clh(A). It is clear that Clh(A) is
h-closed set for any subset A of X.

Proposition 2.12. Let (X, τ ) be a topological space and let A ⊆ B ⊆ X. Then

1. Clh(A) ⊆ Clh(B).

2. A ⊆ Clh(A).

3. A is h-closed if and only if A = Clh(A).

Definition 2.13. Let (X, τ) be a topological space and let A ⊆ X. A point x ∈ X is said to be h-limit
point of A if it satisfies the following assertion:

(∀G ∈ τh)(x ∈ G ⇒ G ∩ (A\{x}) , ∅).

The set of all h-limit points of A is called the h-derived set of A and is denoted by Dh(A).
Note that for a subset A of X, a point x ∈ X is not a h-limit point of A if and only if there exists a h-open
set G in X such that x ∈ G and G ∩ (A\{x}) = ∅ or, equivalently, x ∈ G and G ∩ A = ∅ or G ∩ A = {x}
or, equivalently, x ∈ G and G ∩ A ⊆ {x}.

Theorem 2.14. Let (X, τ ) be a topological space and let A be a subset of X. Then the following are
equivalent

1. (∀G ∈ τh)(x ∈ G ⇒ A ∩ G , ∅).
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2. x ∈ Clh(A).

Proof. (1) ⇒(2) If x < Clh(A), then there exists a h-closed set F such that A ⊆ Fand x < F . Hence
G = X − F is a h-open set such that x ∈ G and G ∩ A = ∅. This is a contradiction, and hence (2) is
valid.

(2) ⇒(1) Straightforward. �

Theorem 2.15. Let (X, τ ) be a topological space and let A ⊆ B ⊆ X. Then

1. Clh(A) = A ∪ Dh(A).

2. A is h-closed if and only if Dh(A) ⊆ A.

3. Dh(A) ⊆ Dh(B).

4. Dh(A) ⊆ D(A).

5. Clh(A) ⊆ Cl(A).

Proof. 1) Let x < Clh(A). Then there exists a h-closed set F in X such that A ⊆ F and x < F . Hence
G = X − F is a h-open set such that x ∈ G and G ∩ A = ∅. Therefore x < A and x < Dh(A), then
x < A ∪ Dh(A). Thus A ∪ Dh(A) ⊆ Clh(A). On the other hand, x < A ∪ Dh(A) implies that there exists
a h-open set G in X such that x ∈ G and G ∩ A = ∅. Hence F = X − G is a h-closed set in X such that
A ⊆ F and x < F . Hence x < Clh(A). Thus Clh(A) ⊆ A ∪ Dh(A). Therefore Clh(A) = A ∪ Dh(A). For
(2), (3), (4) and (5) the proof is easy. �

Example 2.16. Let X = {a, b, c} with topology, τ = {∅, X, {a}, {a, b}}. Then we have the followings

1. τ ⊆ τh = {∅, X, {a}, {b}, {a, b}, {b, c}}.

2. IfA = {a, c}, then D(A) = {c} and Dh(A) = ∅.

3. IfB = {a, b}, then D(B) = {b, c} and Dh(B) = {c}.

Theorem 2.17. Let τ1 and τ2 be topologies on X such that τh
1 ⊆ τh

2 . For any subset A of X, every
h-limit point of A with respect to τ2 is a h-limit point of A with respect to τ1.

Proof. Let x be a h-limit point of A with respect to τ2. Then G ∩ (A\{x}) , ∅ for every G ∈ τh
2 such

that x ∈ G. But τh
1 ⊆ τh

2 so, in particular, G ∩ (A\{x}) , ∅ for every G ∈ τh
1 such that x ∈ G. Hence x

is a h-limit point of A with respect to τ1. �

Remark 2.18. The converse of the Theorem.2.5, need not be true as shown in the following example.

Example 2.19. X = {a, b, c}, τ1 = {∅, X, {a}} and τ2 = {∅, X, {a}, {a, b}. Then τh
1 = {∅, X, {a}, {b, c}

and τh
2 = {∅, X, {a}, {b}, {a, b}, {b, c}. Not that τh

1 ⊆ τh
2 and b is a h-limit point of A = {a, b} with respect

to τ1, but it is not a h-limit point of A with respect to τ2.

Theorem 2.20. If τ is the indiscrete (resp. discrete) topology on a set X, then τh is indiscrete (resp.
discrete) topology on X.

Proof. Straightforward. �

Lemma 2.21. If A is a subset of a discrete topological space (X, τ ), then Dh(A) = ∅.

Proof. Let x ∈ X. Recall that every subset of X is open, and so h-open. In particular, the singleton set
G = {x} is h-open. But x ∈ G and G ∩ A = {x} ∩ A ⊆ {x}. Hence x is not a h-limit point of A, and so
Dh(A) = ∅. �
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Theorem 2.22. Let (X, τ) be a topological space and let A, B subsets of X. If A is h-closed, then
Clh(A ∩ B) ⊆ A ∩ Clh(B).

Proof. If A is h-closed, then Clh(A) = A and so Clh(A ∩ B) ⊂ Clh(A) ∩ Clh(B) ⊆ A ∩ Clh(B). �

Lemma 2.23. Let (X, τ ) be a topological space and let A subset of X. Then A is h-open if and only if
there exists an open set U in X such that A ⊆ U ⊆ Cl(A).

Proof. Straightforward. �

Lemma 2.24. The intersection of an open set and h-open set is h-open set.

Proof. Let A be an open set in X and B a h-open set in X. Then there exists an open set U in X such
that B ⊆ U ⊆ Cl(B). It follows that A ∩ B ⊆ A ∩ U ⊆ A ∩ Cl(B) ⊆ Cl(A ∩ B). Now since A ∩ U is open,
it follows from Lemma.2.1 that A ∩ B is h-open. �

Definition 2.25. Let (X, τ ) be a topological space and let A ⊆ X. Then bh(A) = A\Inth(A) is called
the h-border of A, and the set Frh(A) = Clh(A)\Inth(A) is called the h-frontier of A.
Note that if A is a h-closed subset of X, then bh(A) = Frh(A).

Example 2.26. Let X = {a, b, c} with topology τ = {∅, X, {b}, {b, c}}, τh = {∅, X, {b}, {c}, {a, c}, {b, c}}.
If A = {a, b}, then Inth(A) = {b}, bh(A) = {a} and so Clh(A) = {a, b}, Frh(A) = {a}. If we take
A = {b, c}, then Inth(A) = {b, c}, bh(A) = ∅ and so Clh(A) = X, Frh(A) = {a}.

Theorem 2.27. Let (X, τ ) be a topological space and let A ⊆ X. Then

1. A = Inth(A) ∪ bh(A).

2. Inth(A) ∩ bh(A) = ∅.

3. A is a h-open set if and only if bh(A) = ∅.

4. bh(Inth(A)) = ∅.

5. Inth(bh(A)) = ∅.

6. bh(bh(A)) = bh(A).

7. bh(A) = A ∩ Clh(X\A).

8. bh(A) = A ∩ Dh(X\A).

Proof. (1) and (2). Straightforward.

(3) Since Inth(A) ⊆ A, it follows from Proposition.2.1(3) that A is h-open ⇔ A = Inth(A) ⇔ bh(A) =
A\Inth(A) = ∅.

(4) Since Inth(A) is h-open, it follows from (3) that bh(Inth(A)) = ∅.

(5) If x ∈ Inth(bh(A)), then x ∈ bh(A) ⊆ A and x ∈ Inth(A). Since Inth(bh(A)) ⊆ Inth(A). Thus
x ∈ bh(A) ∩ Inth(A) = ∅, which is a contradiction. Hence Inth(bh(A)) = ∅.

(6) Using (5), we get bh(bh(A)) = bh(A)\Inth(bh(A)) = bh(A).

(7) bh(A) = A\Inth(A) = A\(X\Clh(X\A)) = A ∩ Clh(X\A).

(8) Applying (7) and Theorem.2.4 (1), we have bh(A) = A ∩ Clh(X\A) = A ∩ ((X\A) ∪ Dh(X\A)) =
A ∩ Dh(X\A). �
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Lemma 2.28. Let (X, τ) be a topological space and let A ⊆ X. Then A a h-closed
if and only if Frh(A) ⊆ A.

Proof. Assume that A is h-closed. Then Frh(A) = Clh(A)\Inth(A) = A\Inth(A) ⊆ A. Conversely
suppose that Frh(A) ⊆ A Then Clh(A)\Inth(A) ⊆ A and so Clh(A) ⊆ A Since Inth(A) ⊆ A. Noticing
that A ⊆ Clh(A), we have A = Clh(A). �

Definition 2.29. Let (X, τ) be a topological space and let A ⊆ X. Then Exth(A) = Inth(X\A) is called
the h-exterior of A.

Example 2.30. Let X = {a, b, c} with topology τ = {∅, X, {a}, {a, b}}, τh = {∅, X, {a}, {b}, {a, b}, {b, c}}.
If A = {a, c}, then we have Exth(A) = {b}.

Theorem 2.31. Let (X, τ ) be a topological space and let A ⊆ B ⊆ X. Then

1. Exth(A) is h-open.

2. Exth(A) = X\Clh(A).

3. If A ⊆ B, then Exth(B) ⊆ Exth(A).

4. Exth(A ∪ B) ⊆ Exth(A) ∩ Exth(B).

5. Exth(A ∩ B) ⊇ Exth(A) ∪ Exth(B).

6. Exth(X) = ∅, Exth(∅) = X.

7. Exth(A) = Exth(X\Exth(A)).

8. X = Inth(A) ∪ Exth(A) ∪ Fr
h
(A).

Proof. (1) and (2) straightforward.

(3) Assume that A ⊆ B. Then Exth(B) = Inth(X\B) ⊆ Inth(X\A) = Exth(A).

(4) Exth(A ∪ B) = Inth(X\(A ∪ B)) = Inth((X\A) ∩ (X\B)) ⊆ Inth(X\A) ∩ Inth(X\B) =
Exth(A) ∩ Exth(B).

(5) Exth(A ∩ B) = Inth(X\(A ∩ B)) = Inth((X\A) ∪ (X\B)) ⊇ Inth(X\A) ∪ Inth(X\B) =
Exth(A) ∪ Exth(B).

(6) Straightforward.

(7) Exth(X\Exth(A)) = Exth(X\Inth(X\A)) = Inth(X\A) = Exth(A).

(8)Straightforward. �

Definition 2.32. A function f : (X, τ ) −→ (Y, σ) is said to be

1. totally-continuous if f−1(U) is clopen set in X, for every open set U in Y.

2. contra-continuous if f−1(U) is closed set in X, for every open set U in Y.
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3. h-continuous functions and h-homeomorphism

In this section, we introduce new classes of functions called h-continuous functions, h-open functions,
h-irresolute functions, h-totally continuous functions, h-contra-continuous functions, h-homeomorphism
and study some properties of these functions.

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be h-continuous, if f−1(U) is h-open set in X
for every open set U in Y.

Example 3.2. Let X = Y = {a, b, c}, τ = {∅, X, {a}, {c}, {a, c}}, τh = {∅, X, {a}, {c}, {a, c}} and
σ = {∅, Y, {a, c}}. Clearly, the identity function f : (X, τ) → (Y, σ) is h-continuous.

Theorem 3.3. Every continuous function is h-continuous.

Proof. Let f : (X, τ) → (Y, σ) be continuous function and U be any open subset in Y. Since, f is
continuous, then f−1(U) is open set in X. Since, every open set is h-open set by Theorem.2.1, then
f−1(U) is h-open set in X. Therefore, f is h-continuous. �

Remark 3.4. The converse of the Theorem 3.1, need, not be true as shown in the following example.

Example 3.5. Let X = {a, b, c} and Y = {1, 2, 3}, τ = {∅, X, {b}}, τh = {∅, X, {b}, {a, c}}, σ =
{∅, Y, {1}, {2, 3}}. A function f : (X, τ ) → (Y, σ) is defined by f({a}) = {2}, f({b}) = {1}, f({c}) = {3}.
Clearly, f is a h-continuous, but f is not continuous.

Theorem 3.6. If f : (X, τ ) → (Y, σ) is h-continuous and g : (Y, σ) → (Z, η) is continuous, then
g ◦ f : (X, τ ) → (Z, η) is h-continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-continuous and g : (Y, σ) → (Z, η) be continuous . Let U be an
open set in Z. Since, g is continuous, then g−1(U) is an open set in Y. Since, f is h-continuous, then
f−1((g−1(U)) = (g ◦ f)−1(U) is h-open set in X. Therefore, g ◦ f : (X, τ) → (Z, η) is h-continuous. �

Definition 3.7. A function f : (X, τ ) → (Y, σ) is said to be h-open, if f(U) is h-open set in Y for every
open set U in X.

Example 3.8. Let X = Y = {a, b, c}, τ = {∅, X, {b, c}}, σ = {∅, Y, {a}} and σh = {∅, Y, {a}, {b, c}}.
Clearly, the identity function f : (X, τ ) → (Y, σ) is h-open.

Theorem 3.9. Every open function is h-open.

Proof. Let f : (X, τ) → (Y, σ) be open function and U be any open set in X. Since, f is open, then
f(U) is open set in Y. Since, every open set is h-open set by Theorem 2.1, then f(U) is h-open set in Y.
Therefore, f is h-open. �

Remark 3.10. The converse of the Theorem 3.3, need not be true as shown in the following example.

Example 3.11. In Example 3.3, the identity function f : (X, τ) → (Y, σ) is h-open but not open.

Theorem 3.12. If f : (X, τ) → (Y, σ) is open and g : (Y, σ) → (Z, η) is h-open, then g ◦ f : (X, τ) →
(Z, η) is h-open.

Proof. Let f : (X, τ ) → (Y, σ) be open and g : (Y, σ) → (Z, η) is a h-open. Let U be an open set in X.
Since, f is an open, then f(U) is an open set in Y. Since, g is a h-open, then (g ◦ f)(U) = g(f(U)) is a
h-open set in Z. Therefore, g ◦ f : (X, τ ) → (Z, η) is h-open. �

Definition 3.13. A function f : (X, τ) → (Y, σ) is said to be h-irresolute, if f−1(U) is h-open set in X
for every h-open set U in Y.

Example 3.14. Let X = Y = {a, b, c}, τ = {∅, X, {b}, {b, c}}, τh = {∅, X, {b}, {c}, {a, c}, {b, c}}, σ =
{∅, Y, {b}} and σh = {∅, Y, {b}, {a, c}}. Clearly, the identity function f : (X, τ ) → (Y, σ) is h-irresolute.
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Theorem 3.15. Every continuous function is h-irresolute.

Proof. Let f : (X, τ ) → (Y, σ) be a continuous function and U be any h-open set in Y. Since, f is a
continuous, then Then f−1(U) is open set in X. Hence, h-open set in X by Theorem 2.1. Therefore, f is
h-irresolute. �

Remark 3.16. The converse of the Theorem 3.5, need not be true as shown in the following example.

Example 3.17. Let X = Y = {a, b, c}, τ = {∅, X, {a}, {a, c}}, τh = {∅, X, {a},

{c}, {a, c}, {b, c}}, σ = {∅, Y, {a}, {c}, {a, c}} and σh = {∅, Y, {a}, {c}, {a, c}}. Clearly, the identity func-
tion f : (X, τ ) → (Y, σ) is h-irresolute, but f is not continuous function.

Theorem 3.18. Every h-irresolute function is h-continuous.

Proof. Let f : (X, τ ) → (Y, σ) be h-irresolute function and U be any open set in Y. Since, every open
set is h-open set by Theorem 2.1. Since, f is h-irresolute, then f−1(U) is h-open set in X. Therefore f is
h-continuous. �

Remark 3.19. The converse of the Theorem 3.6, need not be true as shown in the following example.

Example 3.20. Let X = Y = {a, b, c}, τ = {∅, X, {a}}, τh = {∅, X, {a}, {b, c}}, σ = {∅, Y, {b, c}}
and σh = {∅, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Clearly, the identity function f : (X, τ ) → (Y, σ) is
h-continuous, but f is not h-irresolute.

Theorem 3.21. The composition of two h-irresolute function is also h-irresolute.

Proof. Let f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two h-irresolute. Let U be any h-open in
Z. Since, g is h-irresolute, then g−1(U) is h-open set in Y. Since, f is h-irresolute, then f−1(g−1(U)) =
(g ◦ f)−1(U) is h-open in X. Therefore, g ◦ f : (X, τ) → (Z, η) is h-irresolute. �

Theorem 3.22. If f : (X, τ ) → (Y, σ) is h-irresolute and g : (Y, σ) → (Z, η) is h-continuous, then
gof : (X, τ ) → (Z, η) is h-irresolute.

Proof. Let f : (X, τ) → (Y, σ) is h-irresolute and g : (Y, σ) → (Z, η) is h-continuous. Let U ⊂ Z. Since,
g is h-continuous and f is h-irresolute, then f−1(g−1(U)) = (g ◦ f)−1(U) is h-open in X. Therefore,
g ◦ f : (X, τ ) → (Z, η) is h-irresolute. �

Definition 3.23. A bijective function f : (X, τ ) → (Y, σ) is said to be h-homeomorphism if f is h-
continuous and h-open function.

Theorem 3.24. If f : (X, τ ) → (Y, σ) is homomorphism, then f is h-homomorphism.

Proof. Since, every continuous function is h-continuous by Theorem 3.1. Also, since every open function
is h-open by Theorem 3.3. Further, since f is bijective. Therefore, f is h-homomorphism. �

Remark 3.25. The converse of the Theorem 3.9, need not be true as shown in the following example.

Example 3.26. Let X = Y = {a, b, c}, τ = {∅, X, {a, c}}, τh = {∅, X, {a}, {b},

{c}, {a, b}, {a, c}, {b, c}}, σ = {∅, Y, {b, c}} and σh = {∅, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}}. Clearly, the identity function f : (X, τ) → (Y, σ) is h-homomorphism, but it is not homo-
morphism.

Definition 3.27. A function f : (X, τ ) → (Y, σ) is said to be h-totally continuous, if f−1(U) is clopen
set in X for every h-open set U in Y.

Example 3.28. Let X = Y = {a, b, c}, τ = {∅, X, {a}, {b, c}}, σ = {∅, Y, {a}} and σh = {∅, Y, {a}, {b, c}}.
Clearly, the identity function f : (X, τ ) → (Y, σ) is h-totally continuous function.
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Theorem 3.29. Every h-totally continuous function is totally continuous.

Proof. Let f : (X, τ ) → (Y, σ) be h-totally continuous and U be any open set in Y. Since, every open set
is h-open set by Theorem 2.1, then U is h-open set in Y. Since, f is h-totally continuous function, then
f−1(U) is clopen set in X. Therefore, f is totally continuous. �

Remark 3.30. The converse of the Theorem 3.10, need not be true as shown in the following example.

Example 3.31. Let X = Y = {a, b, c}, τ = {∅, X, {a}, {b, c}}, σ = {∅, Y, {b, c}} and
σh = {∅, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Clearly, the identity function f : (X, τ ) → (Y, σ) is to-
tally continuous function but it is not h-totally continuous.

Theorem 3.32. Every h-totally continuous function is h-irresolute.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and U be h-open set in Y. Since, f is h-totally
continuous function, then f−1(U) is clopen set in X, which implies f−1(U) open, it follow f−1(U) is
h-open set in X. Therefore, f is h-irresolute. �

Remark 3.33. The converse of the Theorem 3.11, need not be true as shown in the following example.

Example 3.34. In Example 3.5, the identity function f : (X, τ) → (Y, σ) is h-irresolute but not h-totally
continuous.

Theorem 3.35. The composition of two h-totally continuous function is also h-totally continuous.

Proof. Let f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two h-totally continuous. Let U be any
h-open in Z. Since, g is h-totally continuous, then g−1(U) is clopen set in Y, which implies f−1(U) open
set, it follow f−1(U) is h-open set. Since, f is h-totally continuous, then f−1(g−1(U)) = (g ◦ f)−1(U) is
clopen in X. Therefore, g ◦ f : (X, τ ) → (Z, η) is h-totally continuous. �

Theorem 3.36. If f : (X, τ ) → (Y, σ) be h-totally continuous and g : (Y, σ) → (Z, η) be h-irresolute,
then g ◦ f : (X, τ) → (Z, η) is h-totally continuous.

Proof. Let f : (X, τ) → (Y, σ) be h-totally continuous and g : (Y, σ) → (Z, η) be h-irresolute. Let U be
h-open set in Z. Since, g is h-irresolute, then g−1(U) is h-open set in Y. Since, f is h-totally continuous,
then f−1((g−1(U)) = (g ◦ f)−1(U) is clopen set in X. Therefore, g ◦ f : (X, τ ) → (Z, η) is h-totally
continuous. �

Theorem 3.37. If f : (X, τ) → (Y, σ) is h-totally continuous and g : (Y, σ) → (Z, η) is h-continuous,
then g ◦ f : (X, τ) → (Z, η) is totally continuous.

Proof. Let f : (X, τ ) → (Y, σ) be h-totally continuous and g : (Y, σ) → (Z, η) is h-continuous. Let U be
open set in Z. Since, g is h-continuous, then g−1(U) is h-open set in Y. Since, f is h-totally continuous,
then f−1((g−1(U)) = (g ◦ f)−1(U) is clopen set in X. Therefore, g ◦ f : (X, τ ) → (Z, η) is totally
continuous. �

Definition 3.38. A function f : (X, τ ) → (Y, σ) is said to be h-contra-continuous if f−1(U) is h-closed
set in X for every open set U in Y.

Example 3.39. Let X = Y = {a, b, c}, τ = {∅, X, {a}, {a, b}}, σ = {∅, Y, {a}} and
τh = {∅, X, {a}, {b}, {a, b}, {b, c}}. Clearly, the identity function f : (X, τ) → (Y, σ) is a h-contra-
continuous.

Theorem 3.40. Every contra-continuous function is h-contra-continuous.

Proof. Let f : (X, τ ) → (Y, σ) be contra-continuous function and U any open set in Y. Since, f is contra-
continuous, then f−1(U) is closed sets in X. Since, every closed set is h-closed set, then f−1(U) is h-closed
set in X. Therefore, f is h-contra-continuous. �
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Remark 3.41. The converse of the Theorem 3.15, need not be true as shown in the following example.

Example 3.42. In Example 3.12, the identity function f : (X, τ) → (Y, σ) is h-contra-continuous but
not contra-continuous.

Theorem 3.43. Every totally continuous function is h-contra-continuous.

Proof. Let f : (X, τ ) → (Y, σ) be totally continuous and U be any open set in Y. Since, f is totally
continuous function, then f−1(U) is clopen set in X, and hence closed, it follows h-closed set. Therefore,
f is h-contra-continuous. �

Remark 3.44. The converse of the Theorem 3.16, need not be true as shown in the following example.

Example 3.45. In Example 3.12, the identity function f : (X, τ) → (Y, σ) is h-contra-continuous but
not totally continuous.
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