

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2023 (41)** : 1–9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.51006

h-open sets in Topological Spaces

Fadhil Abbas

ABSTRACT: In this paper, we introduce a new class of open sets in a topological space (X, τ) called h-open sets. Also, introduce and study topological properties of h-interior, h-closure, h-limit points, h-derived, hinterior points, h-border, h-frontier and h-exterior by using the concept of h-open sets. Moreover, introduce the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally continuous functions, h-contra-continuous functions, h-homeomorphism and investigate some properties of these functions and study some properties, remarks related to them.

Key Words: h-open sets, h-interior, h-closure, h-limit points, h-border, h-frontier, h-exterior, hcontinuous functions, h-open functions, h-irresolute functions, h-homeomorphism, h-totally continuous functions, h-contra-continuous functions.

Contents

1	Introduction and Preliminaries	1
2	h-open sets	1
3	h-continuous functions and h-homeomorphism	6

1. Introduction and Preliminaries

The concept of open sets is now well-known important notions in topology and its applications. For a subset A of a topological space (X, τ) , the closure of A, the interior of A with respect to τ are denoted by Cl(A) and Int(A) respectively. The complement of A is denoted by A^c . A subset A of a topological space (X, τ) is said to be clopen set, if A is open and closed. This work consists of two sections. In section one, we will introduce and study a new class of open sets which is called h-open set and introduce the notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and h-exterior by using the concept of h-open sets, and study their topological properties. In section two, we will present the notion of h-continuous functions, h-open functions, h-irresolute functions, h-totally continuous functions, h-contra-continuous functions, h-homeomorphism and investigate some properties of these functions and study some properties, remarks related to them.

2. h-open sets

In this section, we introduce a new class of open sets which is called h-open set and introduce the notions of h-interior, h-closure, h-limit points, h-derived, h-interior points, h-border, h-frontier and h-exterior by using the concept of h-open sets, and study their topological properties.

Definition 2.1. A subset A of the topological space (X, τ) is called h-open set if for every non-empty set U in X, $U \neq X$ and $U \in \tau$, $A \subseteq Int(A \cup U)$. The complement of the h-open set is called h-closed. We denote the family of all h-open sets of a topological space (X, τ) by τ^h .

Example 2.2. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}.$ Then $\tau^h = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}.$

Example 2.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$ Then $\tau^h = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

Remark 2.4. From Example.2.1, and Example.2.2. Note that $\tau \subseteq \tau^h$.

²⁰¹⁰ Mathematics Subject Classification: 26A03, 54B05, 54B10, 54C35. Submitted November 15, 2019. Published August 05, 2021

F. Abbas

Theorem 2.5. Every open set in any topological space (X, τ) is h-open set.

Proof. Let (X, τ) be any topological space and let $A \subseteq X$ be any open set. Therefore, $A = Int(A) \subseteq Int(A \cup U)$, for every non-empty set $U \neq X$ and $U \in \tau$. Thus, A is h-open set. \Box

Remark 2.6. The converse of the Theorem.2.1, need, not be true as shown in the following example.

Example 2.7. In Example 2.1, $\{b\}, \{c\}, \{b, c\}, \{b, c, d\}$ are h-open sets but not open sets.

Theorem 2.8. Let (X, τ) be a topological space and let A, B be two h-open sets. Then

- 1. $A \cap B$ is h-open set.
- 2. $A \cup B$ is h-open set.

Proof. 1) Let A and B be two h-open sets. Then from Definition.2.1, $A \subseteq Int(A \cup U)$ and $B \subseteq Int(B \cup U)$, for every non-empty set $U \neq X$, $U \in \tau$. Then $A \cup B \subseteq Int(A \cup U) \cup Int(B \cup U) \subseteq Int((A \cup U) \cup (B \cup U)) = Int((A \cup B) \cup U)$. Therefore, $A \cup B$ is h-open set.

2) Let A and B be two h-open sets. Then from Definition.2.1, $A \subseteq Int(A \cup U)$ and $B \subseteq Int(B \cup U)$, for every non-empty set $U \neq X$, $U \in \tau$. Then $A \cap B \subseteq Int(A \cup U) \cap Int(B \cup U) = Int((A \cup U) \cap (B \cup U)) = Int((A \cup U) \cap B) \cup ((A \cup U) \cap U)) \subseteq Int((A \cap B) \cup U)$. Therefore, $A \cap B$ is h-open set. \Box

Definition 2.9. Let (X, τ) be a topological space and let $A \subseteq X$. The h-interior of A is defined as the union of all h-open sets in X and is denoted by $Int_h(A)$. It is clear that $Int_h(A)$ is h-open set, for any subset A of X.

Proposition 2.10. Let (X, τ) be a topological space and let $A \subseteq B \subseteq X$. Then

- 1. $Int_h(A) \subseteq Int_h(B)$.
- 2. $Int_h(A) \subseteq A$.
- 3. A is h-open if and only if $A = Int_h(A)$.

Definition 2.11. Let (X, τ) be a topological space and let $A \subseteq X$. The h-closure of A is defined as the intersection of all h-closed sets in X containing A, and is denoted by $Cl_h(A)$. It is clear that $Cl_h(A)$ is h-closed set for any subset A of X.

Proposition 2.12. Let (X, τ) be a topological space and let $A \subseteq B \subseteq X$. Then

- 1. $Cl_h(A) \subseteq Cl_h(B)$.
- 2. $A \subseteq Cl_h(A)$.
- 3. A is h-closed if and only if $A = Cl_h(A)$.

Definition 2.13. Let (X, τ) be a topological space and let $A \subseteq X$. A point $x \in X$ is said to be h-limit point of A if it satisfies the following assertion:

$$(\forall G \in \tau^h)(x \in G \Rightarrow G \cap (A \setminus \{x\}) \neq \emptyset).$$

The set of all h-limit points of A is called the h-derived set of A and is denoted by $D_h(A)$. Note that for a subset A of X, a point $x \in X$ is not a h-limit point of A if and only if there exists a h-open set G in X such that $x \in G$ and $G \cap (A \setminus \{x\}) = \emptyset$ or, equivalently, $x \in G$ and $G \cap A = \emptyset$ or $G \cap A = \{x\}$ or, equivalently, $x \in G$ and $G \cap A \subseteq \{x\}$.

Theorem 2.14. Let (X, τ) be a topological space and let A be a subset of X. Then the following are equivalent

1. $(\forall G \in \tau^h) (x \in G \Rightarrow A \cap G \neq \emptyset).$

 $\mathbf{2}$

2. $x \in Cl_h(A)$.

Proof. (1) \Rightarrow (2) If $x \notin Cl_h(A)$, then there exists a h-closed set F such that $A \subseteq F$ and $x \notin F$. Hence G = X - F is a h-open set such that $x \in G$ and $G \cap A = \emptyset$. This is a contradiction, and hence (2) is valid.

(2) \Rightarrow (1) Straightforward.

Theorem 2.15. Let (X, τ) be a topological space and let $A \subseteq B \subseteq X$. Then

- 1. $Cl_h(A) = A \cup D_h(A)$.
- 2. A is h-closed if and only if $D_h(A) \subseteq A$.
- 3. $D_h(A) \subseteq D_h(B)$.
- 4. $D_h(A) \subseteq D(A)$.
- 5. $Cl_h(A) \subseteq Cl(A)$.

Proof. 1) Let $x \notin Cl_h(A)$. Then there exists a h-closed set F in X such that $A \subseteq F$ and $x \notin F$. Hence G = X - F is a h-open set such that $x \in G$ and $G \cap A = \emptyset$. Therefore $x \notin A$ and $x \notin D_h(A)$, then $x \notin A \cup D_h(A)$. Thus $A \cup D_h(A) \subseteq Cl_h(A)$. On the other hand, $x \notin A \cup D_h(A)$ implies that there exists a h-open set G in X such that $x \in G$ and $G \cap A = \emptyset$. Hence F = X - G is a h-closed set in X such that $A \subseteq F$ and $x \notin F$. Hence $x \notin Cl_h(A)$. Thus $Cl_h(A) \subseteq A \cup D_h(A)$. Therefore $Cl_h(A) = A \cup D_h(A)$. For (2), (3), (4) and (5) the proof is easy.

Example 2.16. Let $X = \{a, b, c\}$ with topology, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then we have the followings

- 1. $\tau \subseteq \tau^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}.$
- 2. If $A = \{a, c\}$, then $D(A) = \{c\}$ and $D_h(A) = \emptyset$.
- 3. If $B = \{a, b\}$, then $D(B) = \{b, c\}$ and $D_h(B) = \{c\}$.

Theorem 2.17. Let τ_1 and τ_2 be topologies on X such that $\tau_1^h \subseteq \tau_2^h$. For any subset A of X, every *h*-limit point of A with respect to τ_2 is a *h*-limit point of A with respect to τ_1 .

Proof. Let x be a h-limit point of A with respect to τ_2 . Then $G \cap (A \setminus \{x\}) \neq \emptyset$ for every $G \in \tau_2^h$ such that $x \in G$. But $\tau_1^h \subseteq \tau_2^h$ so, in particular, $G \cap (A \setminus \{x\}) \neq \emptyset$ for every $G \in \tau_1^h$ such that $x \in G$. Hence x is a h-limit point of A with respect to τ_1 .

Remark 2.18. The converse of the Theorem. 2.5, need not be true as shown in the following example.

Example 2.19. $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{a\}, \{a, b\}$. Then $\tau_1^h = \{\emptyset, X, \{a\}, \{b, c\}$ and $\tau_2^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}$. Not that $\tau_1^h \subseteq \tau_2^h$ and b is a h-limit point of $A = \{a, b\}$ with respect to τ_1 , but it is not a h-limit point of A with respect to τ_2 .

Theorem 2.20. If τ is the indiscrete (resp. discrete) topology on a set X, then τ^h is indiscrete (resp. discrete) topology on X.

Proof. Straightforward.

Lemma 2.21. If A is a subset of a discrete topological space (X, τ) , then $D_h(A) = \emptyset$.

Proof. Let $x \in X$. Recall that every subset of X is open, and so h-open. In particular, the singleton set $G = \{x\}$ is h-open. But $x \in G$ and $G \cap A = \{x\} \cap A \subseteq \{x\}$. Hence x is not a h-limit point of A, and so $D_h(A) = \emptyset$.

Theorem 2.22. Let (X, τ) be a topological space and let A, B subsets of X. If A is h-closed, then $Cl_h(A \cap B) \subseteq A \cap Cl_h(B)$.

Proof. If A is h-closed, then $Cl_h(A) = A$ and so $Cl_h(A \cap B) \subset Cl_h(A) \cap Cl_h(B) \subseteq A \cap Cl_h(B)$.

Lemma 2.23. Let (X, τ) be a topological space and let A subset of X. Then A is h-open if and only if there exists an open set U in X such that $A \subseteq U \subseteq Cl(A)$.

Proof. Straightforward.

Lemma 2.24. The intersection of an open set and h-open set is h-open set.

Proof. Let A be an open set in X and B a h-open set in X. Then there exists an open set U in X such that $B \subseteq U \subseteq Cl(B)$. It follows that $A \cap B \subseteq A \cap U \subseteq A \cap Cl(B) \subseteq Cl(A \cap B)$. Now since $A \cap U$ is open, it follows from Lemma.2.1 that $A \cap B$ is h-open.

Definition 2.25. Let (X, τ) be a topological space and let $A \subseteq X$. Then $b_h(A) = A \setminus Int_h(A)$ is called the h-border of A, and the set $Fr_h(A) = Cl_h(A) \setminus Int_h(A)$ is called the h-frontier of A. Note that if A is a h-closed subset of X, then $b_h(A) = Fr_h(A)$.

Example 2.26. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{b\}, \{b, c\}\}, \tau^h = \{\emptyset, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}.$ If $A = \{a, b\}$, then $Int_h(A) = \{b\}$, $b_h(A) = \{a\}$ and so $Cl_h(A) = \{a, b\}$, $Fr_h(A) = \{a\}$. If we take $A = \{b, c\}$, then $Int_h(A) = \{b, c\}, b_h(A) = \emptyset$ and so $Cl_h(A) = X$, $Fr_h(A) = \{a\}$.

Theorem 2.27. Let (X, τ) be a topological space and let $A \subseteq X$. Then

- 1. $A = Int_h(A) \cup b_h(A)$.
- 2. $Int_h(A) \cap b_h(A) = \emptyset$.
- 3. A is a h-open set if and only if $b_h(A) = \emptyset$.
- 4. $b_h(Int_h(A)) = \emptyset$.
- 5. $Int_h(b_h(A)) = \emptyset$.
- 6. $b_h(b_h(A)) = b_h(A)$.
- 7. $b_h(A) = A \cap Cl_h(X \setminus A).$
- 8. $b_h(A) = A \cap D_h(X \setminus A).$

Proof. (1) and (2). Straightforward.

(3) Since $Int_h(A) \subseteq A$, it follows from Proposition.2.1(3) that A is h-open $\Leftrightarrow A = Int_h(A) \Leftrightarrow b_h(A) = A \setminus Int_h(A) = \emptyset$.

(4) Since $Int_h(A)$ is h-open, it follows from (3) that $b_h(Int_h(A)) = \emptyset$.

(5) If $x \in Int_h(b_h(A))$, then $x \in b_h(A) \subseteq A$ and $x \in Int_h(A)$. Since $Int_h(b_h(A)) \subseteq Int_h(A)$. Thus $x \in b_h(A) \cap Int_h(A) = \emptyset$, which is a contradiction. Hence $Int_h(b_h(A)) = \emptyset$.

(6) Using (5), we get $b_h(b_h(A)) = b_h(A) \setminus Int_h(b_h(A)) = b_h(A)$.

(7) $b_h(A) = A \setminus Int_h(A) = A \setminus (X \setminus Cl_h(X \setminus A)) = A \cap Cl_h(X \setminus A).$

(8) Applying (7) and Theorem.2.4 (1), we have $b_h(A) = A \cap Cl_h(X \setminus A) = A \cap ((X \setminus A) \cup D_h(X \setminus A)) = A \cap D_h(X \setminus A)$.

4

Lemma 2.28. Let (X,τ) be a topological space and let $A \subseteq X$. Then A a h-closed if and only if $Fr_h(A) \subseteq A$.

Proof. Assume that A is h-closed. Then $Fr_h(A) = Cl_h(A) \setminus Int_h(A) = A \setminus Int_h(A) \subseteq A$. Conversely suppose that $Fr_h(A) \subseteq A$ Then $Cl_h(A) \setminus Int_h(A) \subseteq A$ and so $Cl_h(A) \subseteq A$ Since $Int_h(A) \subseteq A$. Noticing that $A \subseteq Cl_h(A)$, we have $A = Cl_h(A)$.

Definition 2.29. Let (X, τ) be a topological space and let $A \subseteq X$. Then $Ext_h(A) = Int_h(X \setminus A)$ is called the h-exterior of A.

Example 2.30. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}, \tau^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. If $A = \{a, c\}$, then we have $Ext_h(A) = \{b\}$.

Theorem 2.31. Let (X, τ) be a topological space and let $A \subseteq B \subseteq X$. Then

- 1. $Ext_h(A)$ is h-open.
- 2. $Ext_h(A) = X \setminus Cl_h(A)$.
- 3. If $A \subseteq B$, then $Ext_h(B) \subseteq Ext_h(A)$.
- 4. $Ext_h(A \cup B) \subseteq Ext_h(A) \cap Ext_h(B)$.
- 5. $Ext_h(A \cap B) \supseteq Ext_h(A) \cup Ext_h(B)$.
- 6. $Ext_h(X) = \emptyset, Ext_h(\emptyset) = X.$
- 7. $Ext_h(A) = Ext_h(X \setminus Ext_h(A)).$
- 8. $X = Int_h(A) \cup Ext_h(A) \cup Fr_h(A)$.

Proof. (1) and (2) straightforward.

(3) Assume that $A \subseteq B$. Then $Ext_h(B) = Int_h(X \setminus B) \subseteq Int_h(X \setminus A) = Ext_h(A)$.

 $(4) Ext_h(A \cup B) = Int_h(X \setminus (A \cup B)) = Int_h((X \setminus A) \cap (X \setminus B)) \subseteq Int_h(X \setminus A) \cap Int_h(X \setminus B) = Ext_h(A) \cap Ext_h(B).$

(5) $Ext_h(A \cap B) = Int_h(X \setminus (A \cap B)) = Int_h((X \setminus A) \cup (X \setminus B)) \supseteq Int_h(X \setminus A) \cup Int_h(X \setminus B) = Ext_h(A) \cup Ext_h(B).$

(6) Straightforward.

(7)
$$Ext_h(X \setminus Ext_h(A)) = Ext_h(X \setminus Int_h(X \setminus A)) = Int_h(X \setminus A) = Ext_h(A).$$

(8)Straightforward.

Definition 2.32. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is said to be

- 1. totally-continuous if $f^{-1}(U)$ is clopen set in X, for every open set U in Y.
- 2. contra-continuous if $f^{-1}(U)$ is closed set in X, for every open set U in Y.

F. Abbas

3. h-continuous functions and h-homeomorphism

In this section, we introduce new classes of functions called h-continuous functions, h-open functions, h-irresolute functions, h-totally continuous functions, h-contra-continuous functions, h-homeomorphism and study some properties of these functions.

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be h-continuous, if $f^{-1}(U)$ is h-open set in X for every open set U in Y.

Example 3.2. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, \tau^h = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, Y, \{a, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-continuous.

Theorem 3.3. Every continuous function is h-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be continuous function and U be any open subset in Y. Since, f is continuous, then $f^{-1}(U)$ is open set in X. Since, every open set is h-open set by Theorem.2.1, then $f^{-1}(U)$ is h-open set in X. Therefore, f is h-continuous.

Remark 3.4. The converse of the Theorem 3.1, need, not be true as shown in the following example.

Example 3.5. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{b\}\}$, $\tau^h = \{\emptyset, X, \{b\}, \{a, c\}\}$, $\sigma = \{\emptyset, Y, \{1\}, \{2, 3\}\}$. A function $f : (X, \tau) \to (Y, \sigma)$ is defined by $f(\{a\}) = \{2\}, f(\{b\}) = \{1\}, f(\{c\}) = \{3\}$. Clearly, f is a h-continuous, but f is not continuous.

Theorem 3.6. If $f : (X, \tau) \to (Y, \sigma)$ is h-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is continuous, then $g \circ f : (X, \tau) \to (Z, \eta)$ is h-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be h-continuous and $g : (Y, \sigma) \to (Z, \eta)$ be continuous. Let U be an open set in Z. Since, g is continuous, then $g^{-1}(U)$ is an open set in Y. Since, f is h-continuous, then $f^{-1}((g^{-1}(U)) = (g \circ f)^{-1}(U)$ is h-open set in X. Therefore, $g \circ f : (X, \tau) \to (Z, \eta)$ is h-continuous. \Box

Definition 3.7. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be h-open, if f(U) is h-open set in Y for every open set U in X.

Example 3.8. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{b, c\}\}, \sigma = \{\emptyset, Y, \{a\}\}$ and $\sigma^h = \{\emptyset, Y, \{a\}, \{b, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-open.

Theorem 3.9. Every open function is h-open.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be open function and U be any open set in X. Since, f is open, then f(U) is open set in Y. Since, every open set is h-open set by Theorem 2.1, then f(U) is h-open set in Y. Therefore, f is h-open.

Remark 3.10. The converse of the Theorem 3.3, need not be true as shown in the following example.

Example 3.11. In Example 3.3, the identity function $f:(X,\tau) \to (Y,\sigma)$ is h-open but not open.

Theorem 3.12. If $f : (X, \tau) \to (Y, \sigma)$ is open and $g : (Y, \sigma) \to (Z, \eta)$ is h-open, then $g \circ f : (X, \tau) \to (Z, \eta)$ is h-open.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be open and $g : (Y, \sigma) \to (Z, \eta)$ is a h-open. Let U be an open set in X. Since, f is an open, then f(U) is an open set in Y. Since, g is a h-open, then $(g \circ f)(U) = g(f(U))$ is a h-open set in Z. Therefore, $g \circ f : (X, \tau) \to (Z, \eta)$ is h-open. \Box

Definition 3.13. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be h-irresolute, if $f^{-1}(U)$ is h-open set in X for every h-open set U in Y.

Example 3.14. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{b, c\}\}, \tau^h = \{\emptyset, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{b\}\} and \sigma^h = \{\emptyset, Y, \{b\}, \{a, c\}\}.$ Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-irresolute.

Theorem 3.15. Every continuous function is h-irresolute.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous function and U be any h-open set in Y. Since, f is a continuous, then Then $f^{-1}(U)$ is open set in X. Hence, h-open set in X by Theorem 2.1. Therefore, f is h-irresolute.

Remark 3.16. The converse of the Theorem 3.5, need not be true as shown in the following example.

Example 3.17. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, c\}\}, \tau^h = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma^h = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-irresolute, but f is not continuous function.

Theorem 3.18. Every h-irresolute function is h-continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be h-irresolute function and U be any open set in Y. Since, every open set is h-open set by Theorem 2.1. Since, f is h-irresolute, then $f^{-1}(U)$ is h-open set in X. Therefore f is h-continuous.

Remark 3.19. The converse of the Theorem 3.6, need not be true as shown in the following example.

Example 3.20. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \tau^h = \{\emptyset, X, \{a\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{b, c\}\}$ and $\sigma^h = \{\emptyset, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is *h*-continuous, but *f* is not *h*-irresolute.

Theorem 3.21. The composition of two h-irresolute function is also h-irresolute.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two h-irresolute. Let U be any h-open in Z. Since, g is h-irresolute, then $g^{-1}(U)$ is h-open set in Y. Since, f is h-irresolute, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is h-open in X. Therefore, $g \circ f: (X, \tau) \to (Z, \eta)$ is h-irresolute. \Box

Theorem 3.22. If $f : (X, \tau) \to (Y, \sigma)$ is h-irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is h-continuous, then $gof : (X, \tau) \to (Z, \eta)$ is h-irresolute.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ is h-irresolute and $g: (Y, \sigma) \to (Z, \eta)$ is h-continuous. Let $U \subset Z$. Since, g is h-continuous and f is h-irresolute, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is h-open in X. Therefore, $g \circ f: (X, \tau) \to (Z, \eta)$ is h-irresolute.

Definition 3.23. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is said to be h-homeomorphism if f is h-continuous and h-open function.

Theorem 3.24. If $f: (X, \tau) \to (Y, \sigma)$ is homomorphism, then f is h-homomorphism.

Proof. Since, every continuous function is h-continuous by Theorem 3.1. Also, since every open function is h-open by Theorem 3.3. Further, since f is bijective. Therefore, f is h-homomorphism.

Remark 3.25. The converse of the Theorem 3.9, need not be true as shown in the following example.

Example 3.26. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\}, \tau^h = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{b, c\}\}$ and $\sigma^h = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-homomorphism, but it is not homomorphism.

Definition 3.27. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be h-totally continuous, if $f^{-1}(U)$ is clopen set in X for every h-open set U in Y.

Example 3.28. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{a\}\} and \sigma^h = \{\emptyset, Y, \{a\}, \{b, c\}\}.$ Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-totally continuous function. F. Abbas

Theorem 3.29. Every h-totally continuous function is totally continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be h-totally continuous and U be any open set in Y. Since, every open set is h-open set by Theorem 2.1, then U is h-open set in Y. Since, f is h-totally continuous function, then $f^{-1}(U)$ is clopen set in X. Therefore, f is totally continuous.

Remark 3.30. The converse of the Theorem 3.10, need not be true as shown in the following example.

Example 3.31. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, \sigma = \{\emptyset, Y, \{b, c\}\}$ and $\sigma^h = \{\emptyset, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is totally continuous function but it is not h-totally continuous.

Theorem 3.32. Every h-totally continuous function is h-irresolute.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be h-totally continuous and U be h-open set in Y. Since, f is h-totally continuous function, then $f^{-1}(U)$ is clopen set in X, which implies $f^{-1}(U)$ open, it follow $f^{-1}(U)$ is h-open set in X. Therefore, f is h-irresolute.

Remark 3.33. The converse of the Theorem 3.11, need not be true as shown in the following example.

Example 3.34. In Example 3.5, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-irresolute but not h-totally continuous.

Theorem 3.35. The composition of two h-totally continuous function is also h-totally continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two h-totally continuous. Let U be any h-open in Z. Since, g is h-totally continuous, then $g^{-1}(U)$ is clopen set in Y, which implies $f^{-1}(U)$ open set, it follow $f^{-1}(U)$ is h-open set. Since, f is h-totally continuous, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is clopen in X. Therefore, $g \circ f: (X, \tau) \to (Z, \eta)$ is h-totally continuous.

Theorem 3.36. If $f : (X, \tau) \to (Y, \sigma)$ be h-totally continuous and $g : (Y, \sigma) \to (Z, \eta)$ be h-irresolute, then $g \circ f : (X, \tau) \to (Z, \eta)$ is h-totally continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be h-totally continuous and $g: (Y, \sigma) \to (Z, \eta)$ be h-irresolute. Let U be h-open set in Z. Since, g is h-irresolute, then $g^{-1}(U)$ is h-open set in Y. Since, f is h-totally continuous, then $f^{-1}((g^{-1}(U))) = (g \circ f)^{-1}(U)$ is clopen set in X. Therefore, $g \circ f: (X, \tau) \to (Z, \eta)$ is h-totally continuous.

Theorem 3.37. If $f : (X, \tau) \to (Y, \sigma)$ is h-totally continuous and $g : (Y, \sigma) \to (Z, \eta)$ is h-continuous, then $g \circ f : (X, \tau) \to (Z, \eta)$ is totally continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be h-totally continuous and $g: (Y, \sigma) \to (Z, \eta)$ is h-continuous. Let U be open set in Z. Since, g is h-continuous, then $g^{-1}(U)$ is h-open set in Y. Since, f is h-totally continuous, then $f^{-1}((g^{-1}(U))) = (g \circ f)^{-1}(U)$ is clopen set in X. Therefore, $g \circ f: (X, \tau) \to (Z, \eta)$ is totally continuous.

Definition 3.38. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be h-contra-continuous if $f^{-1}(U)$ is h-closed set in X for every open set U in Y.

Example 3.39. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, \sigma = \{\emptyset, Y, \{a\}\}$ and $\tau^h = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. Clearly, the identity function $f : (X, \tau) \to (Y, \sigma)$ is a h-contracontinuous.

Theorem 3.40. Every contra-continuous function is h-contra-continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be contra-continuous function and U any open set in Y. Since, f is contracontinuous, then $f^{-1}(U)$ is closed sets in X. Since, every closed set is h-closed set, then $f^{-1}(U)$ is h-closed set in X. Therefore, f is h-contra-continuous. **Remark 3.41.** The converse of the Theorem 3.15, need not be true as shown in the following example.

Example 3.42. In Example 3.12, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-contra-continuous but not contra-continuous.

Theorem 3.43. Every totally continuous function is h-contra-continuous.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be totally continuous and U be any open set in Y. Since, f is totally continuous function, then $f^{-1}(U)$ is clopen set in X, and hence closed, it follows h-closed set. Therefore, f is h-contra-continuous.

Remark 3.44. The converse of the Theorem 3.16, need not be true as shown in the following example.

Example 3.45. In Example 3.12, the identity function $f : (X, \tau) \to (Y, \sigma)$ is h-contra-continuous but not totally continuous.

References

- [1] E. Ekici and M. Caldas, Slightly continuous functions, Bol. Soc. Para Mat., 22(2004), 63 74.
- [2] J. Donchev, Contra continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303-310.
- [3] N. Biswas, Some mappings in topological spaces, Bull. Cal. Math. Soc., 61 (1969), 127-133.
- [4] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [5] R. L. Ellis, A non-Archimedean analogue of the Tietze-Urysohn extension theorem, Nederl. Akad. Wetensch. Proc. Ser.A, 70 (1967), 332-333.
- [6] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169-185.
- [7] S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 22(1978), 27-29.
- [8] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar. 54, no. 12(1989), 51-55.
- [9] T. Noiri, Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(1984), 241-250.

F. Abbas, Salzburger Straße 195, Linz, Austria. E-mail address: fadhilhaman@gmail.com