On a Class of Ikeda-Nakayama Rings

Mourad El Maalmi and Hakima Mouanis

Abstract

In this work we introduce the notion of P-Ikeda-Nakayama rings ($P-I N$-rings) which is in some way a generalization of the notion of Ikeda-Nakayama rings ($I N$-rings). Then, we study the transfer of this property to trivial ring extension, localization, homomorphic image and to the direct product.

Key Words: P-IN-ring, trivial ring extensions, Localisation, Homomorphic image, Direct product.

Contents

1 Introduction and Preliminaries

2 Transfert of the $P-I N$-ring to trivial ring extension

3 Localization and quotient of a $P-I N$-ring

1. Introduction and Preliminaries

In this part, R denotes a nonzero associative ring with identity. V. Camillo, W. K. Nicholson and M. F. Yousif (2000) introduced the Ikeda-Nakayama ring (right $I N$-ring). A ring is said to be $I N$-ring if $l(I)+l(J)=l(I \cap J)$ for all ideals I, J of R where $l(X)$ denotes the left annihilator of X (see [7]). Examples of $I N$-ring are the ring \mathbb{Z} of integers, right self-injective rings and right uniserial rings. In [5], the authors have introduced and investigated the concept of a right $S A$-ring. A ring R is called a right $S A$-ring, if for any ideals I and J of R there is an ideal K of R such that $r(I)+r(J)=r(K)$, where $r(I)$ (resp. $l(I))$ denotes the right annihilator (resp. the left annihilator) of $I . Q F$-rings, left $I N$-rings and quasi-Baer rings are examples of right $S A$-rings (see for instance [5], [6]).

All rings considered below are commutative with unit, and all modules are unital.
Let A be a ring, E be an A-module and $R:=A \propto E$ be the set of pairs (a, e) with pairwise addition and multiplication given by: $(a, e)\left(a^{\prime}, e^{\prime}\right)=\left(a a^{\prime}, a e^{\prime}+a^{\prime} e\right) . \quad R$ is called the trivial ring extension of A by E. Considerable work has been concerned with trivial ring extensions. These rings have proven to be useful in solving many open problems and conjectures for various contexts in commutative and noncommutative ring theory (see for instance ([9], [10] and [13]). This construction was first introduced in 1962 by Nagata [11] in order to facilitate interaction between rings and their modules and also to provide various families of examples of commutative rings containing zero-divisors. The literature abounds of papers on trivial extensions dealing with the transfer of ring-theoretic notions in various settings of these constructions (see for instance [1], [4] and [8]). For more details on commutative trivial extensions (or idealizations) we refer the reader to Glaz"s and Huckaba"s respective books [[9], [10]], and also to Anderson and Winders relatively recent and comprehensive survey paper [2].

In this paper, we introduce a particular class of $I N$-rings that we call P - $I N$-rings. We call a ring R a P-IN-ring if the annihilator of the intersection of any two principal ideals is the sum of the annihilators of these two ideals. If R is a $I N$-ring, then R is naturally a $P-I N$-ring. Then we investigate the possible transfer of a P - $I N$-ring to various trivial extension constructions. Also, we examine the transfer of a $P-I N$-ring property to localization, homomorphic image and the direct product of rings.

2. Transfert of the $P-I N$-ring to trivial ring extension

In this section, we study the possible transfer of the P - $I N$-ring to various trivial extension contexts. First, we explore a different context, namely, the trivial ring extension of a local ring (A, M) by an

[^0]A-module E such that $M E=0$.

Proposition 2.1. Let (A, M) be a local with maximal ideal M, E be an A-module such that $M E=0$, and $R:=A \propto E$ be the trivial ring extension of A by E. If R is a $P-I N$-ring then so is A.

The proof of this Proposition requires the following Lemma.
Lemma 2.2. Let (A, M) be a local ring with maximal ideal M, E be an A-module such that $M E=0$, and let $R:=A \propto E$ be the trivial ring extension of A by E. Then : $A n n_{R}(I \propto 0)=A n n_{A}(I) \propto E$ for all proper ideals I of A.

Proof. If $(a, e) \in \operatorname{Ann}_{R}(I \propto 0)$, then $\forall(i, 0) \in(I \propto 0):(a, e)(i, 0)=(0,0)$, so ai $=0 \forall i \in I$ (since $i e \in I E \subseteq M E$ and $M E=0)$.
Conversely, let $(a, 0) \in A n n_{A}(I) \propto 0$. Our aim is to show that $(a, 0) \in A n n_{R}(I \propto 0)$. Indeed, we have $\forall i \in I:(a, 0)(i, 0)=(a i, 0)=(0,0)\left(\right.$ since $a \in A n n_{A}(I)$ and $i \in I$, so $A n n_{A}(I) \propto 0 \subseteq A n n_{R}(I \propto 0)$ and this completes the proof.

Proof of Proposition 2.1. Let $I=A a, J=A b$ be two principal ideals of A, where $a \in I$ and $b \in J$. We claim that $A n n_{A}(I)+A n n_{A}(J)=A n n_{A}(I \cap J)$. Two cases are then possible:

- case 1. If $I=A$ or $J=A$ then $A n n_{A}(I)+A n n_{A}(J)=A n n_{A}(I \cap J)$.
- case 2. If I and J two principal ideals of A, hence $I \propto 0=A a \propto 0=R(a, 0)$ and $J \propto 0=A b \propto 0=R(b, 0)$ (since $M E=0$) are two principal ideals of R, hence :
a) $A n n_{R}(I \propto 0)+A n n_{R}(J \propto 0)=A n n_{R}((I \propto 0) \cap(J \propto 0))$ (since R is P - $I N$-ring $)=A n n_{R}((I \cap J) \propto$ $0)=A n n_{A}(I \cap J) \propto 0($ by lemma 2.2).
b) $A n n_{R}(I \propto 0)+A n n_{R}(J \propto 0)=A n n_{A}(I) \propto 0+A n n_{A}(J) \propto 0($ by lemma 2.2 $)=\left(A n n_{A}(I)+A n n_{A}(J)\right) \propto$

0 . Therefore, by (a) and (b) we have $\left(A n n_{A}(I)+A n n_{A}(J)\right) \propto 0=A n n_{A}(I \cap J) \propto 0$. Thus, $A n n_{A}(I)+$ $A n n_{A}(J)=A n n_{A}(I \cap J)$.
\checkmark Question 1: If A is a $P-I N$-ring then so is $R:=A \propto E$?.
So that we can respond to this question, we are in need of the results of the following theorem.
Theorem 2.3. Let (A, M) be a local domain with maximal ideal M, E be an A-module such that $M E=0$, and $R:=A \propto E$ be the trivial ring extension of A by E. Let $I=R(a, e), J=R(b, f)$ be two principal ideals of R, where $(a, e),(b, f) \in R$. Two cases are then possible:

- case 1. If $I=A$ or $J=A$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
- case 2. Let $I=R(a, e), J=R(b, f)$ be two principal proper ideals of R, where $a, b \in M$. Three cases are then possible:
- case 1. $a=b=0$. Two cases are then possible:

1) If $\{e, f\}$ are linearly independent then $A n n_{R}(I)+\operatorname{Ann}_{R}(J) \neq A n n_{R}(I \cap J)$.
2) If $\{e, f\}$ are linearly dependent, so $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

- case 2. a and b are comparable. Assume for example that $a=c b$, where $c \in A$. Two cases are then possible:

1) If $c \in M$, two cases are then possible:
i) If $e=0$, then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
ii) If $e \neq 0$ then two cases are possible:
a) If $a \neq 0$, so $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

乃) If $a=0$ then $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$.
2) If $c \notin M$, then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

- case 3. a and b are not comparable.

Then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
Proof. - case 1. clear.

- case 2. Let $I=R(a, e), J=R(b, f)$ be two principal proper ideals of R, where $a, b \in M$. Three cases are then possible:
- case 1. $a=b=0$. Two cases are then possible:

1) If $\{e, f\}$ are linearly independent, then :
i) If $e \neq 0$ and $f \neq 0$ assume that $(l, m)(0, e)=(u, v)(0, f) \in R(0, e) \cap R(0, f)$, where $(l, m),(u, v) \in R$. Since $(l, m)(0, e)=(0, \bar{l} e)$ and $(u, v)(0, f)=(0, \bar{u} f)$, then $\bar{l} e=\bar{u} f$, hence $\bar{l}=\bar{u}=0$ since $\{e, f\}$ are linearly independent. Therefore, $R(0, e) \cap R(0, f)=0$ hence $A n n_{R}(I \cap J)=R$. On the other hand, if $e \neq 0$ and $f \neq 0$. Our aim is to show that $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=M \propto E$. Indeed,

- Clearly $A n n_{R}(I) \subseteq M \propto E$ (since R is a local ring with maximal ideal $M \propto E$ and $e \neq 0$). Conversely, let $(m, g) \in M \propto E$, we claim that $(m, g) \in A n n_{R}(0, e)$ i.e $(m, g)(0, e)=(0,0)$. Indeed, $(m, g)(0, e)=$ $(0, m e)=)(0,0)($ since $m e \in M E$ and $M E=0)$.
- Clearly $\operatorname{Ann}_{R}(J)=M \propto E$.

Consequently, $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$.
2) If $\{e, f\}$ are linearly dependent, assume that $e=\bar{w} f$, where $w \in A$. Then $(0, e)=(w, 0)(0, f) \in$ $R(0, f)$ and so $R(0, e) \cap R(0, f)=R(0, e)$. We have two cases possible :
i) If $e=0$ or $f=0$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
ii) If $e \neq 0$ et $f \neq 0$ then $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=M \propto E$. On the other hand $A n n_{R}(I \cap J)=A n n_{R}(R(0, e))=M \propto E$. Therefore, $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

- case 2. a and b are comparable. Assume for example that $a=c b$, where $c \in A$. Two cases are then possible:

1) If $c \in M$, let $(l, m)(a, e)=(u, v)(b, f) \in R(a, e) \cap R(b, f)$, where $(l, m),(u, v) \in R$. Then, $c b l=a l=$ $u b$ and $\bar{l} e=\bar{u} f$ since $a, b \in M$. But, $c b l=u b$ implies $u=c l \in M$ (since A is a domain); so $\bar{l} e=\bar{u} f=0$. Two cases are then possible: $e=0$ or $e \neq 0$.
i) Assume that $e=0$. Hence $\bar{l} e=0$ for each $l \in A$ and so $R(a, 0) \cap R(b, f) \subseteq R(a, 0)$. Conversely, let $(u, v)(a, 0) \in R(a, 0)$. Clearly, $(u, v)(a, 0)=(u, v)(c b, 0)=(u c, 0)(b, f)$ since $c \in M$, hence $(u, v)(a, 0) \in$ $R(a, 0) \cap R(b, f)$. Therefore, $R(a, 0) \cap R(b, f)=R(a, 0)=I$, so two cases are possible :
*) If $a=0$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
**) If $a \neq 0$. we claim that $A n n_{R}(I)=A n n_{R}(a, 0)=0 \propto E$ and $A n n_{R}(J)=A n n_{R}(b, f)=0 \propto E$. Indeed,

- Let $(d, g) \in A n n_{R}(a, 0)$ implies $(d, g)(a, 0)=(0,0)$ implies $(d a, 0)=(0,0)$, so $d a=0$ then $d \in A n n_{A}(a)$ implies $d=0$ (since A is a domain and $a \neq 0$) then $(d, g) \in 0 \propto E$ hence $A n n_{R}(I) \subseteq 0 \propto E$. Conversely, clearly $0 \propto E \subseteq A n n_{R}(I)$. Thus, $A n n_{R}(I)=0 \propto E$.
- Let $(d, g) \in A n n_{R}(b, f)$ then $(d, g)(b, f)=(0,0)$ implies $d b=0$ and $d f=0$ hence $d \in A n n_{A}(b) \cap A n n_{A}(f)$ so $d=0$ (since A is a domain and $b \neq 0$), therefore $(d, g) \in 0 \propto E$ thus $A n n_{R}(b, f) \subseteq 0 \propto E$. Conversely, clearly $0 \propto E \subseteq \operatorname{Ann}_{R}(I)$.
Consequently, $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
ii) Assume that $e \neq 0$. Hence, $l \in M$ since $\bar{l} e=0$ and so $R(a, e) \cap R(b, f) \subseteq a M \propto 0$. Conversely, let $(a u, 0) \in a M \propto 0$, where $u \in M$. Then $(a u, 0)=(u, 0)(a, e)=(u c, 0)(b, f) \in R(a, e) \cap R(b, f)$. Therefore, $R(a, e) \cap R(b, f)=a M \propto 0$.
α) If $a \neq 0$ We have $A n n_{R}(I)=A n n_{R}(a, e)=0 \propto E, A n n_{R}(J)=0 \propto E$ and $A n n_{R}(a M \propto$ $0)=\left(A n n_{A}(a M)\right) \propto E=0 \propto E\left(\right.$ since A is a domain and by lemma 2.2) so $A n n_{R}(I)+A n n_{R}(J)=$ $A n n_{R}(I \cap J)$.
β) If $a=0$ then $A n n_{R}(I \cap J)=R$. Moreover, $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=0 \propto E$. Therefore, $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$

2) If $c \notin M$, then c is invertible. Clearly, $R(a, e)=R\left(b c, \bar{c} \overline{c^{-1}} e\right)=R(c, 0)\left(b, \overline{c^{-1}} e\right)=R\left(b, \overline{c^{-1}} e\right)$ since $(c, 0)$ is invertible in R (since c is invertible in A). So, we may assume that $a=b$. Then we have two cases possible:

- If $e=f$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
- If $e \neq f$. Our aim is to show that $R(a, e) \cap R(b, f)=a M \propto 0$. Indeed, let $e \neq f \in E$. Assume $(l, m)(a, e)=(u, v)(a, f) \in R(a, e) \cap R(b, f)$, where $(l, m),(u, v) \in R$. Hence, $l a=u a$ and $\bar{l} e=\bar{u} f$ since $a \in M$ and $M E=0$. Therefore, $l=u$ since a is a regular element, so $\bar{l}(e-f)=0$. Hence $l \in M$ since $(e-f) \neq 0$ and E is an (A / M)-vector space. Therefore $R(a, e) \cap R(b, f) \subseteq a M \propto 0$. Conversely, let $(a u, 0) \in a M \propto 0$, where $u \in M$. Clearly, $(a u, 0)=(u, 0)(a, e)=(u, 0)(a, f)$ since $u \in M$ and so $(a u, 0) \in R(a, e) \cap R(a, f)$. Consequently, $A n n_{R}(I)=A n n_{R}(a, e)=0 \propto E, A n n_{R}(J)=0 \propto E$ and $A n n_{R}(a M \propto 0)=\left(A n n_{A}(a M)\right) \propto E=0 \propto E$ (since A is a domain and by lemma 2.2) so $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
- case 3. a and b are not comparable.

Clearly, $A n n_{R}(I)=0 \propto E$ and $A n n_{R}(J)=0 \propto E$ (since a and b are not comparable so $a \neq 0$ and $b \neq 0$). On the other hand, we have $0 \propto E=A n n_{R}(I) \subseteq \operatorname{Ann}_{R}(I \cap J)$. Conversely, we have $(a, e) \in I$ and $(b, f) \in J$ then $(a, e)(b, f) \in I J \subseteq I \cap J$ so $(a b, 0) \in I \cap J$ and then $A n n_{R}(I \cap J) \subseteq A n n_{R}(a b, 0)=$ $0 \propto E(a b \neq 0$ since A is a domain $)$. Consequently, $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

The next example illustrates the failure of question (1), in general.
Example 2.4. Let (A, M) be a local domain ring with maximal ideal M, E be an A-module such that $M E=0$. Let $R:=A \propto E$ be the trivial ring extension of A by E. Then

1. A is a $P-I N$-ring.
2. R is not a $P-I N$-ring.

Proof. 1. A is a P-IN-ring (since A is a domain).
2. Let $I=R(0, e), J=R(b, f)$ where $e \neq 0$ and $b \neq 0$, then $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=0 \propto$ E. On the other hand, we have by theorem 2.3 [case 2.ii). β)] that $I \cap J=R(0, e) \cap R(b, f)=0$ then $A n n_{R}(I \cap J)=R$, so $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$. Thus, R is not a $P-I N$-ring.

Next, we examine the context of trivial ring extensions of a domain by its quotient field.
Theorem 2.5. Let A be a domain, $Q=q f(A)$ be the quotient field of A, and $R:=A \propto Q$ be the trivial ring extension of A by Q and let $I=R(a, e), J=R(b, f)$ be two principal ideals of R, where (a, e), $(b, f) \in R$. Three cases are then possible:

- case 1. $a=b=0$. Two cases are then possible:

1) If $e=0$ or $f=0$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
2) If $e \neq 0$ and $f \neq 0$. Two cases are then possible:
i) if $A e \cap A f=0$ then $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$.
ii) if $A e \cap A f \neq 0$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

- case 2. If $a \neq 0$ and $b=0$, or $a=0$ and $b \neq 0$ then $\operatorname{Ann}_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.
- case 3. $a \neq 0$ and $b \neq 0$ then $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

To facilitate the proof of this theorem we shall need a sequence of lemmas.
Lemma 2.6. With the notation of Theorem 2.5, let $I=R(a, e)$ be a principal ideal of R, where $a \in A \backslash\{0\}$ and $e \in Q$. Then, $I=A a \propto Q=R(a, 0)$.

Proof. Clearly, $I=R(a, e)=\{(b, f)(a, e) / b \in A, f \in Q\}=\{(b a, f a+b e) / b \in A, f \in Q\}$. But, $\{a f / f \in Q\}=Q$, hence $I=A a \propto Q=R(a, 0)$.

Lemma 2.7. Let A be a domain and $R:=A \propto E$ be the trivial ring extension of A by E. Then

1. $A n n_{R}(I \propto E)=0 \propto A n n_{E}(I)$ for any nonzero ideal I of A.
2. $A n n_{R}\left(0 \propto E^{\prime}\right)=A n n_{A}\left(E^{\prime}\right) \propto E$ for any submodule E^{\prime} of E.

Proof. 1. If $(a, e) \in A n n_{R}(I \propto E)$ then $(a, e)\left(i, e^{\prime}\right)=(0,0)$ for each $\left(i, e^{\prime}\right) \in(I \propto E)$ and so $a i=0$ and $a e^{\prime}+e i=0$. Hence, $a=0$ (since A is a domain) and $e \in \operatorname{Ann}_{E}(I)$ which means that $(a, e) \in 0 \propto A n n_{E}(I)$.
Conversely, let $(0, e) \in 0 \propto A n n_{E}(I)$. Our aim is to show that $(0, e) \in A n n_{R}(I \propto E)$. Indeed, $(0, e)\left(i, e^{\prime}\right)=(0, e i)=(0,0)$ (since $e \in A n n_{E}(I)$ and $\left.i \in I\right)$ for each $\left(i, e^{\prime}\right) \in(I \propto E)$. Therefore, $(0, e) \in A n n_{R}(I \propto E)$.
2. Let $(a, e) \in A n n_{R}\left(0 \propto E^{\prime}\right)$ then $(a, e)\left(0, e^{\prime}\right)=(0,0)$ for each $\left(0, e^{\prime}\right) \in\left(0 \propto E^{\prime}\right)$ and so, $a e^{\prime}=0$ for all $e^{\prime} \in E^{\prime}$ so, $a \in A n n_{A}\left(E^{\prime}\right)$. Thus, $A n n_{R}\left(0 \propto E^{\prime}\right) \subseteq A n n_{A}\left(E^{\prime}\right) \propto E$.
Conversely, let $(a, e) \in A n n_{A}\left(E^{\prime}\right) \propto E$. It remains to show that $(a, e) \in A n n_{R}\left(0 \propto E^{\prime}\right)$. Indeed, $(a, e)\left(0, e^{\prime}\right)=\left(0, a e^{\prime}\right)=(0,0)\left(\right.$ since $e^{\prime} \in A n n_{A}\left(E^{\prime}\right)$ and $\left.a \in A\right)$. Therefore, $A n n_{A}\left(E^{\prime}\right) \propto E \subseteq$ $A n n_{R}\left(0 \propto E^{\prime}\right)$.

Lemma 2.8. Let A be a domain, $Q=q f(A)$ be the quotient field of A. Then:

1. $A n n_{Q}(I \cap J)=0$ for each nonzero ideals I, J of A.
2. $A n n_{A}(A e)=A n n_{A}(e)=0$ for each $e \in Q \backslash\{0\}$.

Proof. clearly, since A is a domain and Q is a torsion-free.

Proof of Theorem 2.5. Let $I=R(a, e), J=R(b, f)$ be two principal ideals of R, where (a, e), $(b, f) \in R$. Three cases are then possible:

- case 1. $a=b=0$.Hence, $I=R(0, e)=0 \propto A e$ and $J=R(0, f)=0 \propto A f$. Two cases are then possible:

1) Clear.
2) If $e \neq 0$ and $f \neq 0$. Hence, $A n n_{R}(I)=A n n_{A}(A e) \propto Q=0 \propto Q$ by lemma 2.7 and lemma 2.8 and $A n n_{R}(J)=0 \propto Q$, so $A n n_{R}(I)+A n n_{R}(J)=0 \propto Q$.
On the other hand, $I \cap J=(0 \propto A e) \cap(0 \propto A f)=0 \propto(A e \cap A f)$. Two cases are then possible:
i) if $A e \cap A f=0$ then $A n n_{R}(I \cap J)=R$. Consequently, $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$.
ii) if $A e \cap A f \neq 0$ then $A n n_{R}(I \cap J)=0 \propto Q$ by lemma 2.8. Therefore, $A n n_{R}(I)+A n n_{R}(J)=$ $A n n_{R}(I \cap J)$.

- case 2. If $a \neq 0$ and $b=0$, or $a=0$ and $b \neq 0$.

By symmetry, we may assume that $a \neq 0$ and $b=0$. Then, $I=R(a, e)=A a \propto Q$ by Lemma 2.6 and $J=R(0, f)=0 \propto A f$, so $J \subseteq I$ and $I \cap J=J$. Consequently, $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

- case 3. $a \neq 0$ and $b \neq 0$. Hence, $I=R(a, e)=A a \propto Q$ and $J=R(b, f)=A b \propto Q$ then, $A n n_{R}(I)=$ $0 \propto A n n_{Q}(A a)=0$ and $A n n_{R}(J)=0 \propto A n n_{Q}(A b)=0$. On the other hand, $I \cap J=(A a \cap A b) \propto Q$, hence $A n n_{R}(I \cap J)=0 \propto A n n_{Q}(A a \cap A b)=0$ by lemma 2.8 (since $A a \cap A b \neq 0$. Deny, $a b \in A a \cap A b$, so $a b=0$ hence $a=0$ or $b=0$ since A is a domain, contradiction. $)$. Thus, $A n n_{R}(I)+A n n_{R}(J)=A n n_{R}(I \cap J)$.

In the following example, we prove that under the same conditions as in Theorem 2.5, we can't transfer the P - $I N$-ring property from A to R.

Example 2.9. Let A be a domain, $Q=q f(A)$ be the quotient field of A, and $R:=A \propto Q$ be the trivial ring extension of A by Q. Then:

1. A is a $P-I N-r i n g$.
2. R is not a P-IN-ring.

Proof. 1. A is a P - $I N$-ring (since A is a domain).
2. Let $I=R(0, e), J=R(0, f)$ where $e, f \in Q \backslash\{0\}$ and $A e \cap A f=0$ Then, by the proof of Theorem 2.5 (case1.2)i)), $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$. Therefore, R is not a $P-I N$-ring and this completes the proof of Example 2.9.

3. Localization and quotient of a $P-I N$-ring

In this section, we present the following result which states a condition under which the $P-I N$-ring is stable under localization.

Proposition 3.1. Let R be a P-IN-ring and S a multiplicative subset of R which is contained in $R \backslash Z(R)$. Then $S^{-1} R$ is a $P-I N$-ring.

The proof will use the following Lemma.
Lemma 3.2. Let R be a commutative ring and S a multiplicative subset of R which is contained in $R \backslash Z(R)$. Then:

$$
A n n_{S^{-1} R}\left(S^{-1} I\right)=S^{-1}\left(A n n_{R}(I)\right)
$$

Proof. $\supseteq)$ Let $\frac{a}{s} \in S^{-1}\left(A n n_{R}(I)\right)$, we can assume that $a \in A n n_{R}(I)$, then $\frac{a}{s} \in A n n_{S^{-1} R}\left(S^{-1} I\right)$. Indeed, $\forall \frac{b}{t} \in S^{-1} I: \frac{b}{t} \cdot \frac{a}{s}=\frac{b a}{t s}=\frac{0}{t s}=\frac{0}{1}\left[\right.$ since $: b \in I$ and $\left.a \in A n n_{R}(I)\right]$. Thus, $S^{-1}\left(A n n_{R}(I)\right) \subseteq$ $A n n_{S^{-1} R}\left(S^{-1} I\right)$.
〇) Let $\frac{a}{s} \in A n n_{S^{-1} R}\left(S^{-1} I\right)$ and we claim that $a \in A n n_{R}(I)$ i.e. we prove that : $\forall i \in I: i a=0$. Indeed, $\forall i \in I, \frac{i}{1} \cdot \frac{a}{s}=\frac{i a}{s}=\frac{0}{1}$, then there exists $t \in S$ such that tia $=0$ and hence $\forall i \in I: i a=0$ [since $t \in S \subseteq R \backslash Z(R)]$. So, $\frac{a}{s} \in S^{-1}\left(A n n_{R}(I)\right)$.

Proof of Proposition 3.1. Let $I=S^{-1} R \frac{a}{s}, J=S^{-1} R \frac{b}{t}$ be two principal ideals of $S^{-1} R$, where $a, b \in R$ and $s, t \in S$ we have R is a P - $I N$-ring so, $A n n_{R}(a R)+A n n_{R}(b R)=A n n_{R}(a R \cap b R)$. This means that : $S^{-1}\left(A n n_{R}(a R)+A n n_{R}(b R)\right)=S^{-1}\left(A n n_{R}(a R \cap b R)\right)$ then by lemma 2.2, we have $A n n_{S^{-1} R}\left(S^{-1} a R\right)+$ $A n n_{S^{-1} R}\left(S^{-1} b R\right)=A n n_{S^{-1} R}\left(S^{-1}(a R \cap b R)\right)=A n n_{S^{-1} R}\left(\left(S^{-1} a R\right) \cap\left(S^{-1} b R\right)\right)=A n n_{S^{-1} R}\left(\left(S^{-1} R \frac{a}{s}\right) \cap\right.$ $\left.\left(S^{-1} R \frac{b}{t}\right)\right)=A n n_{S^{-1} R}(I \cap J)$. Thus, $A n n_{S^{-1} R}(I)+A n n_{S^{-1} R}(J)=A n n_{S^{-1} R}(I \cap J)$ and so $S^{-1} R$ is a $P-I N$-ring.
Recall that a ring R is called a weakly finite conductor ring if $R a \cap R b$ is a finitely generated ideal of R (see [12]).

Proposition 3.3. Let R be a weakly finite conductor ring, $P-I N$-ring and S a multiplicative subset of R then $S^{-1} R$ is a $P-I N-r i n g$

Proof. Trivial [since, if I is a finitely generated ideal of R then $A n n_{S^{-1} R}\left(S^{-1} I\right)=S^{-1}\left(A n n_{R}(I)\right)$ by [3]].
\checkmark Question 2: If $S^{-1} R$ is a P - $I N$-ring then so is $R ?$.
The example below answers this question.
Example 3.4. Let $A=K\left[\left[X_{1}, X_{2}, X_{3}\right]\right]=K+M$ be a power series ring over a field K and $M:=$ $\left(X_{1}, X_{2}, X_{3}\right)$. Let E be an A-module such that $M E=0$ and $\operatorname{dim}_{A / M}(E) \geq 2$. Let $R:=A \propto E$ be the trivial ring extension of A by E and let S be the multiplicative subset of R given by $S:=\left\{\left(X_{1}, 0\right)^{n} / n \in N\right\}$ and S_{0} the multiplicative subset of A given by $S_{0}:=\left\{X_{1}^{n} / n \in N\right\}$. Then:

1. R is not a $P-I N$-ring.
2. $S_{0}^{-1} A$ is a $P-I N$-ring.
3. $S^{-1} R$ and $S_{0}^{-1} A$ are isomorphic rings. In particular, $S^{-1} R$ is a $P-I N$-ring.

Proof. 1. Let $I=R(0, e), J=R(0, f)$ where $\{e, f\}$ are linearly independent, then $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=M \propto E$. On the other hand, we have by theorem $2.3 I \cap J=R(0, e) \cap R(0, f)=0$ then $A n n_{R}(I \cap J)=R$ so, $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$. Thus, R is not a P - $I N$-ring.
2. Since K is a domain then A is a domain hence $S_{0}^{-1} A$ is a domain. Thus, $S_{0}^{-1} A$ is a $P-I N$-ring.
3. Since $X_{1} E \subseteq M E=0$ and $X_{1} \in S_{0}$, then $S_{0}^{-1} E=0$. Thus, $S^{-1}(0 \propto E)=0$ and so $S^{-1} R=$ $\left\{\frac{(a, 0)}{(s, 0)} / a \in A\right.$ and $\left.s \in S_{0}\right\}$. Now, we easily check that:

$$
\begin{gathered}
f: S_{0}^{-1} A \rightarrow S^{-1} R \\
\frac{a}{s} \mapsto \frac{(a, 0)}{(s, 0)}
\end{gathered}
$$

is a ring isomorphism. In particular, $S^{-1} R$ is a $P-I N$-ring by 2).
\checkmark Question 3: If R / I is a $P-I N$-ring then so is R ?.
The ring in our next example illustrates the failure of this question, in general.
Example 3.5. Let (A, M) be a local domain with maximal ideal M, E be an A-module such that $M E=0$ and $\operatorname{dim}_{A / M}(E) \geq 2$. Let $R:=A \propto E$ be the trivial extension of A by E. Then:

1. $R /(0 \propto E)$ is a $P-I N-r i n g$.
2. R is not a P-IN-ring.

Proof. 1. since $0 \propto E$ is a prime ideal of R hence $R / 0 \propto E$ is a domain so it's a P - $I N$-ring.
2. Let $I=R(0, e), J=R(0, f)$ where $\{e, f\}$ are linearly independent, then $A n n_{R}(I)=M \propto E$ and $A n n_{R}(J)=M \propto E$. On the other hand, we have by theorem $2.3 I \cap J=R(0, e) \cap R(0, f)=0$ then $A n n_{R}(I \cap J)=R$ so, $A n n_{R}(I)+A n n_{R}(J) \neq A n n_{R}(I \cap J)$. Thus, R is not a P - $I N$-ring.

Finally, we study a particular case of homomorphic images, that is, the direct product of P-IN-rings.
Theorem 3.6. Let $\left(R_{i}\right)_{1 \leq i \leq n}$ be a family of rings and $R:=\prod_{i=1}^{n} R_{i}$ a direct product of rings. Then R is a P-IN-ring if and only if so is R_{i} for each $i=1, \cdots, n$.

Before proving Theorem 3.6, we establish the following lemma.
Lemma 3.7. Let R_{1} and R_{2} be two rings and $I:=I_{1} \times I_{2}$ be an ideal of $R_{1} \times R_{2}$ where I_{i} is an ideal of R_{i} for each $i=1,2$. Then :

$$
A n n_{R_{1} \times R_{2}}\left(I_{1} \times I_{2}\right)=A n n_{R_{1}}\left(I_{1}\right) \times A n n_{R_{2}}\left(I_{2}\right)
$$

Proof. Trivial.
Proof of Theorem 3.6. The proof is done by induction on n and it suffices to check it for $n=2$. Assume that $R:=R_{1} \times R_{2}$ is a $P-I N$-ring. Let I_{1} and I_{2} be two principal ideals of R_{1}. Then :

$$
\begin{aligned}
\left(\operatorname{Ann}_{R_{1}}\left(I_{1} \cap I_{2}\right)\right) \times R_{2} & =\left(\operatorname{Ann}_{R_{1}}\left(I_{1} \cap I_{2}\right)\right) \times\left(\operatorname{Ann}_{R_{2}}(0)\right) \\
& =\operatorname{Ann}_{R_{1} \times R_{2}}\left(\left(I_{1} \cap I_{2}\right) \times\{0\}\right) \quad \text { (By Lemma 3.7) } \\
& =\operatorname{Ann}_{R_{1} \times R_{2}}\left(\left(I_{1} \times\{0\}\right) \cap\left(I_{2} \times\{0\}\right)\right) \\
& =\operatorname{Ann}_{R_{1} \times R_{2}}\left(I_{1} \times\{0\}\right)+\operatorname{Ann}_{R_{1} \times R_{2}}\left(I_{2} \times\{0\}\right) \\
& =\left(\operatorname{Ann}_{R_{1}}\left(I_{1}\right) \times R_{2}\right)+\left(\operatorname{Ann}_{R_{1}}\left(I_{2}\right) \times R_{2}\right) \\
& \left.=\operatorname{Ann}_{R_{1}}\left(I_{1}\right)+\operatorname{Ann}_{R_{1}}\left(I_{2}\right)\right) \times R_{2}
\end{aligned}
$$

So, $A n n_{R_{1}}\left(I_{1} \cap I_{2}\right)=A n n_{R_{1}}\left(I_{1}+A n n_{R_{1}}\left(I_{2}\right)\right.$. Thus, R_{1} is a P - $I N$-ring (the case that R_{2} is a P - $I N$-ring is similar).

Conversely, Assume that R_{1} and R_{2} are a P - $I N$-rings. Let $I:=I_{1} \times I_{2}$ and $J:=J_{1} \times J_{2}$ be two principal ideals of $R_{1} \times R_{2}$ where I_{1}, J_{1} and I_{2}, J_{2} are principal ideals of R_{1} and R_{2} respectively.

$$
\begin{aligned}
&{A n n_{R_{1}} \times R_{2}}\left(\left(I_{1} \times I_{2}\right) \cap\left(J_{1} \times J_{2}\right)\right)=\operatorname{Ann}_{R_{1} \times R_{2}}\left(\left(I_{1} \cap J_{1}\right) \times\left(I_{2} \cap J_{2}\right)\right) \\
&=\operatorname{Ann}_{R_{1}}\left(I_{1} \cap J_{1}\right) \times \operatorname{Ann}_{R_{2}}\left(I_{2} \cap J_{2}\right) \\
&=\left(\operatorname{Ann}_{R_{1}}\left(I_{1}\right)+\operatorname{Ann}_{R_{1}}\left(J_{1}\right)\right) \times\left(\operatorname{Ann}_{R_{2}}\left(I_{2}\right)+\operatorname{Ann}_{R_{2}}\left(J_{2}\right)\right) \\
&=\left(\operatorname{Ann}_{R_{1}}\left(I_{1}\right) \times \operatorname{Ann}_{R_{2}}\left(I_{2}\right)\right)+\left(\operatorname{Ann}_{R_{1}}\left(J_{1}\right) \times \operatorname{Ann}_{R_{2}}\left(J_{2}\right)\right) \\
&=\left(\operatorname{Ann}_{R_{1} \times R_{2}}\left(I_{1} \times I_{2}\right)\right)+\left(\operatorname{Ann}_{R_{1} \times R_{2}}\left(J_{1} \times J_{2}\right)\right)
\end{aligned}
$$

Acknowledgments

The authors thank the referee for his suggestions, remarks and comments thorough reading of the manuscript.

References

1. J. Abuihlail, M. Jarrar, and S. Kabbaj, Commutative rings in which every finitely generated ideal is quasi-projective, J. Pure Appl. Algebra 215 (2011), 2504-2511.
2. D. D. Anderson, M. Winders, Idealization of a module, Rocky Mountain J. Math, 1(1)(2009), 3-56.
3. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
4. C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra 214 (2010), 53-60.
5. G.F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal ? Comm.Algebra 43 (2015), 2690-2702.
6. Birkenmeir, G.F, Park, J.K, Rizvi, S.T,: Extension of ring and Modules. Springer, New York (2013).
7. Camillo, V., Nicholson, W. K., Yousif, M. F. (2000). Ikeda- Nakayama rings. J. Algebra 226:1001-1010.
8. R. Damiano and J. Shapiro, Commutative torsion stable rings, J. Pure Appl. Algebra 32 (1984), 21-32.
9. S. Glaz, Commutative coherent rings, Lect. Notes Math. 1371, SpringerVerlag, Berlin, 1989.
10. J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
11. M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers, New York-London, 1962.
12. N. Mahdou, On weakly finite conductor rings, Comm. Algebra, 10 (2004), 4027-4036.
13. I. Palmér, J.-E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27 (1973), 380-413.

M. El Maalmi,

Faculty of Sciences Dhar El Mahraz,
Sidi Mohamed Ben Abdellah University,
Fez, Morocco.
E-mail address: mouradmalam@gmail.com
and
H. Mouanis,

Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University,
Fez, Morocco.
E-mail address: hmouanis@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: 13D05, 13D02.
 Submitted January 04, 2019. Published October 13, 2019

