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On the Iterations of Generalized Bi-derivation on Prime Ring
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abstract: In the present paper we obtain some results in connection of the symmetric generalized bideriva-
tions on prime ring which are the generalization of the results of existing literature in [1], [2], [7].
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1. Introduction

Throughout the paper R will denote a ring with centre Z(R). A ring R is said to be prime if aRb = {0}
implies that either a = 0 or b = 0. We shall write [x, y] the commutator xy − yx. An additive mapping
d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y), for all x, y ∈ R. Maksa [4] introduced the
concept of a symmetric biderivation. It was shown in [4] that symmetric biderivations are related to
general solution of some functional equations. There has been ongoing interest concerning the relation-
ship between the commutativity of a ring and the existence of certain specific types of derivations. Some
results on symmetric biderivation in prime and semiprime rings can be found in [3], [4], [5] and [6].

A mapping D : R × R −→ R is said to be symmetric if D(x, y) = D(y, x), for all x, y ∈ R. A mapping
f : R −→ R defined by f(x) = D(x, x) for all x ∈ R, where D : R×R −→ R is a symmetric and biadditive
(i.e. additive in both arguments) mapping, is called the trace of D. The trace f of D satisfies the relation
f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. A biadditive mapping D : R × R −→ R is called a
biderivation if for every x ∈ R, the map y 7→ D(x, y) as well as for every y ∈ R, the map x 7→ D(x, y) is a
derivation of R, i.e., D(xy, z) = D(x, z)y +xD(y, z) for all x, y, z ∈ R and D(x, yz) = D(x, y)z +yD(x, z)
satisfied for all x, y, z ∈ R.

The notion of generalized symmetric biderivations introduced in [8], which is defined as follows:
Let R be a ring and D : R × R −→ R be a biadditive map. A biadditive mapping ∆ : R × R −→ R

is said to be generalized biderivation if for every x ∈ R, the map y 7→ ∆(x, y) is a generalized deriva-
tion of R associated with function y 7→ D(x, y) as well as if for every y ∈ R, the map x 7→ ∆(x, y)
is a generalized derivation of R associated with function x 7→ D(x, y) for all x, y ∈ R. It also satisfies
∆(x, yz) = ∆(x, y)z + yD(x, z) and ∆(xy, z) = ∆(x, z)y + xD(y, z) for all x, y, z ∈ R. The trace g of ∆
is defined as ∆(x, x) = g(x), which satisfies g(x + y) = g(x) + g(y) + 2∆(x, y) for all x, y ∈ R.

An additive mapping h : R −→ R is called left (resp. right) multiplier of R if h(xy) = h(x)y (resp.
h(xy) = xh(y)) for all x, y ∈ R. A biadditive mapping ζ : R × R −→ R is said to be a left (resp. right)
bi-multiplier of R if ζ(x, yz) = ζ(x, y)z (resp. ζ(xz, y) = xζ(z, y)) for all x, y, z ∈ R.

In this paper, we prove some theorems on symmetric generalized biderivations of prime ring in order to
generalizes the results proved in [1,2,7].

2010 Mathematics Subject Classification: 16W20, 16W25, 16N80.

Submitted May 01, 2019. Published September 18, 2019

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.47735


2 F. Shujat and A. Fallatah

2. Main Theorems

Author in [2] established that: let R be a prime ring of characteristic not two and I be a nonzero
ideal of R. If ∆ is a symmetric generalized biderivation on R with associated biderivation D such that
[∆(x, x), ∆(y, y)] = 0 for all x, y ∈ I, then one of the following conditions hold

1. R is commutative.

2. ∆ acts as a left bimultiplier on R.

Motivated by the above idea, we extend the result for n iterations of symmetric generalized biderivations.
Infact we prove the following:

Theorem 2.1. Let R be a prime ring of characteristic not two, I be an ideal of R and n ≥ 1 a fixed

integer. Consider ∆1, ∆2, ..., ∆n : R × R → R is a generalized biderivation with associated biderivation

D1, D2, ..., Dn : R×R → R respectively such that ∆1(x, x)·∆2(y, y)·· · · ∆n(u, u) = 0 for all x, y, · · · , u ∈ I.

Then one of the following holds:

1. ∆1(x, x) = 0 for x ∈ I,

2. All ∆n+1(y, y) acts as a left bi-multiplier on R, for all n ≥ 1.

Proof We shall prove it by induction. If n = 1, then it is obvious we get ∆1(x, x) = 0 for x ∈ I. Consider
now n = 1, 2, we have by hypothesis

∆1(x, x)∆2(y, y) = 0 for all x, y ∈ I. (2.1)

Linearize in y to get

∆1(x, x){∆2(y, y) + 2∆2(y, z) + ∆2(z, z)} = 0 for all x, y, z ∈ I. (2.2)

Comparing (2.1) and (2.2) and using characteristic condition on R, we find

∆1(x, x)∆2(y, z) = 0 for all x, y, z ∈ I. (2.3)

Replacing z by zr in (2.3), we obtain

∆1(x, x)∆2(y, z)r + ∆1(x, x)zD2(y, r) = 0 for all x, y ∈ I, r ∈ R. (2.4)

In view of (2.3), (2.4) takes the form

∆1(x, x)zD2(y, r) = 0 for all x, y, z ∈ I, r ∈ R. (2.5)

Since R is prime, we can find either ∆1(x, x) = 0 or D2(y, r) = 0 for all x, y ∈ I, r ∈ R. Now consider
the later case D2(y, r) = 0 for all x, y ∈ I, r ∈ R. A simple manipulation shows that ∆2(y, xr) = ∆2(y, x)r
for all x, y ∈ I, r ∈ R. Hence ∆2 acts as a left bimultiplier as desired.

If n = 1, 2, 3, then by hypothesis we can write

∆1(x, x)∆2(y, y)∆3(z, z) = 0 for all x, y, z ∈ I. (2.6)

Linearizing (2.6) in z and applying characteristic condition on R, to get

∆1(x, x)∆2(y, y)∆3(z, u) = 0 for all x, y, z, u ∈ I. (2.7)

Substituting us in place of u in (2.7) and using (2.7), we have

∆1(x, x)∆2(y, y)uD3(z, s) = 0. for all x, y, z, u ∈ I, s ∈ R. (2.8)

We conclude from equation (2.8) and primeness argument of R that either ∆1(x, x)∆2(y, y) = 0 or
D3(z, s) = 0 for all x, y, z ∈ I, s ∈ R. If we take ∆1(x, x)∆2(y, y) = 0, then we are done by previous case
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for n = 2. Now consider D3(z, s) = 0 for all z ∈ I, s ∈ R, we can find ∆3(z, ts) = ∆3(z, t)s, that is, ∆3

acts as a left bimultiplier.
Next suppose it’s true for n and we shall prove it for n + 1. Let us assume the hypothesis

∆1(x, x)∆2(y, y) · · · ∆n(z, z)∆n+1(w, w) = 0 for all x, y, z, w ∈ I. (2.9)

Linearizing (2.9) in w and applying characteristic condition on R, to get

∆1(x, x)∆2(y, y) · · · ∆n(z, z)∆n+1(w, v) = 0 for all x, y, z, w, v ∈ I. (2.10)

Substituting vt for v in (2.10) and using (2.10), we arrive at
∆1(x, x)∆2(y, y) · · · ∆n(z, z)vDn+1(w, t) = 0 for all x, y, z, u, w ∈ I, t ∈ R. Primeness of R yields that we
have either ∆1(x, x)∆2(y, y) · · · ∆n(z, z) = 0 or Dn+1(w, t) = 0. If ∆1(x, x)∆2(y, y) · · · ∆n(z, z) = 0, then
we are done by the later case. If Dn+1(w, t) = 0 for all w ∈ I, t ∈ R, then we can easily conclude that
∆n+1(w, ρt) = ∆n+1(w, ρ)t. Hence ∆n+1 acts as a left bimultiplier on R as desired. This complete the
assertion of the theorem.

Example 2.1Let R =

{(

a 0
b 0

)

| a, b ∈ S

}

where S is any commutative ring. Consider ∆1, ∆2 :

R × R −→ R be two generalized biderivation with associated map D : R × R −→ R defined as

∆1

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

a1a2 0
0 0

)

, ∆2

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

0 0
a1a2 0

)

and

D

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

0 0
0 b1b2

)

. We can easily show that if ∆1 · ∆2 = 0, then ∆2 acts as

a left bi-multiplier and ∆1 6= 0.

In [7], author prove that: Let R be a prime ring of characteristic not two and three. If D1, D2 are
the symmetric biderivations of R with trace f1, f2, respectively, such that f1(x)f2(x) = 0 for all x ∈ R,

then either D1 = 0 or D2 = 0. Authors in [1] extends the previously cited results for an ideal of a prime
ring. Now we generalizes the idea for n iteration of symmetric biderivations.

Theorem 2.2. Let R be a prime ring of characteristic not two, k ≥ 1 a fixed positive integer and

Dn : R × R −→ R, n = 1, 2, ..., k be biderivations on R such that

D1(x, x)D2(y, y)....Dn(z, z) = 0

for all x, y, z ∈ R. Then any one of Dn = 0.

Proof We will prove it by induction. For n = 1, it is obvious, that is, we get D1(x, x) = 0 for all x ∈ R.
Consider n = 2, we have by hypothesis

D1(x, x)D2(y, y) = 0 for all x, y ∈ R. (2.11)

Linearization of (2.11) in y yields that

D1(x, x)D2(y, y) + 2D1(x, x)D2(y, z) + D1(x, x)D2(z, z) = 0 for all x, y, z ∈ R. (2.12)

In view of char R 6= 2 and (2.11), (2.12) takes the form

D1(x, x)D2(y, z) = 0 for all x, y, z ∈ R. (2.13)

Substituting zu for z in (2.13) and applying (2.13), we find

D1(x, x)zD2(y, u) = 0 for all x, y, z, u ∈ R. (2.14)

In particular, we can get D1(x, x)zD2(x, x) = 0 for all x, z ∈ R. Since R is prime, we get either D1 = 0
or D2 = 0 on R. Let us consider n = 3, we have

D1(x, x)D2(y, y)D3(z, z) = 0 for all x, y, z ∈ R. (2.15)
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Linearization of (2.15) in z and use of (2.15) yields that

2D1(x, x)D2(y, y)D3(z, w) = 0 for all x, y, z, w ∈ R (2.16)

In view of char R 6= 2, (2.16) takes the form

D1(x, x)D2(y, y)D3(z, w) = 0 for all x, y, z, w ∈ R. (2.17)

Replacing zu in place of z in (2.17) and using (2.17), we obtain

D1(x, x)D2(y, y)zD3(u, w) = 0 for all x, y, z, u, w ∈ R. (2.18)

Since R is prime, we get from above equation either D1(x, x)D2(y, y) = 0 or D3(u, w) = 0 for all
x, y, z, u, w ∈ R. If we take D1(x, x).D2(y, y) = 0 for all x, y ∈ R, then we get the desired result from
above discussion. Hence we obtain either D1 = 0, or D2 = 0 or D3 = 0 on R.

Suppose that it is true for n = k. That is, if we consider

D1(x, x)D2(y, y)D3(z, z)....Dk(w, w) = 0 for all x, y, z, w ∈ R, (2.19)

then we have either D1 = 0 or D2 = 0 or D3 = 0 or ...Dk = 0 on R.

Next we consider n = k + 1, we have by hypothesis

D1(x, x)D2(y, y)D3(z, z)...Dk(w, w)Dk+1(u, u) = 0 for all x, y, z, w, u ∈ R. (2.20)

Linearization of (2.20) in u and applying (2.20) yields that

2D1(x, x)D2(y, y)....Dk(w, w)Dk+1(u, v) = 0 for all x, y, w, u, v ∈ R. (2.21)

In view of char R 6= 2, (2.21) reduces to the form

D1(x, x)D2(y, y)....Dk(w, w)Dk+1(u, v) = 0 for all x, y, w, v, u ∈ R. (2.22)

Substituting zu for u in (2.22), we find

D1(x, x)D2(y, y)....Dk(w, w)zDk+1(u, v) = 0 for all x, y, z, u, w, v ∈ R. (2.23)

Primeness of R implies that either D1(x, x)D2(y, y)....Dk(w, w) = 0 or Dk+1(u, v) = 0 for all x, y, u, w, v ∈
R. If D1(x, x)D2(y, y)...Dk(w, u) = 0 for all x, y, u, w, v ∈ R, then we get the desired result by the last
assumption. Hence we get any one of Dn = 0 on R. This complete the proof.

Example 2.2 Consider R =

{(

a c

b d

)

| a, b, c, d ∈ S

}

where S is any ring. Define

D1

((

a1 0
b1 0

)

,

(

a2 0
b2 0

))

=

(

0 0
b1b2 0

)

and

D2

((

0 a1

0 b1

)

,

(

0 a2

0 b2

))

=

(

0 b1b2

0 0

)

.

We can find that if D1(x, y) · D2(x, y) 6= 0 then D1 6= 0 and D2 6= 0. This indicates the negation
of our Theorem 2.2, which shows that to achieve D1(x, y)D2(x, y) = 0, we must have either D1 = 0 or
D2 = 0 for all x, y ∈ R. We think of the negation in this example because if we take any one of our
biderivation is zero, then it will reduces to the trivial form that product of some biderivation with zero
will be zero.
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