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Coefficient Inequalities for Classes of Univalent Functions Defined by ¢— Derivatives *

M. K. Aouf, A. O. Mostafa and N. E. Cho

ABSTRACT: Using the principal of subordination and the g—derivative, we obtain sharp bounds for some
classes of univalent functions.
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1. Introduction

Denote by A the class of analytic functions:

f(z)zz—l—Zanz"(zEU:{z:zeC,|z|<1}). (1.1)
n=2

For 0 < ¢ < 1, the ¢-derivative of f € A, is given by ( see [4], [5])

D, = M= 20

= 1+ [nganz""", (1.2)
n=2

where, [n], = qq — 11, as ¢ = 17,[n]g = n, Dyf(0) = f'(0) and Dy(Dyf(2)) = DZf(2). If n(z) = 2",

Dyn(z) = Dg(2") = 2" =[n]gz" !

lim D,n(z) = lim [n],2" ' =n""! = 7/(2).
q—1- q—1-

Denote by P the class of analytic functions ¢ of positive real part on U with ¢(0) = 1, R{¢(z)} > 0.
Using the g-derivative D, f(z), f € A,x € P,0 <X <1,be C* =C/{0}, let

50, (0) = {f 14 % {(1 Y (”%ﬁ;”) + /\% - 1} < %(z)} , (1.3)

where < denotes the usual subordination ( see [7], [3], [2]).

For different choices of ¢,b, A, in (1.3), the class 9{27b(%), generalizes many classes studied earlier,
for example ( see Seoudy and Aouf [10], [11], Ravichandran et al. [9], Ali et al. [1] with p =1
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and Ramachandran et al. [8], with @« = 0 and 8 = 1. Also, we obtain the new class 9—(27’;‘ (5) for
b=e""(1—a)cost,0 < a<1,]0] <%, where

et {(1 - ) (Z[}"(J;gz)) + )\D"gﬁq(ﬁgz)) —acosf —isiné

Ao _ .
Hoo () =91+ (1 —a)cosh

=< x(2)

The following known lemma is needed to establish our results.
Lemma 1.1 [6]. Ifp(z) =1+ riz+r22?+ ... € P and § is a complex number, then

ro — 0r?| < 2max{1; |26 — 1[}. (1.4)
The result is sharp for the functions given by
1+ 22 1+=2

=i wd pE) =

p(2)

Also, we note that
—46+2  if <0,
lro —&rf| < q 2 if 0<¢<1, (1.5)
48 -2 if £>1,

when £ < 0 or £ > 1, the equality holds if and only if p(z) is (1 + 2z)/(1 — 2) or one of its rotations. If
0 < ¢ < 1, then the equality holds if and only if p(z) is (1 + 22)/(1 — 22) or one of its rotations. If £ = 0,
the equality holds if and only if

1+~y\1+2 1—v\1-2
) <~<1
p(z) ( 2 )1—2 ( 2 )1+z (Osy=1)

or one of its rotations. If v = 1, the equality holds if and only if p is the reciprocal of one of the functions
such that equality holds in the case of £ = 0.

Also the above upper bound is sharp, and it can be improved as follows when 0 < & < 1:

1
[ra = &rf] + & Im|” <2 (0<5<5>

and

1
n-gi+a-gmPsz  (3sest).
2. Main results

We assume in the reminder of this paper that f € A, € P,0<¢<1,0< A <1andbeC*.
Theorem 2.1. Let

w(2) =1+diz+dy2* + ... (2.1)
with dy > 0. If f(z) € %27b(%),then
2 10 ||
az — [a < max {1,
N T(E S S Vit Rl
dy bd 2 ([8la=1D)[1+A([8],—1)
4 T L DAL TP [+ A2l 1) - p PPl [

(2.2)

The result is sharp.
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Proof: If f € U{Q’b(%), then there is a function w, analytic in U with w(0) = 0 and |w(z)| < 1 such that

1 . . . ;
Lt g (0= 2Bl 4 ARAEELN 1] = (o). 2.3)

Define the function p (z) by

14 w(z)

=———<=1 P+ 2.4
w2 +r1z+122° + (2.4)

p(2)

We see that R {p(z)} > 0 and p (0) = 1, since w (z) is a Schwarz function.. Therefore,

p(z)—1
<o) = «(555)
1 r? r3
= x <§ [rlz + (r2 — %) 22+ (rg —rire + Zl) 23+ ])
1 1 2 1
= 1+ §d17"12 + |:§d1 (7‘2 — %) + ng?"%:| 22 + ... (25)

Equating the coefficients of (2.5) and (2.3), we have
1
[2]q = 1+ A([2]g — 1)2]a2 = §bd17"1,

([3]g = DI+ A([3]g — D]az — (120 = 11+ A([2]g — 1)]a3

1 1 1
= (dirs = gdur} + o),

or
a bdl’f’l
2 = )
2([2] = DA+ A([2]g — )]
e d 2
B bd Cdi [ da [A(22-1))bds
3 = S, DI+ NBl, =] {d2 9 {1 4 ([21q—1>[11([2]q—1>12] }
Therefore,
L2 — bd, (dy — 8d2) (2.6)
43 = KA = @l —D+A (Bl D] \*2 1) :
where
1 da bd 2 (8lg=D[1+A([38]g—1)]
0=3 {1 7~ T [ A - 1) - BBl 2.7)

Our result now follows by an application of (1.4). The result is sharp for the functions

1 2Dyf(2) | DD ]
g -0 TR ARl | =),
e 1 Dyf(2)  , DalzDyf(2))
1+5{(1—)\) ) +A Dol (2) —1]:%(2).
The proof of Theorem 1 is completed. O

Remark 2.1. (i) Putting A = 0 in Theorem 1, we obtain the result of Seoudy and Aouf [10, Theorem
1/;

(ii) Putting A =1 in Theorem 1, we obtain the result of Seoudy and Aouf [10, Theorem 2J;

(iii) Theorem 1 for b =1, corrects the result of Ramachandram et al. [8, Theorem 2, o = 0,0 =1].
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Theorem 2.2. Let »(z) in the form (2.1), with d; > 0 and d2 > 0. Let

(d2—d1)([2]q—1)*[14+A([2]g = D]+ ([2]4 — D[1+A([2]5 - 1)]bd]

= (B Y Gy ) (2.8)
(da2) (2]~ 1)2 14 A (2] — DP+([2)g— D14 A(2]2 — 1)]bd?
ap = (EPESY ES YT — (2.9)
(2]~ 1) 147 (2]~ DI+ (20— D1+ A(2]2 — )b
ag = = Bl DA, Db = (2.10)
If f(z)ef]{g‘,b(%) with b > 0, then
bd
. “mq_lan}igﬁﬁ;”;;
b“d a _ 1
, +nmfmuﬁmrm20m%nummhﬂn ”mnﬂﬂ’ B o,
a3 — 3| < (ERDIEIEREE @S ps (211)
. —<Bn—4>ugzgﬁi;1§£‘
b“d — 1
‘qumuﬂmrm2ernud@hﬂn‘”mnﬂﬂ’ pz o
Further, if a1 < p < ag, then
21 L (2lg=11+A(2]g— 1) ba?
‘a3“”a2‘+'am:—nu+xqaq3nkﬁb[dl"d2“qmq—nu+iaﬂ¢—nw
2 ([8lg=D[1+A(3lg—1)] 2 b
x ({14 A2 = 1)) - plBlagft MBI ) | oo < i, (2.12)
and if ag < p < ao, then
2 (121, —1)2[14+A([2]4—1)]? bd?
Jas — o3| + (A [ + d + AT
> (84— D[1A(B],—1)] 2 b
x ([ 2217~ 1) = PR ool < =y (2.13)

The result is sharp.

Proof: The proof follows by applying (1.5) to (2.6) and (2.7). To show that the bounds are sharp, we
define the functions K.« (k = 2,3,4,...) by

1+1“1—M

: 2D Ko, (2) . )\Dq (2D ok (2))

— 1| = (2"t
Kor () e 1} (")
Kok (0) = 0 = Koy (0) — 1

and the functions ¥, and G, (0 <7 < 1) by

R )]

b
5, (0)=0=9,(0) 1

Lo s, (1)

S, (0)=0=9,(0) - 1.

The functions K.r,Fy and G € fH;‘?b(z). If 4 < ay or p > g, then the equality holds if and only if f
is K2, or one of its rotations. When oy < pu < ag, the equality holds if and only if f is Kss, or one of
its rotations. If 4 = aq, then the equality holds if and only if f is F;, or one of its rotations. If u = as,
then the equality holds if and only if f is G, or one of its rotations. O

and
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Remark 2.2 (i) Taking ¢ — 1~ and X\ = «, in the above results, we obtain the results of [12, with X = 0];

10.

11.

12.

(ii) Theorem 2 for b =1, corrects the result of Ramachandram et al. [8, Theorem 1, « = 0,8 =1J;
(iii) Putting A =0 in Theorem 2, we obtain the result of Seoudy and Aouf [10, Theorem 3J;
(iv) Putting A\ = 1 in Theorem 2, we obtain the result of Seoudy and Aouf [10, Theorem 3];
(v) Taking b = e~ (1 — a)cos B in the above results, we obtain results for the class 9{2”;‘ (5¢).
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