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On a Class of Ikeda-Nakayama Rings

Mourad El Maalmi and Hakima Mouanis

ABSTRACT: In this work we introduce the notion of P-Ikeda-Nakayama rings (P-IN-rings) which is in some
way a generalization of the notion of Ikeda-Nakayama rings (I N-rings). Then, we study the transfer of this
property to trivial ring extension, localization, homomorphic image and to the direct product.
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1. Introduction and Preliminaries

In this part, R denotes a nonzero associative ring with identity. V. Camillo, W. K. Nicholson and
M. F. Yousif (2000) introduced the Tkeda-Nakayama ring (right I N-ring). A ring is said to be I N-ring
if 1(I)+1(J) =1(INJ) for all ideals I, J of R where [(X) denotes the left annihilator of X (see [7]).
Examples of I N-ring are the ring Z of integers, right self-injective rings and right uniserial rings. In [5],
the authors have introduced and investigated the concept of a right SA-ring. A ring R is called a right
S A-ring, if for any ideals I and J of R there is an ideal K of R such that »(I) +r(J) = r(K), where r(I)
(resp. I(I)) denotes the right annihilator (resp. the left annihilator) of I. @QF-rings, left I N-rings and
quasi-Baer rings are examples of right S A-rings (see for instance [5], [6]).

All rings considered below are commutative with unit, and all modules are unital.

Let A be a ring, E be an A-module and R := A & E be the set of pairs (a,e) with pairwise addition
and multiplication given by: (a,e)(a’,¢’) = (ad’,ae’ + a’e). R is called the trivial ring extension of A
by E. Considerable work has been concerned with trivial ring extensions. These rings have proven to
be useful in solving many open problems and conjectures for various contexts in commutative and non-
commutative ring theory (see for instance ([9], [10] and [13]). This construction was first introduced in
1962 by Nagata [11] in order to facilitate interaction between rings and their modules and also to provide
various families of examples of commutative rings containing zero-divisors. The literature abounds of
papers on trivial extensions dealing with the transfer of ring-theoretic notions in various settings of these
constructions (see for instance [1], [4] and [8]). For more details on commutative trivial extensions
(or idealizations) we refer the reader to Glaz”s and Huckaba”s respective books [[9], [10]], and also to
Anderson and Winders relatively recent and comprehensive survey paper [2].

In this paper, we introduce a particular class of I N-rings that we call P-I N-rings. We call a ring R a
P-IN-ring if the annihilator of the intersection of any two principal ideals is the sum of the annihilators
of these two ideals. If R is a I N-ring, then R is naturally a P-IN-ring. Then we investigate the possible
transfer of a P-IN-ring to various trivial extension constructions. Also, we examine the transfer of a
P-IN-ring property to localization, homomorphic image and the direct product of rings.

2. Transfert of the P-IN-ring to trivial ring extension

In this section, we study the possible transfer of the P-IN-ring to various trivial extension contexts.
First, we explore a different context, namely, the trivial ring extension of a local ring (A, M) by an
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A-module E such that ME =0 .

Proposition 2.1. Let (A, M) be a local with maximal ideal M, E be an A-module such that ME = 0,
and R := A < E be the trivial ring extension of A by E. If R is a P-IN-ring then so is A.

The proof of this Proposition requires the following Lemma.

Lemma 2.2. Let (A, M) be a local ring with maximal ideal M, E be an A-module such that ME = 0,
and let R := A < E be the trivial ring extension of A by E. Then : Anng(I < 0)=Anna(I) < E for all
proper ideals I of A.

Proof. If (a,e) € Anng(I « 0), then V(i,0) € (I < 0) : (a,e)(i,0) = (0,0), so ai = 0 Vi € I (since
ie€ IEC MFE and ME=0).

Conversely, let (a,0) € Anna(I) o« 0. Our aim is to show that (a,0) € Anng(I x 0). Indeed, we have
Vi e I: (a,0)(:,0) = (ai,0) = (0,0) (since a € Anna(I) and i € I, so Anna(I) x 0 € Anng(I x 0) and
this completes the proof. O

Proof of Proposition 2.1. Let I = Aa, J = Ab be two principal ideals of A, where a € I and b € J.
We claim that Anna(I) + Anna(J) = Anna(I NJ). Two cases are then possible:
ecase 1. If I = A or J = A then Anna(I) + Anna(J) = Anna(INJ).
e case 2. If I and J two principal ideals of A, hence I «x 0=Aa  0=R(a,0) and J o« 0=A4b x 0=R(b,0)
(since M E = 0) are two principal ideals of R, hence :
a) Annr(I x 0) + Anng(J x 0)=Anng((I x 0) N (J x 0)) (since R is P-IN-ring)= Anng((INJ) x
0)=Anna(INJ) x 0 ( by lemma 2.2).
b) Annp(I x 0) + Anng(J x 0)=Anna(I) < 0+Anna(J) x 0 ( by lemma 2.2) =(Anna(I)+Anna(J)) x
0. Therefore, by (a) and (b) we have (Anna(I) + Anna(J)) «x 0= Anna(I N J) < 0. Thus, Anna(I) +
Anna(J) = Anna(INJ).
V' Question 1: If Ais a P-IN-ring thensois R:= Ax E 7.
So that we can respond to this question, we are in need of the results of the following theorem.

Theorem 2.3. Let (A, M) be a local domain with mazimal ideal M, E be an A-module such that ME = 0,
and R := A < E be the trivial ring extension of A by E. Let I = R(a,e), J = R(b, f) be two principal
ideals of R, where (a,e), (b, f) € R. Two cases are then possible:
o case 1. If I = A or J = A then Anng(I) + Anng(J) = Anng(I N J).
e case 2. Let I = R(a,e), J = R(b, ) be two principal proper ideals of R, where a, b € M. Three cases
are then possible:
e case 1. a =b=0. Two cases are then possible:

1) If {e, f} are linearly independent then Anng(I) + Anng(J) # Anng(IN.J).

2) If {e, f} are linearly dependent, so Anng(I) + Anng(J) = Anng(INJ).
e case 2. a and b are comparable. Assume for example that a = cb, where ¢ € A. Two cases are then
possible:

1) If c € M, two cases are then possible:

i) If e =0, then Anng(I) + Anng(J) = Anng(INJ).

i1) If e # 0 then two cases are possible:

) If a #£0, so Anng(I) + Anng(J) = Anng(INJ).

B) If a =0 then Anng(I) + Anng(J) # Anng(INJ).

2) If c ¢ M, then Annr(I) + Anngr(J) = Anng(I N J).
e case 3. a and b are not comparable.
Then Anng(I) + Anng(J) = Anng(I N J).

Proof. e case 1. clear.

e case 2. Let I = R(a,e), J = R(b, ) be two principal proper ideals of R, where a, b € M. Three cases
are then possible:

e case 1. a = b= 0. Two cases are then possible:
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1) If {e, f} are linearly independent, then :

i)If e # 0 and f # 0 assume that (I,m)(0,e) = (u,v)(0, f) € R(0,e)NR(0, f), where (I,m), (u,v) € R.
Since (1,m)(0,e) = (0,le) and (u,v)(0, f) = (0,7f), then le = Tf, hence l = W = 0 since {e, f} are linearly
independent. Therefore, R(0,e) N R(0, f) = 0 hence Anng(I NJ) = R . On the other hand, if e # 0 and
f # 0. Our aim is to show that Anng(I) = M « E and Anng(J) = M « E. Indeed,

e Clearly Annr(I) C M x E (since R is a local ring with maximal ideal M « E and e # 0). Conversely,
let (m,g) € M « E, we claim that (m,g) € Anng(0,¢e) i.e (m,g)(0,e) = (0,0). Indeed, (m,g)(0,e) =
(0, me) =)(0,0) (since me € ME and ME = 0).

o Clearly Anng(J) =M x E.

Consequently, Anng(I) + Annr(J) # Anng(I N J).

2) If {e, f} are linearly dependent, assume that e = wf, where w € A. Then (0,¢) = (w,0)(0, f) €
R(0, f) and so R(0,¢e) N R(0, f) = R(0,e). We have two cases possible :

i)Ife=0or f =0 then Anng(I)+ Anng(J) = Anng(I N J).

i) i e £ 0 et f # 0 then Anng(l) = M « E and Anng(J) = M « E. On the other hand
Anng(INJ) = Annr(R(0,e)) = M « E. Therefore, Anng(I) + Anng(J) = Anng(I N J).

e case 2. a and b are comparable. Assume for example that a = ¢b, where ¢ € A. Two cases are then
possible:

1) If c € M, let (I,m)(a,e)=(u,v)(b, f) € R(a,e) N R(D, f), where (I,m), (u,v) € R. Then, cbl = al =
ub and le = Tf since a,b € M. But, cbl = ub implies u = ¢l € M (since A is a domain); so le = uf = 0.
Two cases are then possible: e =0 or e # 0.

i) Assume that e = 0. Hence le = 0 for each [ € A and so R(a,0) N R(b, f) C R(a,0). Conversely, let
(u,v)(a,0) € R(a,0). Clearly, (u,v)(a,0) = (u,v)(cbh,0) = (uc,0)(b, f) since ¢ € M, hence (u,v)(a,0) €
R(a,0) N R(b, ). Therefore, R(a,0) N R(b, f) = R(a,0) = I, so two cases are possible :

%) If a =0 then Anng(I) + Anngr(J) = Anng(I N J).

wx) If @ # 0. we claim that Anng(I) = Anng(a,0) = 0 x E and Anng(J) = Anngr(b, f) =0 < E.
Indeed,

e Let (d,g) € Anng(a,0) implies (d, g)(a,0) = (0,0) implies (da,0) = (0,0), so da = 0 then d € Ann(a)
implies d = 0 (since A is a domain and a # 0) then (d, g) € 0 < E hence Anng(I) C 0 < E. Conversely,
clearly 0 o E C Anng(I). Thus, Anng(l) =0 x E.

o Let (d,g9) € Anngr(b, f) then (d, ¢)(b, f) = (0,0) implies db = 0 and df = 0 hence d € Anna(b)NAnna(f)
so d =0 (since A is a domain and b # 0), therefore (d, g) € 0 & E thus Anng(b, f) C 0 x E. Conversely,
clearly 0 x E C Anng(I).

Consequently, Anng(I) + Anng(J) = Anng(I N J).

i) Assume that e # 0. Hence, | € M since le = 0 and so R(a,e) N R(b, f) € aM 0. Conversely, let
(au,0) € aM o 0, where u € M. Then (au,0) = (u,0)(a,e) = (uc,0)(b, f) € R(a,e) N R(b, ). Therefore,
R(a,e) VR, f) = aM x 0.

a) If a # 0 We have Anngr(I) = Anng(a,e) = 0 < E, Anng(J) = 0 « E and Anng(aM
0) = (Anna(aM)) x E = 0 « E (since A is a domain and by lemma 2.2) so Anng(I) + Anng(J) =
Anng(INJ).

B) If a = 0 then Annr(INJ) = R. Moreover, Annr(I) = M « E and Anng(J) =0 x E. Therefore,
Anng(I) + Anng(J) # Anng(INJ)

2) If ¢ ¢ M, then c is invertible. Clearly, R(a,e) = R(bc,éc—e) = R(c,0)(b,c—te) = R(b, c—te) since
(¢,0) is invertible in R (since c¢ is invertible in A). So, we may assume that a = b. Then we have two
cases possible:

o If e = f then Anngr(I) + Anng(J) = Annr(I N J).

o If ¢ £ f. Our aim is to show that R(a,e) N R(b, f) = aM o 0. Indeed, let ¢ # f € E. Assume
(1,m)(a,e)=(u,v)(a, f) € R(a,e) N R(b, f), where (I,m), (u,v) € R. Hence, la = ua and le = Tf since
a € M and ME = 0. Therefore, | = u since a is a regular element, so I(e — f) = 0. Hence | € M
since (e — f) # 0 and E is an (A/M)-vector space. Therefore R(a,e) N R(b, f) C aM « 0. Conversely,
let (au,0) € aM o 0, where u € M. Clearly, (au,0) = (u,0)(a,e) = (u,0)(a, f) since v € M and
so (au,0) € R(a,e) N R(a, f). Consequently, Anng(I) = Anng(a,e) = 0 x E, Anng(J) = 0 x E
and Anng(aM « 0) = (Anna(aM)) x E = 0 x E (since A is a domain and by lemma 2.2) so
Anng(I) + Anng(J) = Anng(INJ).

) =
) =
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e case 3. a and b are not comparable.

Clearly, Annr(I) = 0 x E and Anng(J) = 0 < E (since a and b are not comparable so a # 0 and
b # 0). On the other hand, we have 0 x E = Anng(I) C Anng(I NJ). Conversely, we have (a,e) € I
and (b, f) € J then (a,e)(b, f) € IJ C INJ so (ab,0) € INJ and then Anng(I NJ) C Anng(ab,0) =
0 < E(ab # 0 since A is a domain). Consequently, Anng(I) + Anng(J) = Anng(INJ). O

The next example illustrates the failure of question (1), in general.

Example 2.4. Let (A, M) be a local domain ring with mazimal ideal M, E be an A-module such that
ME =0. Let R:= A < E be the trivial ring extension of A by E. Then

1. A is a P-IN-ring.
2. R is not a P-IN-ring.
Proof. 1. Ais a P-IN-ring (since A is a domain).

2. Let I = R(0,¢), J = R(b, f) where e # 0 and b # 0, then Annr(I) = M «x E and Anng(J) =0
E. On the other hand, we have by theorem 2.3 [case 2.i7).3)] that I NJ = R(0,e) N R(b, f) =0
then Anngr(INJ) =R, so Anngr(l)+ Anngr(J) # Anng(I N J). Thus, R is not a P-IN-ring.

(]

Next, we examine the context of trivial ring extensions of a domain by its quotient field.

Theorem 2.5. Let A be a domain, Q = qf(A) be the quotient field of A, and R := A  Q be the trivial
ring extension of A by Q and let I = R(a,e), J = R(b, f) be two principal ideals of R, where (a,e),
(b, f) € R. Three cases are then possible:
e case 1. a =b=0. Two cases are then possible:

1) Ife=0 or f =0 then Anng(I) + Anng(J) = Anng(INJ).

2) If e #0 and f # 0. Two cases are then possible:

i) if AeNAf =0 then Anng(I) + Anng(J) # Anng(INJ).

i1) if AeN Af # 0 then Anng(I) + Anng(J) = Anng(I N J).
e case 2. Ifa# 0 andb=0, ora=0 and b # 0 then Anng(I) + Anng(J) = Anng(INJ).
e case 3. a#0 and b # 0 then Anng(I) + Anngr(J) = Anng(I N J).

To facilitate the proof of this theorem we shall need a sequence of lemmas.

Lemma 2.6. With the notation of Theorem 2.5, let I = R(a, e) be a principal ideal of R, where a € A\{0}
and e € Q. Then, I = Aa x Q@ = R(a,0).

Proof. Clearly, I = R(a,e) = {(b, f)(a,e)/b € A, f € Q} = {(ba,fa+be)/b € A, f € Q}. But,
{af/f € Q} = Q, hence I = Aa x Q = R(a,0). O

Lemma 2.7. Let A be a domain and R := A < E be the trivial ring extension of A by E. Then
1. Anng(I x E)=0 < Anng(I) for any nonzero ideal I of A.
2. Annp(0 x E')=Anna(E") x E for any submodule E' of E.

Proof. 1. If (a,e) € Anng(I x E) then (a,e)(i,e") = (0,0) for each (i,e’) € (I x E) and so ai = 0
and ae’ + ei = 0. Hence, a = 0 (since A is a domain) and e € Anng(I) which means that
(a,e) € 0 xx Anng(I).

Conversely, let (0,e) € 0 x Anng(I). Our aim is to show that (0,e) € Anng(I x E). Indeed,
(0,¢€)(4,¢)=(0,ei)=(0,0) (since ¢ € Anng(I) and i € I) for each (i,e’) € (I x E). Therefore,
(0,e) € Annr(I x E).
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2. Let (a,¢e) € Anng(0 < E’) then (a,e)(0,¢’) = (0,0) for each (0,¢’) € (0 x E’) and so, ae’ = 0 for
all ¢’ € E' s0, a € Anna(E’). Thus, Anng(0 < E') C Anna(E') «x E.
Conversely, let (a,e) € Anna(E’) < E. It remains to show that (a,e) € Anng(0 x E'). In-
deed, (a,e)(0,e)=(0,ae’)=(0,0) (since ¢’ € Anny(E’) and a € A). Therefore, Anna(E') x E C

Anngr(0 < E').
(]
Lemma 2.8. Let A be a domain, Q = qf(A) be the quotient field of A. Then:
1. Anng(INJ) =0 for each nonzero ideals I, J of A.
2. Anna(Ae) = Anna(e) =0 for each e € Q\{0}.
Proof. clearly, since A is a domain and @ is a torsion-free. O

Proof of Theorem 2.5. Let I = R(a,e), J = R(b, f) be two principal ideals of R, where (a,e),
(b, f) € R. Three cases are then possible:
e case 1. a = b = 0.Hence, I = R(0,e) = 0 « Ae and J = R(0,f) = 0 x Af. Two cases are then
possible:

1) Clear.

2) If e # 0 and f # 0. Hence, Anng(l) = Anna(Ae) x Q@ =0 x @ by lemma 2.7 and lemma 2.8 and
Anng(J) =0 x Q, so Anng(I) + Anng(J) =0 x Q.
On the other hand, INJ = (0 x Ae) N (0 x Af) =0 x (Ae N Af). Two cases are then possible:

i) if AeN Af =0 then Anngr(I NJ) = R. Consequently, Anng(I) + Anng(J) # Anng(I N J).

i) if AenN Af # 0 then Annp(I NJ) = 0 < @ by lemma 2.8. Therefore, Anngr(l) + Anng(J) =
Anng(INJ).
ecase 2. Ifa#0and b=0, or a =0 and b # 0.
By symmetry, we may assume that a # 0 and b = 0. Then, I = R(a,e) = Aa x @ by Lemma 2.6 and
J=R0,f/)=0x Af,s0 J CIand INJ=J. Consequently, Anng(I) + Anng(J) = Anng(I N J).
e case 3. a # 0 and b # 0. Hence, I = R(a,e) = Aa x Q and J = R(b, f) = Ab x @ then, Anng(l) =
0 x Anng(Aa) = 0 and Anng(J) = 0 o Anng(Ab) = 0. On the other hand, INJ = (AaNAb) x @, hence
Anngp(INJ) =0 o« Anng(Aan Ab) = 0 by lemma 2.8 (since Aa N Ab # 0. Deny, ab € AaN Ab, so ab=10
hence a = 0 or b = 0 since A is a domain, contradiction.). Thus, Anng(I) + Anng(J) = Anng(I N J).

In the following example, we prove that under the same conditions as in Theorem 2.5, we can’t transfer
the P-IN-ring property from A to R.

Example 2.9. Let A be a domain, Q = qf(A) be the quotient field of A, and R := A x Q be the trivial
ring extension of A by Q. Then:

1. A is a P-IN-ring.
2. R is not a P-IN-ring.
Proof. 1. Ais a P-IN-ring (since A is a domain).
2. Let I = R(0,¢), J = R(0, f) where e, f € Q\{0} and Ae N Af = 0 Then, by the proof of Theorem
2.5 (casel.2)i)), Anngr(I) + Anng(J) # Anng(I N J). Therefore, R is not a P-IN-ring and this

completes the proof of Example 2.9.
O
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3. Localization and quotient of a P-IN-ring

In this section, we present the following result which states a condition under which the P-I N-ring is
stable under localization.

Proposition 3.1. Let R be a P-IN-ring and S a multiplicative subset of R which is contained in R\Z(R).
Then S™'R is a P-IN-ring.

The proof will use the following Lemma.

Lemma 3.2. Let R be a commutative ring and S a multiplicative subset of R which is contained in
R\Z(R). Then:

Annqu(S_lI) = S_l(ATLTLR(I))

Proof. D) Let 2 € S™'(Anng(I)), we can assume that a € Anng(I), then ¢ € Anng-1(S™'I). In-
deed, V2 € S~ b2 =02 = 0 = O since: b eI and a € Anng(I)]. Thus, S~'(Anng(I)) C
Anng-1(S71I) .

D) Let ¢ € Anng-1x(S7'1) and we claim that a € Anng(I) i.e. we prove that : Vi € I : ia = 0.
Indeed, Vi € I, %% = i@ _ %, then there exists t € S such that tia = 0 and hence Vi € I : ia = 0 [since

S

te S C R\Z(R)|. So, ¢ € S~ (Anng(1)). O

Proof of Proposition 3.1. Let / = S™'R%.J = S~1R2 be two principal ideals of S~'R, where a,b € R
and s,t € S we have R is a P-IN-ring so, Anng(aR) + Anng(bR) = Anng(aRNbR). This means that :
S~YAnng(aR) + Anng(bR)) = S~ (Anng(aRNbR)) then by lemma 2.2, we have Anng-1z(S~taR) +
Anng-1g(ST'OR) = Anng-1x(S™H(aRNbR)) = Anng-15((S™'aR) N (ST'bR)) = Anng-1g((ST'R%) N
(ST'RY)) = Anng-1x(I N J). Thus, Anng-1x(I) + Anng-1x(J) = Anng-1xg(I N J) and so S~'R is a
P-IN-ring.

Recall that a ring R is called a weakly finite conductor ring if Ra N Rb is a finitely generated ideal of R
( see [12]).

Proposition 3.3. Let R be a weakly finite conductor ring, P-IN-ring and S a multiplicative subset of
R then ST'R is a P-IN-ring

Proof. Trivial [since, if I is a finitely generated ideal of R then Anng-15(S~1I) = S~1(Anng(I)) by [3]].
0

v Question 2: If ST'R is a P-IN-ring then so is R ?.
The example below answers this question.

Example 3.4. Let A = K[[X1,X2,X3]] = K + M be a power series ring over a field K and M :=
(X1, X2, X3). Let E be an A-module such that ME = 0 and dim s p(E) > 2. Let R := A < E be the
trivial ring extension of A by E and let S be the multiplicative subset of R given by S := {(X1,0)"/n € N}
and Sy the multiplicative subset of A given by So := {X}"/n € N}. Then:

1. R is not a P-IN-ring.
2. Sy ' A is a P-IN-ring.
3. S7'R and SJIA are isomorphic rings. In particular, S™'R is a P-IN-ring.

Proof. 1. Let I = R(0,¢), J = R(0, f) where {e, f} are linearly independent, then Anngr(I) = M x E
and Anng(J) = M « E. On the other hand, we have by theorem 2.3 I'NJ = R(0,e) N R(0, f) =0
then Annr(INJ) =R so, Anngr(l)+ Anngr(J) # Anng(I N J). Thus, R is not a P-IN-ring.

2. Since K is a domain then A is a domain hence S; ' A is a domain. Thus, S(;lA is a P-IN-ring.
3. Since X;E C ME = 0 and X; € Sy, then S;'E = 0. Thus, S~'(0 &« E) = 0 and so S™'R =

{%Z:g;/a € Aand s € Sp}. Now, we easily check that:
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f: SytA— SR
a ((Z,O)

s (s,0)

is a ring isomorphism. In particular, S™!R is a P-IN-ring by 2).

v Question 3: If R/I is a P-IN-ring then so is R 7.
The ring in our next example illustrates the failure of this question, in general.

Example 3.5. Let (A, M) be a local domain with mazimal ideal M, E be an A-module such that ME = 0
and dim s /p(E) > 2. LetR := A o< E be the trivial extension of A by E. Then:

1. R/(0 x E) is a P-IN-ring .
2. R is not a P-IN-ring.
Proof. 1. since 0 &< E is a prime ideal of R hence R/0 « E is a domain so it’s a P-IN-ring.
2. Let I = R(0,¢), J = R(0, f) where {e, f} are linearly independent, then Anng(I) = M «x E and
Anng(J) = M x E. On the other hand, we have by theorem 2.3 INJ = R(0,¢e) N R(0, f) = 0 then

Anng(INJ) = R so, Annr(I) + Anngr(J) # Anng(I N J). Thus, R is not a P-IN-ring.
O

Finally, we study a particular case of homomorphic images, that is, the direct product of P-IN-rings.

Theorem 3.6. Let (R;)1<i<n be a family of rings and R := [] R; a direct product of rings. Then R is
i=1
a P-IN-ring if and only if so is R; for eachi =1, -, n.

Before proving Theorem 3.6, we establish the following lemma.

Lemma 3.7. Let Ry and Ry be two rings and I := I; X Is be an ideal of R1 X Ry where I; is an ideal of
R; for each i =1,2. Then :

ATLTLRIXRQ(Il X IQ) = ATL?”LRI (Il) X AnnRz(Ig).
Proof. Trivial. O

Proof of Theorem 3.6. The proof is done by induction on n and it suffices to check it for n = 2.
Assume that R := R; X Ry is a P-IN-ring. Let I; and I> be two principal ideals of Ry. Then :
(Anan (Il n IQ)) X R2 = (ATLTLRl (Il n IQ)) X (ATLTLRQ (0))
= Anng,xr,((I1 NI2) x {0}) (By Lemma 3.7)
= Anng,xr,((I1 x {0}) N (12 x {0}))
= ATL?”LRI X Ro (I1 X {O}) + ATLTLRlX32 (.[2 X {0})
= (A’I’LTLRl (Il) X RQ) + (ATLTLRl (IQ) X RQ)
= (ATLTLRl (Il) =+ Anan (IQ)) X Ry
So, Anng, (I1 N13) = Anng, (I1 + Anng, (I3). Thus, Ry is a P-IN-ring (the case that Ry is a P-IN-ring
is similar).
Conversely, Assume that Ry and Ry are a P-IN-rings. Let I := I; x Iy and J := J; x J3 be two
principal ideals of Ry X Ry where Iy, J; and Is, Jo are principal ideals of R; and Ry respectively.

Anansz((Il X .[2) n (J1 X Jg)) = AnanXRQ((.h n Jl) X (I2 n Jg))

= Anng,(I1 NJ1) X Anng,(I2 N Jo)

(Anng,(I) + Anng, (J1)) X (Anng,(I2) + Anng,(J2))
= (Anng, (1) x Anng,(I2)) + (Anng, (J1) X Anng,(J2))
= (Annpg,xr,(I1 X I2)) + (Anng, xr,(J1 X J2)).
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