(3s.) v. 2022 (40) : 1-5

Construction Of Inverse Curves Of General Helices In The Sol Space $\mathfrak{S o l}^{3}$

Talat Körpinar

Abstract

In this paper, we study inverse curves of general helices in the $\mathfrak{S o l}^{3}$. Finally, we find out explicit parametric equations of inverse curves in the $\mathfrak{S o l}^{3}$.

Key Words: General helix, Sol space, Curvature, Inverse curves.

Contents

1 Introduction 1
2 Preliminaries 1
3 Inverse Curves of General Helices in Sol Space $\mathfrak{S o l}^{3}$ 2

1. Introduction

An inversion with respect to the sphere $S_{C}(r)$ with the center $C \in \mathfrak{S o l}^{3}$ is given by

$$
C+\frac{r^{2}}{\|P-C\|^{2}}(P-C)
$$

where r is radious, $P \in \mathfrak{S o l}^{3}$. The inversion is a conformal mapping and also is differentiable and a transformation defining between open subsets of $\mathfrak{S o l}^{3},[1,2,7]$.

A curve of constant slope or general helix is defined by the property that the tangent makes a constant angle with a fixed straight line (the axis of the helix). A classical result stated by M. A. Lancret in 1802, [4].

In this paper, we study inverse curves of general helices in the $\mathfrak{S o l}^{3}$. Finally, we find out explicit parametric equations of inverse curves in the $\mathfrak{S o l}^{3}$.

2. Preliminaries

Sol space, one of Thurston's eight 3-dimensional geometries, can be viewed as \mathbb{R}^{3} provided with Riemannian metric

$$
\begin{equation*}
g_{\mathfrak{S o l}^{3}}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}, \tag{2.1}
\end{equation*}
$$

where (x, y, z) are the standard coordinates in \mathbb{R}^{3}.
Note that the Sol metric can also be written as:

$$
\begin{equation*}
g_{\mathfrak{G o r}}{ }^{3}=\sum_{i=1}^{3} \boldsymbol{\omega}^{i} \otimes \boldsymbol{\omega}^{i}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\omega}^{1}=e^{z} d x, \quad \boldsymbol{\omega}^{2}=e^{-z} d y, \quad \boldsymbol{\omega}^{3}=d z, \tag{2.3}
\end{equation*}
$$

and the orthonormal basis dual to the 1 -forms is

$$
\begin{equation*}
\mathbf{e}_{1}=e^{-z} \frac{\partial}{\partial x}, \quad \mathbf{e}_{2}=e^{z} \frac{\partial}{\partial y}, \quad \mathbf{e}_{3}=\frac{\partial}{\partial z} . \tag{2.4}
\end{equation*}
$$

2010 Mathematics Subject Classification: 53A 35.
Submitted July 28, 2018. Published December 09, 2018

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric $g_{\mathfrak{S o l}^{3}}$, defined above the following is true:

$$
\nabla=\left(\begin{array}{ccc}
-\mathbf{e}_{3} & 0 & \mathbf{e}_{1} \tag{2.5}\\
0 & \mathbf{e}_{3} & -\mathbf{e}_{2} \\
0 & 0 & 0
\end{array}\right)
$$

where the (i, j)-element in the table above equals $\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}$ for our basis

$$
\left\{\mathbf{e}_{k}, k=1,2,3\right\}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

3. Inverse Curves of General Helices in Sol Space $\mathfrak{S o l}^{3}$

Assume that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame field along $\gamma,[3,5,6,8]$. Then, the Frenet frame satisfies the following Frenet-Serret equations:

$$
\begin{align*}
\nabla_{\mathbf{T}} \mathbf{T} & =\kappa \mathbf{N} \\
\nabla_{\mathbf{T}} \mathbf{N} & =-\kappa \mathbf{T}+\tau \mathbf{B} \tag{3.1}\\
\nabla_{\mathbf{T}} \mathbf{B} & =-\tau \mathbf{N}
\end{align*}
$$

where κ is the curvature of γ and τ its torsion and

$$
\begin{align*}
g_{\mathfrak{S o l}^{3}}(\mathbf{T}, \mathbf{T}) & =1, g_{\mathfrak{S o l}^{3}}(\mathbf{N}, \mathbf{N})=1, g_{\mathfrak{S o l}^{3}}(\mathbf{B}, \mathbf{B})=1, \tag{3.2}\\
g_{\mathfrak{S o l}^{3}}(\mathbf{T}, \mathbf{N}) & =g_{\mathfrak{S o l}^{3}}(\mathbf{T}, \mathbf{B})=g_{\mathfrak{S o l}^{3}}(\mathbf{N}, \mathbf{B})=0 .
\end{align*}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\mathbf{T} & =T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3}, \\
\mathbf{N} & =N_{1} \mathbf{e}_{1}+N_{2} \mathbf{e}_{2}+N_{3} \mathbf{e}_{3}, \tag{3.3}\\
\mathbf{B} & =\mathbf{T} \times \mathbf{N}=B_{1} \mathbf{e}_{1}+B_{2} \mathbf{e}_{2}+B_{3} \mathbf{e}_{3}
\end{align*}
$$

Theorem 3.1. Let $\gamma: I \longrightarrow \mathfrak{S o l}^{3}$ be a unit speed non-geodesic general helix. Then, the parametric equations of γ are

$$
\begin{align*}
x(s) & =\frac{\sin \mathfrak{P} e^{-\cos \mathfrak{P} s-\mathfrak{C}_{3}}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\cos \mathfrak{P} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\mathfrak{C}_{1} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{4}, \\
y(s) & =\frac{\sin \mathfrak{P} e^{\cos \mathfrak{P} s+\mathfrak{C}_{3}}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\mathfrak{C}_{1} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\cos \mathfrak{P} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{5}, \tag{3.4}\\
z(s) & =\cos \mathfrak{P} s+\mathfrak{C}_{3},
\end{align*}
$$

where $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \mathfrak{C}_{3}, \mathfrak{C}_{4}, \mathfrak{C}_{5}$ are constants of integration, [8].
We can use Mathematica in Theorem 3.1, yields

Figure 1: Parametric equation for $\gamma: I \longrightarrow \mathfrak{S o l}^{3}$
An inversion with respect to the sphere $S_{C}(r)$ with the center $C \in \mathfrak{S o l}^{3}$ is given by

$$
C+\frac{r^{2}}{\|P-C\|^{2}}(P-C)
$$

Let $C \in \mathfrak{S o l}^{3}$ and $r \in \mathbb{R}^{+}$. We denote that $\left(\mathfrak{S o l}^{3}\right)^{*}=\mathfrak{S o l}^{3}-\{C\}$. Then, an inversion of $\mathfrak{S o l}^{3}$ with the center $C \in \mathfrak{S o l}^{3}$ and the radius r is the map

$$
\Phi[C, r]:\left(\mathfrak{S o l}^{3}\right)^{*} \longrightarrow\left(\mathfrak{S o l}^{3}\right)^{*}
$$

given by

$$
\begin{equation*}
\Phi[C, r](P)=C+\frac{r^{2}}{\|P-C\|^{2}}(P-C) \tag{3.5}
\end{equation*}
$$

Definition 3.2. Let $\Phi[C, r]$ be an inversion with the center C and the radius r. Then, the tangent map of Φ at $P \in\left(\mathfrak{S o l}^{3}\right)^{*}$ is the map

$$
\Phi_{* p}=T_{p}\left(\left(\mathfrak{S o l}^{3}\right)^{*}\right) \longrightarrow T_{\Phi(p)}\left(\left(\mathfrak{S o l}^{3}\right)^{*}\right)
$$

given by

$$
\Phi_{* p}\left(v_{p}\right)=\frac{r^{2} v_{p}}{\|P-C\|^{2}}-\frac{2 r^{2}\left\langle(P-C), v_{P}\right\rangle}{\|P-C\|^{4}}(P-C)
$$

where $v_{p} \in T_{p}\left(\left(\mathfrak{S o l}^{3}\right)^{*}\right),[1]$.
Theorem 3.3. Let $\gamma: I \longrightarrow \mathfrak{S o l}^{3}$ be a unit speed non-geodesic general helix. Then, the equation inverse curve of γ is

$$
\begin{align*}
\tilde{\gamma}(s)= & {\left[a e^{c}+\frac{r^{2}}{\Pi(s)}\left[\frac { \operatorname { s i n } \mathfrak { P } } { \mathfrak { C } _ { 1 } ^ { 2 } + \operatorname { c o s } ^ { 2 } \mathfrak { P } } \left[-\cos \mathfrak{P} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right.\right.\right.} \\
& \left.\left.\left.+\mathfrak{C}_{1} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{4} e^{\cos \mathfrak{P} s+\mathfrak{C}_{3}}-a e^{c}\right]\right] \mathbf{e}_{1} \\
& +\left[b e^{-c}+\frac{r^{2}}{\Pi(s)}\left[\frac { \operatorname { s i n } \mathfrak { P } } { \mathfrak { C } _ { 1 } ^ { 2 } + \operatorname { c o s } ^ { 2 } \mathfrak { P } } \left[-\mathfrak{C}_{1} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right.\right.\right. \tag{3.6}\\
& \left.\left.\left.+\cos \mathfrak{P} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{5} e^{-\cos \mathfrak{P} s-\mathfrak{C}_{3}}\right]-b e^{-c}\right] \mathbf{e}_{2} \\
& +\left[c+\frac{r^{2}}{\Pi(s)}\left[\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}\right]-c\right]\right] \mathbf{e}_{3}
\end{align*}
$$

where $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \mathfrak{C}_{3}, \mathfrak{C}_{4}, \mathfrak{C}_{5}$ are constants of integration and

$$
\begin{aligned}
\Pi(s)= & {\left[\frac{\sin \mathfrak{P}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\cos \mathfrak{P} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\mathfrak{C}_{1} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{4} e^{\cos \mathfrak{P} s+\mathfrak{C}_{3}}-a e^{c}\right]^{2} } \\
& +\left[\frac{\sin \mathfrak{P}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\mathfrak{C}_{1} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\cos \mathfrak{P} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{5}^{2} e^{-\cos \mathfrak{P} s-\mathfrak{C}_{3}}-b e^{-c}\right]^{2} \\
& +\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}-c\right]^{2}
\end{aligned}
$$

Proof. Suppose that γ be a unit speed non-geodesic general helix.
Setting

$$
C=(a, b, c),
$$

where $a, b, c \in \mathbb{R}$.
Using above equation and (2.1), we have (3.6) as desired. This completes the proof.
Theorem 3.4. Let $\gamma: I \longrightarrow \mathfrak{S o l}^{3}$ be a unit speed non-geodesic general helix. Then, the parametric equations of γ are

$$
\begin{align*}
x= & e^{-\left[c+\frac{r^{2}}{\Pi(s)}\left[\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}\right]-c\right]\right]}\left[a e^{c}+\frac{r^{2}}{\Pi(s)}\left[\frac { \operatorname { s i n } \mathfrak { P } } { \mathfrak { C } _ { 1 } ^ { 2 } + \operatorname { c o s } ^ { 2 } \mathfrak { P } } \left[-\cos \mathfrak{P} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right.\right.\right. \\
& \left.\left.\left.+\mathfrak{C}_{1} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{4} e^{\cos \mathfrak{P} s+\mathfrak{C}_{3}}-a e^{c}\right]\right] \tag{3.7}\\
y= & e^{\left[c+\frac{r^{2}}{\Pi(s)}\left[\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}\right]-c\right]\right]}\left[b e^{-c}+\frac{r^{2}}{\Pi(s)}\left[\frac { \operatorname { s i n } \mathfrak { P } } { \mathfrak { C } _ { 1 } ^ { 2 } + \operatorname { c o s } ^ { 2 } \mathfrak { P } } \left[-\mathfrak{C}_{1} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right.\right.\right. \\
& \left.\left.\left.+\cos \mathfrak{P} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{5} e^{-\cos \mathfrak{P} s-\mathfrak{C}_{3}}\right]-b e^{-c}\right] \\
z= & {\left[c+\frac{r^{2}}{\Pi(s)}\left[\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}\right]-c\right]\right] }
\end{align*}
$$

where $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \mathfrak{C}_{3}, \mathfrak{C}_{4}, \mathfrak{C}_{5}$ are constants of integration and

$$
\begin{aligned}
\Pi(s)= & {\left[\frac{\sin \mathfrak{P}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\cos \mathfrak{P} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\mathfrak{C}_{1} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{4} e^{\cos \mathfrak{P} s+\mathfrak{C}_{3}}-a e^{c}\right]^{2} } \\
& +\left[\frac{\sin \mathfrak{P}}{\mathfrak{C}_{1}^{2}+\cos ^{2} \mathfrak{P}}\left[-\mathfrak{C}_{1} \cos \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]+\cos \mathfrak{P} \sin \left[\mathfrak{C}_{1} s+\mathfrak{C}_{2}\right]\right]+\mathfrak{C}_{5} e^{-\cos \mathfrak{P} s-\mathfrak{C}_{3}}-b e^{-c}\right]^{2} \\
& +\left[\cos \mathfrak{P} s+\mathfrak{C}_{3}-c\right]^{2} .
\end{aligned}
$$

Proof. Using orthonormal basis in Theorem 3.3, we easily have above system.
Finally, the obtained parametric equations for Eqs. (3.4) and (3.7) is illustrated in Fig.2:

Figure 2: Parametric equations for Eqs. (3.4) and (3.7)

References

1. A. Gray, Modern differential geometry of curves and surfaces with mathematica. CRC Press LLC, (1998).
2. G. Y.Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7(2), 130144, (1986).
3. T. Körpınar and E. Turhan, On Spacelike Biharmonic Slant Helices According to Bishop Frame in the Lorentzian Group of Rigid Motions $\mathbb{E}(1,1)$, Bol. Soc. Paran. Mat. 30 (2), 91-100, (2012).
4. M. A. Lancret: Memoire sur les courbes ' a double courbure, Memoires presentes alInstitut 1, 416-454, (1806).
5. E. Loubeau and S. Montaldo, Biminimal immersions in space forms, preprint, 2004, math.DG/0405320 v1.
6. Y. Ou and Z. Wang, Linear Biharmonic Maps into Sol, Nil and Heisenberg Spaces, Mediterr. j. math. 5, 379-394, (2008).
7. D. J. Struik, Lectures on Classical Differential Geometry, Dover, New-York, (1988).
8. E. Turhan and T. Körpınar, Parametric equations of general helices in the sol space $\mathfrak{S o l}^{3}$, Bol. Soc. Paran. Mat. 31 (1), 99-104, (2013).

Talat Körpinar,
Muş Alparslan University,
Department of Mathematics 49250,
Muş, Turkey.
E-mail address: talatkorpinar@gmail.com

