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On a Class of Ikeda-Nakayama Rings

Mourad El Maalmi and Hakima Mouanis

abstract: In this work we introduce the notion of P -Ikeda-Nakayama rings (P -IN-rings) which is in some
way a generalization of the notion of Ikeda-Nakayama rings (IN-rings). Then, we study the transfer of this
property to trivial ring extension, localization, homomorphic image and to the direct product.
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1. Introduction and Preliminaries

In this part, R denotes a nonzero associative ring with identity. V. Camillo, W. K. Nicholson and
M. F. Yousif (2000) introduced the Ikeda-Nakayama ring (right IN -ring). A ring is said to be IN -ring
if l(I) + l(J) = l(I ∩ J) for all ideals I, J of R where l(X) denotes the left annihilator of X(see [7]).
Examples of IN -ring are the ring Z of integers, right self-injective rings and right uniserial rings. In [5],
the authors have introduced and investigated the concept of a right SA-ring. A ring R is called a right
SA-ring, if for any ideals I and J of R there is an ideal K of R such that r(I) + r(J) = r(K), where r(I)
(resp. l(I)) denotes the right annihilator (resp. the left annihilator) of I. QF -rings, left IN -rings and
quasi-Baer rings are examples of right SA-rings (see for instance [5], [6]).

All rings considered below are commutative with unit, and all modules are unital.
Let A be a ring, E be an A-module and R := A ∝ E be the set of pairs (a, e) with pairwise addition

and multiplication given by: (a, e)(a′, e′) = (aa′, ae′ + a′e). R is called the trivial ring extension of A
by E. Considerable work has been concerned with trivial ring extensions. These rings have proven to
be useful in solving many open problems and conjectures for various contexts in commutative and non-
commutative ring theory (see for instance ( [9], [10] and [13]). This construction was first introduced in
1962 by Nagata [11] in order to facilitate interaction between rings and their modules and also to provide
various families of examples of commutative rings containing zero-divisors. The literature abounds of
papers on trivial extensions dealing with the transfer of ring-theoretic notions in various settings of these
constructions (see for instance [1], [4] and [8]). For more details on commutative trivial extensions
(or idealizations) we refer the reader to Glaz”s and Huckaba”s respective books [ [9], [10]], and also to
Anderson and Winders relatively recent and comprehensive survey paper [2].

In this paper, we introduce a particular class of IN -rings that we call P -IN -rings. We call a ring R a
P -IN -ring if the annihilator of the intersection of any two principal ideals is the sum of the annihilators
of these two ideals. If R is a IN -ring, then R is naturally a P -IN -ring. Then we investigate the possible
transfer of a P -IN -ring to various trivial extension constructions. Also, we examine the transfer of a
P -IN -ring property to localization, homomorphic image and the direct product of rings.

2. Transfert of the P -IN-ring to trivial ring extension

In this section, we study the possible transfer of the P -IN -ring to various trivial extension contexts.
First, we explore a different context, namely, the trivial ring extension of a local ring (A, M) by an
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A-module E such that ME = 0 .

Proposition 2.1. Let (A, M) be a local with maximal ideal M , E be an A-module such that ME = 0,

and R := A ∝ E be the trivial ring extension of A by E. If R is a P -IN -ring then so is A.

The proof of this Proposition requires the following Lemma.

Lemma 2.2. Let (A, M) be a local ring with maximal ideal M , E be an A-module such that ME = 0,

and let R := A ∝ E be the trivial ring extension of A by E. Then : AnnR(I ∝ 0)=AnnA(I) ∝ E for all

proper ideals I of A.

Proof. If (a, e) ∈ AnnR(I ∝ 0), then ∀(i, 0) ∈ (I ∝ 0) : (a, e)(i, 0) = (0, 0), so ai = 0 ∀i ∈ I (since
ie ∈ IE ⊆ ME and ME = 0 ).
Conversely, let (a, 0) ∈ AnnA(I) ∝ 0. Our aim is to show that (a, 0) ∈ AnnR(I ∝ 0). Indeed, we have
∀i ∈ I: (a, 0)(i, 0) = (ai, 0) = (0, 0) (since a ∈ AnnA(I) and i ∈ I, so AnnA(I) ∝ 0 ⊆ AnnR(I ∝ 0) and
this completes the proof. �

Proof of Proposition 2.1. Let I = Aa, J = Ab be two principal ideals of A, where a ∈ I and b ∈ J .
We claim that AnnA(I) + AnnA(J) = AnnA(I ∩ J). Two cases are then possible:
• case 1. If I = A or J = A then AnnA(I) + AnnA(J) = AnnA(I ∩ J).
• case 2. If I and J two principal ideals of A, hence I ∝ 0=Aa ∝ 0=R(a, 0) and J ∝ 0=Ab ∝ 0=R(b, 0)
(since ME = 0) are two principal ideals of R, hence :
a) AnnR(I ∝ 0) + AnnR(J ∝ 0)=AnnR((I ∝ 0) ∩ (J ∝ 0)) (since R is P -IN -ring)= AnnR((I ∩ J) ∝
0)=AnnA(I ∩ J) ∝ 0 ( by lemma 2.2).
b) AnnR(I ∝ 0) + AnnR(J ∝ 0)=AnnA(I) ∝ 0+AnnA(J) ∝ 0 ( by lemma 2.2) =(AnnA(I)+AnnA(J)) ∝
0. Therefore, by (a) and (b) we have (AnnA(I) + AnnA(J)) ∝ 0= AnnA(I ∩ J) ∝ 0. Thus, AnnA(I) +
AnnA(J) = AnnA(I ∩ J).
X Question 1: If A is a P -IN -ring then so is R := A ∝ E ?.
So that we can respond to this question, we are in need of the results of the following theorem.

Theorem 2.3. Let (A, M) be a local domain with maximal ideal M , E be an A-module such that ME = 0,

and R := A ∝ E be the trivial ring extension of A by E. Let I = R(a, e), J = R(b, f) be two principal

ideals of R, where (a, e), (b, f) ∈ R. Two cases are then possible:

• case 1. If I = A or J = A then AnnR(I) + AnnR(J) = AnnR(I ∩ J).
• case 2. Let I = R(a, e), J = R(b, f) be two principal proper ideals of R, where a, b ∈ M . Three cases

are then possible:

• case 1. a = b = 0. Two cases are then possible:

1) If {e, f} are linearly independent then AnnR(I) + AnnR(J) 6= AnnR(I ∩ J).
2) If {e, f} are linearly dependent, so AnnR(I) + AnnR(J) = AnnR(I ∩ J).

• case 2. a and b are comparable. Assume for example that a = cb, where c ∈ A. Two cases are then

possible:

1) If c ∈ M , two cases are then possible:

i) If e = 0, then AnnR(I) + AnnR(J) = AnnR(I ∩ J).
ii) If e 6= 0 then two cases are possible:

α) If a 6= 0, so AnnR(I) + AnnR(J) = AnnR(I ∩ J).
β) If a = 0 then AnnR(I) + AnnR(J) 6= AnnR(I ∩ J).
2) If c /∈ M , then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

• case 3. a and b are not comparable.

Then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

Proof. • case 1. clear.
• case 2. Let I = R(a, e), J = R(b, f) be two principal proper ideals of R, where a, b ∈ M . Three cases
are then possible:
• case 1. a = b = 0. Two cases are then possible:
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1) If {e, f} are linearly independent, then :

i) If e 6= 0 and f 6= 0 assume that (l, m)(0, e) = (u, v)(0, f) ∈ R(0, e)∩R(0, f), where (l, m), (u, v) ∈ R.
Since (l, m)(0, e) = (0, le) and (u, v)(0, f) = (0, uf), then le = uf , hence l = u = 0 since {e, f} are linearly
independent. Therefore, R(0, e) ∩ R(0, f) = 0 hence AnnR(I ∩ J) = R . On the other hand, if e 6= 0 and
f 6= 0. Our aim is to show that AnnR(I) = M ∝ E and AnnR(J) = M ∝ E. Indeed,
• Clearly AnnR(I) ⊆ M ∝ E (since R is a local ring with maximal ideal M ∝ E and e 6= 0). Conversely,
let (m, g) ∈ M ∝ E, we claim that (m, g) ∈ AnnR(0, e) i.e (m, g)(0, e) = (0, 0). Indeed, (m, g)(0, e) =
(0, me) =)(0, 0) (since me ∈ ME and ME = 0).
• Clearly AnnR(J) = M ∝ E.
Consequently, AnnR(I) + AnnR(J) 6= AnnR(I ∩ J).

2) If {e, f} are linearly dependent, assume that e = wf , where w ∈ A. Then (0, e) = (w, 0)(0, f) ∈
R(0, f) and so R(0, e) ∩ R(0, f) = R(0, e). We have two cases possible :

i) If e = 0 or f = 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

ii) If e 6= 0 et f 6= 0 then AnnR(I) = M ∝ E and AnnR(J) = M ∝ E. On the other hand
AnnR(I ∩ J) = AnnR(R(0, e)) = M ∝ E. Therefore, AnnR(I) + AnnR(J) = AnnR(I ∩ J).
• case 2. a and b are comparable. Assume for example that a = cb, where c ∈ A. Two cases are then
possible:

1) If c ∈ M , let (l, m)(a, e)=(u, v)(b, f) ∈ R(a, e) ∩ R(b, f), where (l, m), (u, v) ∈ R. Then, cbl = al =
ub and le = uf since a, b ∈ M . But, cbl = ub implies u = cl ∈ M (since A is a domain); so le = uf = 0.
Two cases are then possible: e = 0 or e 6= 0.

i) Assume that e = 0. Hence le = 0 for each l ∈ A and so R(a, 0) ∩ R(b, f) ⊆ R(a, 0). Conversely, let
(u, v)(a, 0) ∈ R(a, 0). Clearly, (u, v)(a, 0) = (u, v)(cb, 0) = (uc, 0)(b, f) since c ∈ M , hence (u, v)(a, 0) ∈
R(a, 0) ∩ R(b, f). Therefore, R(a, 0) ∩ R(b, f) = R(a, 0) = I, so two cases are possible :

∗) If a = 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

∗∗) If a 6= 0. we claim that AnnR(I) = AnnR(a, 0) = 0 ∝ E and AnnR(J) = AnnR(b, f) = 0 ∝ E.
Indeed,
• Let (d, g) ∈ AnnR(a, 0) implies (d, g)(a, 0) = (0, 0) implies (da, 0) = (0, 0), so da = 0 then d ∈ AnnA(a)
implies d = 0 (since A is a domain and a 6= 0) then (d, g) ∈ 0 ∝ E hence AnnR(I) ⊆ 0 ∝ E. Conversely,
clearly 0 ∝ E ⊆ AnnR(I). Thus, AnnR(I) = 0 ∝ E.
• Let (d, g) ∈ AnnR(b, f) then (d, g)(b, f) = (0, 0) implies db = 0 and df = 0 hence d ∈ AnnA(b)∩AnnA(f)
so d = 0 (since A is a domain and b 6= 0), therefore (d, g) ∈ 0 ∝ E thus AnnR(b, f) ⊆ 0 ∝ E. Conversely,
clearly 0 ∝ E ⊆ AnnR(I).
Consequently, AnnR(I) + AnnR(J) = AnnR(I ∩ J).

ii) Assume that e 6= 0. Hence, l ∈ M since le = 0 and so R(a, e) ∩ R(b, f) ⊆ aM ∝ 0. Conversely, let
(au, 0) ∈ aM ∝ 0, where u ∈ M . Then (au, 0) = (u, 0)(a, e) = (uc, 0)(b, f) ∈ R(a, e) ∩ R(b, f). Therefore,
R(a, e) ∩ R(b, f) = aM ∝ 0.

α) If a 6= 0 We have AnnR(I) = AnnR(a, e) = 0 ∝ E, AnnR(J) = 0 ∝ E and AnnR(aM ∝
0) = (AnnA(aM)) ∝ E = 0 ∝ E (since A is a domain and by lemma 2.2) so AnnR(I) + AnnR(J) =
AnnR(I ∩ J).

β) If a = 0 then AnnR(I ∩ J) = R. Moreover, AnnR(I) = M ∝ E and AnnR(J) = 0 ∝ E. Therefore,
AnnR(I) + AnnR(J) 6= AnnR(I ∩ J)

2) If c /∈ M , then c is invertible. Clearly, R(a, e) = R(bc, cc−1e) = R(c, 0)(b, c−1e) = R(b, c−1e) since
(c, 0) is invertible in R (since c is invertible in A). So, we may assume that a = b. Then we have two
cases possible:
• If e = f then AnnR(I) + AnnR(J) = AnnR(I ∩ J).
• If e 6= f . Our aim is to show that R(a, e) ∩ R(b, f) = aM ∝ 0. Indeed, let e 6= f ∈ E. Assume
(l, m)(a, e)=(u, v)(a, f) ∈ R(a, e) ∩ R(b, f), where (l, m), (u, v) ∈ R. Hence, la = ua and le = uf since
a ∈ M and ME = 0. Therefore, l = u since a is a regular element, so l(e − f) = 0. Hence l ∈ M
since (e − f) 6= 0 and E is an (A/M)-vector space. Therefore R(a, e) ∩ R(b, f) ⊆ aM ∝ 0. Conversely,
let (au, 0) ∈ aM ∝ 0, where u ∈ M . Clearly, (au, 0) = (u, 0)(a, e) = (u, 0)(a, f) since u ∈ M and
so (au, 0) ∈ R(a, e) ∩ R(a, f). Consequently, AnnR(I) = AnnR(a, e) = 0 ∝ E, AnnR(J) = 0 ∝ E
and AnnR(aM ∝ 0) = (AnnA(aM)) ∝ E = 0 ∝ E (since A is a domain and by lemma 2.2) so
AnnR(I) + AnnR(J) = AnnR(I ∩ J).
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• case 3. a and b are not comparable.
Clearly, AnnR(I) = 0 ∝ E and AnnR(J) = 0 ∝ E (since a and b are not comparable so a 6= 0 and
b 6= 0). On the other hand, we have 0 ∝ E = AnnR(I) ⊆ AnnR(I ∩ J). Conversely, we have (a, e) ∈ I
and (b, f) ∈ J then (a, e)(b, f) ∈ IJ ⊆ I ∩ J so (ab, 0) ∈ I ∩ J and then AnnR(I ∩ J) ⊆ AnnR(ab, 0) =
0 ∝ E(ab 6= 0 since A is a domain). Consequently, AnnR(I) + AnnR(J) = AnnR(I ∩ J). �

The next example illustrates the failure of question (1), in general.

Example 2.4. Let (A, M) be a local domain ring with maximal ideal M , E be an A-module such that

ME = 0. Let R := A ∝ E be the trivial ring extension of A by E. Then

1. A is a P -IN -ring.

2. R is not a P -IN -ring.

Proof. 1. A is a P -IN -ring (since A is a domain).

2. Let I = R(0, e), J = R(b, f) where e 6= 0 and b 6= 0, then AnnR(I) = M ∝ E and AnnR(J) = 0 ∝
E. On the other hand, we have by theorem 2.3 [case 2.ii).β)] that I ∩ J = R(0, e) ∩ R(b, f) = 0
then AnnR(I ∩ J) = R, so AnnR(I) + AnnR(J) 6= AnnR(I ∩ J). Thus, R is not a P -IN -ring.

�

Next, we examine the context of trivial ring extensions of a domain by its quotient field.

Theorem 2.5. Let A be a domain, Q = qf(A) be the quotient field of A, and R := A ∝ Q be the trivial

ring extension of A by Q and let I = R(a, e), J = R(b, f) be two principal ideals of R, where (a, e),
(b, f) ∈ R. Three cases are then possible:

• case 1. a = b = 0. Two cases are then possible:

1) If e = 0 or f = 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).
2) If e 6= 0 and f 6= 0. Two cases are then possible:

i) if Ae ∩ Af = 0 then AnnR(I) + AnnR(J) 6= AnnR(I ∩ J).
ii) if Ae ∩ Af 6= 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

• case 2. If a 6= 0 and b = 0, or a = 0 and b 6= 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).
• case 3. a 6= 0 and b 6= 0 then AnnR(I) + AnnR(J) = AnnR(I ∩ J).

To facilitate the proof of this theorem we shall need a sequence of lemmas.

Lemma 2.6. With the notation of Theorem 2.5, let I = R(a, e) be a principal ideal of R, where a ∈ A\{0}
and e ∈ Q. Then, I = Aa ∝ Q = R(a, 0).

Proof. Clearly, I = R(a, e) = {(b, f)(a, e)/b ∈ A, f ∈ Q} = {(ba, fa + be)/b ∈ A, f ∈ Q}. But,
{af/f ∈ Q} = Q, hence I = Aa ∝ Q = R(a, 0). �

Lemma 2.7. Let A be a domain and R := A ∝ E be the trivial ring extension of A by E. Then

1. AnnR(I ∝ E)=0 ∝ AnnE(I) for any nonzero ideal I of A.

2. AnnR(0 ∝ E′)=AnnA(E′) ∝ E for any submodule E′ of E.

Proof. 1. If (a, e) ∈ AnnR(I ∝ E) then (a, e)(i, e′) = (0, 0) for each (i, e′) ∈ (I ∝ E) and so ai = 0
and ae′ + ei = 0. Hence, a = 0 (since A is a domain) and e ∈ AnnE(I) which means that
(a, e) ∈ 0 ∝ AnnE(I).
Conversely, let (0, e) ∈ 0 ∝ AnnE(I). Our aim is to show that (0, e) ∈ AnnR(I ∝ E). Indeed,
(0, e)(i, e′)=(0, ei)=(0, 0) (since e ∈ AnnE(I) and i ∈ I) for each (i, e′) ∈ (I ∝ E). Therefore,
(0, e) ∈ AnnR(I ∝ E).
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2. Let (a, e) ∈ AnnR(0 ∝ E′) then (a, e)(0, e′) = (0, 0) for each (0, e′) ∈ (0 ∝ E′) and so, ae′ = 0 for
all e′ ∈ E′ so, a ∈ AnnA(E′). Thus, AnnR(0 ∝ E′) ⊆ AnnA(E′) ∝ E.
Conversely, let (a, e) ∈ AnnA(E′) ∝ E. It remains to show that (a, e) ∈ AnnR(0 ∝ E′). In-
deed, (a, e)(0, e′)=(0, ae′)=(0, 0) (since e′ ∈ AnnA(E′) and a ∈ A). Therefore, AnnA(E′) ∝ E ⊆
AnnR(0 ∝ E′).

�

Lemma 2.8. Let A be a domain, Q = qf(A) be the quotient field of A. Then:

1. AnnQ(I ∩ J) = 0 for each nonzero ideals I, J of A.

2. AnnA(Ae) = AnnA(e) = 0 for each e ∈ Q\{0}.

Proof. clearly, since A is a domain and Q is a torsion-free. �

Proof of Theorem 2.5. Let I = R(a, e), J = R(b, f) be two principal ideals of R, where (a, e),
(b, f) ∈ R. Three cases are then possible:
• case 1. a = b = 0.Hence, I = R(0, e) = 0 ∝ Ae and J = R(0, f) = 0 ∝ Af . Two cases are then
possible:

1) Clear.

2) If e 6= 0 and f 6= 0. Hence, AnnR(I) = AnnA(Ae) ∝ Q = 0 ∝ Q by lemma 2.7 and lemma 2.8 and
AnnR(J) = 0 ∝ Q, so AnnR(I) + AnnR(J) = 0 ∝ Q.
On the other hand, I ∩ J = (0 ∝ Ae) ∩ (0 ∝ Af) = 0 ∝ (Ae ∩ Af). Two cases are then possible:

i) if Ae ∩ Af = 0 then AnnR(I ∩ J) = R. Consequently, AnnR(I) + AnnR(J) 6= AnnR(I ∩ J).

ii) if Ae ∩ Af 6= 0 then AnnR(I ∩ J) = 0 ∝ Q by lemma 2.8. Therefore, AnnR(I) + AnnR(J) =
AnnR(I ∩ J).
• case 2. If a 6= 0 and b = 0, or a = 0 and b 6= 0.
By symmetry, we may assume that a 6= 0 and b = 0. Then, I = R(a, e) = Aa ∝ Q by Lemma 2.6 and
J = R(0, f) = 0 ∝ Af , so J ⊆ I and I ∩ J = J . Consequently, AnnR(I) + AnnR(J) = AnnR(I ∩ J).
• case 3. a 6= 0 and b 6= 0. Hence, I = R(a, e) = Aa ∝ Q and J = R(b, f) = Ab ∝ Q then, AnnR(I) =
0 ∝ AnnQ(Aa) = 0 and AnnR(J) = 0 ∝ AnnQ(Ab) = 0. On the other hand, I∩J = (Aa∩Ab) ∝ Q, hence
AnnR(I ∩ J) = 0 ∝ AnnQ(Aa ∩ Ab) = 0 by lemma 2.8 (since Aa ∩ Ab 6= 0. Deny, ab ∈ Aa ∩ Ab, so ab = 0
hence a = 0 or b = 0 since A is a domain, contradiction.). Thus, AnnR(I) + AnnR(J) = AnnR(I ∩ J).

In the following example, we prove that under the same conditions as in Theorem 2.5, we can’t transfer
the P -IN -ring property from A to R.

Example 2.9. Let A be a domain, Q = qf(A) be the quotient field of A, and R := A ∝ Q be the trivial

ring extension of A by Q. Then:

1. A is a P -IN -ring.

2. R is not a P -IN -ring.

Proof. 1. A is a P -IN -ring (since A is a domain).

2. Let I = R(0, e), J = R(0, f) where e, f ∈ Q\{0} and Ae ∩ Af = 0 Then, by the proof of Theorem
2.5 (case1.2)i)), AnnR(I) + AnnR(J) 6= AnnR(I ∩ J). Therefore, R is not a P -IN -ring and this
completes the proof of Example 2.9.

�
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3. Localization and quotient of a P -IN-ring

In this section, we present the following result which states a condition under which the P -IN -ring is
stable under localization.

Proposition 3.1. Let R be a P -IN -ring and S a multiplicative subset of R which is contained in R\Z(R).
Then S−1R is a P -IN -ring.

The proof will use the following Lemma.

Lemma 3.2. Let R be a commutative ring and S a multiplicative subset of R which is contained in

R\Z(R). Then:

AnnS−1R(S−1I) = S−1(AnnR(I)).

Proof. ⊇) Let a
s ∈ S−1(AnnR(I)), we can assume that a ∈ AnnR(I), then a

s ∈ AnnS−1R(S−1I). In-

deed, ∀ b
t ∈ S−1I : b

t . a
s = ba

ts = 0
ts = 0

1 [since : b ∈ I and a ∈ AnnR(I)]. Thus, S−1(AnnR(I)) ⊆
AnnS−1R(S−1I) .
⊇) Let a

s ∈ AnnS−1R(S−1I) and we claim that a ∈ AnnR(I) i.e. we prove that : ∀i ∈ I : ia = 0.

Indeed, ∀i ∈ I, i
1 . a

s = ia
s = 0

1 , then there exists t ∈ S such that tia = 0 and hence ∀i ∈ I : ia = 0 [since
t ∈ S ⊆ R\Z(R)]. So, a

s ∈ S−1(AnnR(I)). �

Proof of Proposition 3.1. Let I = S−1R a
s ,J = S−1R b

t be two principal ideals of S−1R, where a, b ∈ R
and s, t ∈ S we have R is a P -IN -ring so, AnnR(aR) + AnnR(bR) = AnnR(aR ∩ bR). This means that :
S−1(AnnR(aR) + AnnR(bR)) = S−1(AnnR(aR ∩ bR)) then by lemma 2.2, we have AnnS−1R(S−1aR) +
AnnS−1R(S−1bR) = AnnS−1R(S−1(aR ∩ bR)) = AnnS−1R((S−1aR) ∩ (S−1bR)) = AnnS−1R((S−1R a

s ) ∩

(S−1R b
t )) = AnnS−1R(I ∩ J). Thus, AnnS−1R(I) + AnnS−1R(J) = AnnS−1R(I ∩ J) and so S−1R is a

P -IN -ring.
Recall that a ring R is called a weakly finite conductor ring if Ra ∩ Rb is a finitely generated ideal of R
( see [12]).

Proposition 3.3. Let R be a weakly finite conductor ring, P -IN -ring and S a multiplicative subset of

R then S−1R is a P -IN -ring

Proof. Trivial [since, if I is a finitely generated ideal of R then AnnS−1R(S−1I) = S−1(AnnR(I)) by [3]].
�

X Question 2: If S−1R is a P -IN -ring then so is R ?.
The example below answers this question.

Example 3.4. Let A = K[[X1, X2, X3]] = K + M be a power series ring over a field K and M :=
(X1, X2, X3). Let E be an A-module such that ME = 0 and dimA/M (E) ≥ 2. Let R := A ∝ E be the

trivial ring extension of A by E and let S be the multiplicative subset of R given by S := {(X1, 0)n/n ∈ N}
and S0 the multiplicative subset of A given by S0 := {Xn

1 /n ∈ N}. Then:

1. R is not a P -IN -ring.

2. S−1
0 A is a P -IN -ring.

3. S−1R and S−1
0 A are isomorphic rings. In particular, S−1R is a P -IN -ring.

Proof. 1. Let I = R(0, e), J = R(0, f) where {e, f} are linearly independent, then AnnR(I) = M ∝ E
and AnnR(J) = M ∝ E. On the other hand, we have by theorem 2.3 I ∩ J = R(0, e) ∩ R(0, f) = 0
then AnnR(I ∩ J) = R so, AnnR(I) + AnnR(J) 6= AnnR(I ∩ J). Thus, R is not a P -IN -ring.

2. Since K is a domain then A is a domain hence S−1
0 A is a domain. Thus, S−1

0 A is a P -IN -ring.

3. Since X1E ⊆ ME = 0 and X1 ∈ S0, then S−1
0 E = 0. Thus, S−1(0 ∝ E) = 0 and so S−1R =

{ (a,0)
(s,0) /a ∈ A and s ∈ S0}. Now, we easily check that:
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f : S−1
0 A → S−1R
a
s 7→ (a,0)

(s,0)

is a ring isomorphism. In particular, S−1R is a P -IN -ring by 2).
�

X Question 3: If R/I is a P -IN -ring then so is R ?.
The ring in our next example illustrates the failure of this question, in general.

Example 3.5. Let (A, M) be a local domain with maximal ideal M , E be an A-module such that ME = 0
and dimA/M (E) ≥ 2. LetR := A ∝ E be the trivial extension of A by E. Then:

1. R/(0 ∝ E) is a P -IN -ring .

2. R is not a P -IN -ring.

Proof. 1. since 0 ∝ E is a prime ideal of R hence R/0 ∝ E is a domain so it’s a P -IN -ring.

2. Let I = R(0, e), J = R(0, f) where {e, f} are linearly independent, then AnnR(I) = M ∝ E and
AnnR(J) = M ∝ E. On the other hand, we have by theorem 2.3 I ∩ J = R(0, e) ∩ R(0, f) = 0 then
AnnR(I ∩ J) = R so, AnnR(I) + AnnR(J) 6= AnnR(I ∩ J). Thus, R is not a P -IN -ring.

�

Finally, we study a particular case of homomorphic images, that is, the direct product of P-IN-rings.

Theorem 3.6. Let (Ri)1≤i≤n be a family of rings and R :=
n∏

i=1

Ri a direct product of rings. Then R is

a P-IN-ring if and only if so is Ri for each i = 1, · · ·, n.

Before proving Theorem 3.6, we establish the following lemma.

Lemma 3.7. Let R1 and R2 be two rings and I := I1 × I2 be an ideal of R1 × R2 where Ii is an ideal of

Ri for each i = 1, 2. Then :

AnnR1×R2
(I1 × I2) = AnnR1

(I1) × AnnR2
(I2).

Proof. Trivial. �

Proof of Theorem 3.6. The proof is done by induction on n and it suffices to check it for n = 2.
Assume that R := R1 × R2 is a P -IN -ring. Let I1 and I2 be two principal ideals of R1. Then :

(AnnR1
(I1 ∩ I2)) × R2 = (AnnR1

(I1 ∩ I2)) × (AnnR2
(0))

= AnnR1×R2
((I1 ∩ I2) × {0}) (By Lemma 3.7)

= AnnR1×R2
((I1 × {0}) ∩ (I2 × {0}))

= AnnR1×R2
(I1 × {0}) + AnnR1×R2

(I2 × {0})

= (AnnR1
(I1) × R2) + (AnnR1

(I2) × R2)

= (AnnR1
(I1) + AnnR1

(I2)) × R2

So, AnnR1
(I1 ∩ I2) = AnnR1

(I1 + AnnR1
(I2). Thus, R1 is a P -IN -ring (the case that R2 is a P -IN -ring

is similar).
Conversely, Assume that R1 and R2 are a P -IN -rings. Let I := I1 × I2 and J := J1 × J2 be two

principal ideals of R1 × R2 where I1, J1 and I2, J2 are principal ideals of R1 and R2 respectively.

AnnR1×R2
((I1 × I2) ∩ (J1 × J2)) = AnnR1×R2

((I1 ∩ J1) × (I2 ∩ J2))

= AnnR1
(I1 ∩ J1) × AnnR2

(I2 ∩ J2)

= (AnnR1
(I1) + AnnR1

(J1)) × (AnnR2
(I2) + AnnR2

(J2))

= (AnnR1
(I1) × AnnR2

(I2)) + (AnnR1
(J1) × AnnR2

(J2))

= (AnnR1×R2
(I1 × I2)) + (AnnR1×R2

(J1 × J2)).
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