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abstract: In this paper, we introduce new notions of generalized F-contractions of type (S) and type (M)
in G-metric spaces. Some fixed point theorems are established using these new notions. A suitable example
is also provided to support our results.
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1. Introduction

A metric space is a nonempty set X equipped with a map d of two variables which helps us to measure
the distance between two points. In higher mathematics, we need to find the distance not only between
numbers and vectors, but also between sequences and functions. In order to find an appropriate concept
of a metric space, numerous approaches exist in this sphere. A number of generalizations of a metric
space have been discussed by many eminent mathematicians. In 2006, Sims and Mustafa introduced the
perception of G-metric space and gave an important generalization of a metric space as follows:

Definition 1.1. [3] Let X be a non empty set and G : X3 → [0, ∞) be a map which satisfies the following
properties:
(i) G(x, y, z) = 0 if x = y = z;
(ii) 0 < G(x, x, y) whenever x 6= y;
(iii) G(x, x, y) ≤ G(x, y, z), y 6= z;
(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = G(z, x, y) = G(y, z, x) = G(z, y, x);
(v) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), ∀x, y, z, a ∈ X.
Then, the function G is said to be G-metric on X and the pair (X, G) is known as G-metric space.

In 1922, Banach established a useful result in fixed point theory regarding a contraction mapping,
known as the Banach contraction principle.

Definition 1.2. [1] Let (X, d) be a complete metric space and let f : X → X be a self-mapping. Let
d(fx, fy) < d(x, y) holds for all x, y ∈ X with x 6= y. Then, f is called a contraction known as Banach
contraction.

In 2012, Wardowski [6] gave a new contraction known as F-contraction and proved fixed point theorem
concerning F-contractions. In this manner, Wardowski conclude the Banach contraction principle in a
different way from the eminent results from the literature. Piri and Kumam [5] also established Wardowski
type fixed point theorems in complete metric spaces. Motivated by the perception of Dung and Hang
[2], recently Piri and Kumam [5] generalized the concept of generalized F-contraction and established
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some fixed point theorems for such kind of functions in complete metric spaces, by addition of four terms
d(f2x, x), d(f2x, fx), d(f2x, y), d(f2x, fy).

Wardowski [6] defined the F-contraction as follows:

Definition 1.3. [6] Let (X, d) be a metric space and let f : X → X be a self-mapping. Then, f is called
an F -contraction on (X, d), if there exist F ∈ ℑ such that
d(fx, fy) > 0 ⇒ γ + F (d(fx, fy)) ≤ F (d(fx, fy)) for all x, y ∈ X,
where ℑ is class of all mappings F : (0, ∞) → R such that
(F1) F is strictly increasing function, that is, for all a, b ∈ (0, ∞),
if a < b, then F (a) < F (b).
(F2) For every sequence {an} of natural numbers,
limn→∞ an = 0 if and only if limn→∞ F (an) = −∞.
(F3) There exists q ∈ (0, 1) such that lima→0+(aqF (a)) = 0.

Wardowski [6] gave some examples of ℑ as follows:
1.F (ζ) = ln ζ.
2.F (ζ) = − 1

ζ
1
2

.

3.F (ζ) = ln(ζ) + ζ.
4.F (ζ) = ln(ζ2 + ζ).

Remark 1.4. Let f : R+ → R be defined as F = ln(β), then F ∈ ℑ. Now, F-contraction changes to
a Banach contraction. Consequently, the Banach contractions are special case of F-contractions. There
are F-contractions which are not Banach contractions(see [6]).

F-weak contraction was established by Wardowski and Dung in 2014, which is defined as follows:

Definition 1.5. [7] Let (X, d) be a metric space and T : X → X be a function. T is known as F-weak
contraction on (X, d), if there exist F ∈ ℑ and γ > 0 such that for all x, y ∈ X,
d(Tx,Ty) > 0 implies that

γ + F (d(Tx,Ty)) ≤ F (max{d(x, y), d(Tx, x), d(y,Ty), d(x,Ty)+d(y,Tx)
2 }).

Theorem 1.6. [7] Let (X, d) be a complete metric space and let T : X → X be an F-weak contraction.
If F or T is continuous, then T has a unique fixed point x∗ ∈ X and the sequence {Tnx} converges to x∗

for every x ∈ X, where n varies from 1 to ∞.

Dung and Hang [2] investigated the concept of generalized F-contraction and proved useful fixed point
results for such kind of functions.

Definition 1.7. [2] Let (X, d) be a metric space and f : X → X be a self-mapping. Then, f is called a
generalized F-contraction on (X, d), if there exist F ∈ ℑ and δ > 0 such that for all x, y ∈ X,

d(fx, fy) > 0 implies that

δ + F (d(fx, fy)) ≤ F (max{d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2
,

d(f2x, x) + d(f2x, fy)

2
, d(f2x, fx), d(f2x, y), d(f2x, fy)}).

Subsequently, Piri and Kumam [4] replace the condition (F3) with (F3
′

) in the definition of F-
contraction given by Wardowski [6].
(F3

′

): F is continuous on (0, ∞).
They gave the notation F to denote the class of all maps F : R+ → R which fulfil the conditions

(F1), (F2) and (F3
′

). Piri and Kumam also proved some useful fixed point results for metric spaces. Now,
the conditions (F3) and (F3

′

) are not associated with each other. For example, for q ≥ 1, F (β) = −1
βq ,

then F meet the conditions (F1) and (F2) but it does not fulfil (F3), while it fulfils the condition (F3
′

).
In view of this, it is significant to observe the sequel of Wardowski [6] with the functions F ∈ ℑ rather
than F ∈ F.

The goal of our paper is to propose new notions of modified generalized F-contraction of type (S) and
type (M) in G-metric spaces and prove fixed point theorems for such functions.
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2. Main Results

Throughout the paper, we use the following notations.
SG is the class of all functions F : (0, ∞) → R such that
(S1) F is strictly increasing, that means x < y implies that Fx < Fy, where x, y are positive reals.
(S2) limn→∞ an = 0 if and only if limn→∞ F (an) = −∞, for every sequence {an} of positive numbers.
(S3) F is continuous on(0,∞).
MG is the class of all maps F : (0, ∞) → R such that
(M1) F is strictly increasing, that means x < y implies that Fx < Fy, where x, y are positive reals.
(M2) limn→∞ an = 0 if and only if limn→∞ F (an) = −∞, for every sequence {an} of positive numbers.
(M3) ∃ m ∈ (0, 1) such that lima→0+ amF (a) = 0.

Definition 2.1. Let (X, G) be a G-metric space and f : X → X be a mapping. Then, f is known as
modified generalized F-contraction of type (S), if ∃ F ∈ SG and λ > 0 such that G(fx, fy, fz) > 0, then

λ + F (G(fx, fy, fz)) ≤ F (Sf (x, y, z)), (2.1)

where

Sf (x, y, z) = max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz), G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)}.

Definition 2.2. Let (X, G) be a G-metric space and f : X → X be a mapping. Then, f is known as
modified generalized F-contraction of type (M), if ∃ F ∈ MG and λ > 0 such that G(fx, fy, fz) > 0, then

λ + F (G(fx, fy, fz)) ≤ F (Sf (x, y, z)),

where

Sf (x, y, z) = max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz), G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)}.

Example 2.3. Let X = [0, 2].
We define G on X by G(x, y, z) =| x − y | + | y − z | + | z − x | .

Let f : X → X be defined as
fx = 3, when x ∈ [0, 2) and fx = 1

2 , if x = 5.

Now, (X, G) is complete metric space. By choosing Fx = ln x and λ = ln 1
2 , we get that f is modified

generalized F-contraction of type (S) and type (M).

Theorem 2.4. Let (X, G) be a complete G-metric space and f : X → X be a modified generalized F-
contraction of type (S). Then, f has a unique fixed point u ∈ X and the sequence {fn(x0)}, where n ∈
N, converges to u for each u ∈ X.

Proof. Let x0 ∈ X and {xn} be the Picard sequence, that is, xn = fxn−1, where n ∈ N. If ∃ n ∈ N such
that xn+1 = xn, then, fxn = xn. So, xn is fixed point of f . Let us suppose that xn 6= xn+1 ∀ n ∈ N .
Then, G(xn+1, xn, xn) > 0 ∀ n ∈ N. From equation (2.1), we have

G(fxn−1, fxn, fxn) > 0,

which implies that,

λ + F (G(fxn−1, fxn, fxn) ≤ F (max{G(xn−1, fxn, fxn), G(xn, fxn−1, fxn−1),

G(xn, fxn, fxn), G(xn, fxn, fxn), G(xn, fxn−1, fxn−1), G(xn−1, fxn, fxn})

= F (max{G(xn−1, xn+1, xn+1), G(xn, xn, xn),

G(xn, xn+1, xn+1), G(xn, xn+1, xn+1), G(xn, xn, xn), G(xn−1, xn+1, xn+1})

= F (max{G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)}).
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Therefore,

λ + F (G(fxn−1, fxn, fxn) ≤ F (max{G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)}). (2.2)

If there exists n ∈ N such that

max{G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)} = G(xn, xn+1, xn+1).

From (2.2), we get
λ + F (G(xn, xn+1, xn+1) ≤ F (G(xn, xn+1, xn+1),

we get a contradiction, because λ > 0. Therefore,

max{G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)} = G(xn−1, xn, xn)∀n ∈ N.

From (2.2), we obtain
λ + F (G(fxn−1, fxn, fxn) ≤ F (G(xn−1, xn, xn)),

which implies that
F (G(fxn−1, fxn, fxn) ≤ F (G(xn−1, xn, xn)) − λ.

Therefore,

F (G(xn, xn+1, xn+1) ≤ F (G(xn−1, xn, xn)) − λ. (2.3)

Since, λ > 0. Thus,
F (G(xn, xn+1, xn+1) < F (G(xn−1, xn, xn)).

Using the condition of (S1), F is strictly increasing. Therefore,

G(xn, xn+1, xn+1) < G(xn−1, xn, xn)∀ n ∈ N.

So, {G(xn+1, xn, xn)} is non negative decreasing sequence of real numbers, where n ∈ N . Thus, we
conclude that limn→∞ G(xn+1, xn, xn) = µ ≥ 0. Now, we claim that µ = 0. Let us suppose that µ > 0.
Also, {G(xn+1, xn, xn)} is non negative decreasing sequence of real numbers, where n ∈ N. Therefore,

µ ≤ G(xn+1, xn, xn).

Again, by using the assumption (S1), F is is strictly increasing. Therefore, Fµ ≤ H(G(xn+1, xn, xn)).
Using equation (2.3), we obtain

F (µ) ≤ F (G(xn−1, xn, xn)) − λ

≤ G(xn−2, xn−1, xn−1)) − 2λ

≤ G(xn−3, xn−2, xn−2)) − 3λ

...

≤ G(x0, x1, x1)) − nλ.

Therefore,

F (µ) ≤ F (G(x0, x1, x1)) − nλ ∀ n ∈ N. (2.4)

Also, F (µ) is a real number and limn→∞[F (G(x0, x1, x1)) − nλ)] = −∞. Therefore, ∃ m ∈ Nsuch that

[F (G(x0, x1, x1)) − nλ)] < Fµ ∀ n > m. (2.5)

Combining (2.4) and (2.5), we get

F (µ) ≤ [F (G(x0, x1, x1)) − nλ)] < Fµ ∀ n > m.
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This contradiction establishes that µ = 0. Now, we have

lim
n→∞

G(xn, fxn, fxn) = lim
n→∞

G(xn, xn+1, xn+1) = 0.

Further, we claim that {xn}∞
n=1 is a Cauchy sequence. Arguing by contradiction, let us suppose that

there exist δ > 0 and sequences {a(n)}∞
n=1, {b(n)}∞

n=1 such that for each n ∈ N,

a(n) > b(n) > n, G(xa(n), xb(n), xb(n)) ≥ δ, G(xa(n)−1, xb(n), xb(n)) < δ. (2.6)

Therefore,

δ ≤ G(xa(n), xb(n), xb(n))

≤ G(xa(n), xa(n)−1, xa(n)−1) + G(xa(n)−1, xb(n), xb(n))

≤ G(xa(n), xa(n)−1, xa(n)−1)+ ∈

= G(xa(n)−1, fxa(n)−1, fxa(n)−1).

Since, µ = 0, we obtain

lim
n→∞

G(xn, fxn, fxn) = 0. (2.7)

So, the above inequality becomes

lim
n→∞

G(xa(n), xb(n), xb(n)) = δ. (2.8)

From (2.7), ∃ p ∈ N such that

G(xa(n), fxa(n), fxa(n)) <
δ

8
and G(xb(n), fxb(n), fxb(n)) <

δ

8
∀ n ≥ p. (2.9)

Now, we claim that

G(fxa(n), fxb(n), fxb(n)) = G(xa(n)+1, xb(n)+1, xb(n)+1) > 0 ∀ n ≥ p. (2.10)

Again by contradiction, let us suppose that ∃ q ≥ N , such that

G(xa(q)+1, fxb(q)+1, fxb(q)+1) = 0. (2.11)

Combining (2.6),(2.9),(2.11), we get

δ ≤ G(xa(q), xb(q), xb(q))

≤ G(xa(q), xa(q)+1, xa(q)+1) + G(xa(q)+1, xb(q), xb(q))

≤ G(xa(q), xa(q)+1, xa(q)+1) + G(xa(q)+1, xb(q)+1, xb(q)+1) + G(xb(q)+1, xb(q), xb(q))

= G(xa(q), fxa(q), fxa(q)) + G(xa(q)+1, xb(q)+1, xb(q)+1) + G(xb(q), fxb(q), fxb(q))

<
δ

8
+ 0 +

δ

8
=

δ

4
,

which is contradiction and hence our supposition is wrong.
Thus, we get

G(fxa(n), fxb(n), fxb(n)) = G(xa(n)+1, xb(n)+1, xb(n)+1) > 0 ∀ n ≥ p.

From (2.10) and assumption of the theorem, we obtain

λ + F (G(fxa(n), fxb(n), fxb(n))) ≤ F (G(xa(n), xb(n), fxb(n))) ∀ n ≥ N. (2.12)
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From (S3), (2.8) and (2.12), we get
λ + H(δ) ≤ H(δ),

which is contradiction. Hence,{xn}∞
n=1 is a cauchy sequence. By completeness property of (X, G),

{xn}∞
n=1 converges to a point u in X . Therefore,

lim
n→∞

G(xn, u, u) = 0. (2.13)

Finally, we show that fu = u. Two cases arise,
(i) ∀ n ∈ N ∃ kn ∈ N, kn > kn−1, k0 = 1 and xkn+1 = fu.

(ii) ∃ m3 ∈ N, ∀n ≥ m3, G(fxn, fu, fu) > 0.

In the first case
u = lim

n→∞
xkn+1

= lim
n→∞

fu = fu.

In the second case, using the assumption of the Theorem 2.4, we get

λ + F (G(xn+1, fu, fu)) = λ + F (G(fxn, fu, fu))

≤ F (max{G(xn, fu, fu), G(u, fxn, fxn), G(u, fu, fu),

G(u, fu, fu), G(u, fxn, fxn), G(xn, fu, fu)},

for each n ≥ m3.
From (S3), (2.13) and taking limit when n → ∞, the above inequality becomes λ + H(G(u, fu, fu)) ≤
H(G(u, fu, fu)), which is contradiction. So our supposition is wrong. Therefore, fu = u. Next, we show
that f has atmost one fixed point. On the contrary, we suppose that u and v are two fixed points of f ,
such that fu

.
= u 6= v

.
= fv. Now, G(fu, fv, fv) = G(u, v, v) > 0. From (2.1), we get

F (G(u, v, v)) < λ + F (G(u, v, v))

= λ + F (G(fu, fv, fv))

≤ F (max{G(u, fv, fv), G(v, fu, fu), G(v, fv, fv), G(v, fv, fv), (2.14)

G(v, fu, fu), G(u, fv, fv)})

= F (max{G(u, v, v), G(v, u, u), G(v, v, v), G(v, v, v), G(v, u, u), G(u, v, v)})

= F (G(u, v, v).

It is a contradiction. Therefore, G(u, v, v) = 0, that means u = v. This establishes that the fixed point
of f is unique. �

Theorem 2.5. Let (X, G) be a complete G-metric space and f : X → X be a continuous modified
generalized F-contraction of type (M). Then, f has a unique fixed point u ∈ X and the sequence fn(x0),
where n ∈ N converges to u, for each u ∈ X.

Proof. By using identical procedure which is used in Theorem 2.4, we get

H(G(xn, xn+1, xn+1)) = H(G(fxn−1, fxn, fxn))

≤ H(G(xn−1, xn, xn)) − λ

< H(G(xn−1, xn, xn)).

Therefore,

lim
n→∞

G(xn, fxn, fxn) = lim
n→∞

G(xn, xn+1, xn+1) = 0.

As in proof of Theorem 2.4, we can prove that {xn} is a Cauchy sequence. Also, (X, G) is complete
metric space. Therefore, {xn} converges to some point u ∈ X . Since, f is continuous. Therefore,

G(u, fu, fu) = lim
n→∞

G(xn, fxn, fxn) = lim
n→∞

G(xn, xn+1, xn+1) = 0. (2.15)

By using identical steps used in proof of Theorem 2.4, we can prove that u is unique fixed point of f . �
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Example 2.6. Let X = [0, 5]. We define G on X by G(x, y, z) =| x − y | + | y − z | + | z − x | .

Let f : X → X be defined as fx = 3, when x ∈ [0, 5) and fx = 1
3 , if x = 5. Now, (X, G) is complete

metric space. Since, f is not continuous. Therefore, f is not F-contraction. For x ∈ [0, 5] and y = 5,

G(fx, f2, f2) = G(3,
1

3
,

1

3
) =| 3 −

1

3
| + |

1

3
− 3 | + |

1

3
− 3 |=

16

3
> 0.

Further,

max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz),

G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)} ≥ G(y, fx, fx) + G(y, fz, fz)

= G(5, 3, 3) + G(5,
1

3
,

1

3
)

= 4 +
28

3
=

40

3
> 0.

Therefore,

G(fx, f5, f5) ≤
1

3
max {G(x, fy, fy), G(y, fx, fx), G(y, fz, fz),

G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)} .

Now, by choosing Fx = ln x and λ = ln 1
5 , we obtain that f is modified generalized F-contraction of

type (S) and type (M). Let (X, d) and f be defined as in the above Example. Since, f is not an F-weak
contraction, because f is not continuous. So, Theorem 1.6 is not implemented to f on (X, d). Also, f is
a generalized F-contraction of type (S)and type (M) and (X, d) is complete, hence Theorem 2.4 and 2.5
are implemented to f on (X, d).

Theorem 2.7. Let (X, G) be a complete G-metric space and f : X → X be a map such that
G(fx, fy, fy) ≤ ℓ G(x, y, y) + mG(x, fx, fx) + nG(y, fy, fy), ∀ x, y ∈ X, where ℓ,m,n ≥ 0
with ℓ +m + n < 1. Then,

(i) f has a unique fixed point u ∈ X.

(ii) For each x ∈ X, if fn+1x = fnx ∀ n ∈ N ∪ {0}, then limn→∞ fnx = u.

Proof. It is given that ∀ x, y ∈ X,

G(fx, fy, fy) ≤ ℓG(x, y, y) + mG(x, fx, fx) + nG(y, fy, fy)

≤ (ℓ + m + n)max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz),

+ G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)}

≤ k max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz),

+ G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)},

where k = ℓ +m + n ∈ [0, 1).
If G(fx, fy, fy) > 0, we get

ln
1

k
+ ln(G(fx, fy, fy)) ≤ ln(max{G(x, fy, fy), G(y, fx, fx), G(y, fz, fz),

+ G(z, fy, fy), G(z, fx, fx), G(x, fz, fz)}).

By taking F = ln(ℓ) and λ = ln 1
k

in Theorem 2.4 or 2.5, we get the result. Hence the proof. �

3. Conclusion

In this manuscipt, we improved the results of [7] by conferring examples of F-contraction of kind (S)
and kind (M) by discarding the continuity condition of the self mapping in the framework of G-metric
spaces. The notions of generalized F-contraction of kind (S) and kind (M) extend other well known
metrical fixed point theorems within the literature.
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