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An Expansion Based on Sine-Gordon Equation to Solve KdV and modified KdV
Equations in Conformable Fractional Forms
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abstract: An expansion method based on time fractional Sine-Gordon equation is implemented to construct
some real and complex valued exact solutions to the Korteweg-de Vries and modified Korteweg-de Vries
equations in time fractional forms. Compatible fractional traveling wave transform plays a key role to be able
to apply homogeneous balance technique to set the predicted solution. The relation between trigonometric
and hyperbolic functions based on fractional Sine-Gordon equation allows to form the exact solutions with
multiplication of powers of hyperbolic functions. Some exact solutions in traveling wave forms are explicitly
expressed by the proposed method for both the Korteweg-de Vries and modified Korteweg-de Vries equations.
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1. Introduction

Probably the most famous and fundamental weakly nonlinear PDE with soliton type wave solutions
in shallow water surface is Korteweg-de Vries (KdV) equation. Even though it was firstly introduced
by Boussinesq [1] in 1877, it is named after the study of Korteweg and de Vries [2]. The KdV equation
is completely integrable and has wave solutions of classical solitary wave type shapes. Moreover, it
has infinitely many conservation laws representing various physical quantities such as mass, momentum,
energy, etc. preserved during motion [3]. The equation can describe many types of physical phenomena
particularly waves covering internal ocean waves in changing density layers, plasma ion-acoustic waves
and acoustic-type waves over crystal lattice.

The KdV equation is similar to nonlinear Schrödinger equation due to the fact that both are solvable
by inverse scattering transform approach. It has stable N-soliton solutions that behave like particles, too
[4]. These solutions are valid for multiple collisions,i.e. more than two well-separated solitons, even when
their heights are different from each other [5].

Recent developments in computer algebra lead various solution techniques to appear [9,10,11,12,13,
14,15,16,17,18,19,20]. Different forms of tanh − coth method was implemented to the KdV equation to
determine periodic and soliton type wave solutions [6]. (G′/G)-expansion method is also capable of setting
the exact solutions of the KdV equation in various rational forms of hyperbolic or trigonometric function
series [7]. Some periodic solitary type wave solutions are determined by extended form of homoclinic test
method [8].
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The modified form of the KdV (mKdV) equation is obtained by changing the nonlinear term uuz to
u2uz in the KdV equation. Wronskian expansion technique was used to determine composite function
solutions to the mKdV equation [21]. Implementation of simple sin − cos ansatz techniques gives some
traveling type wave solutions in forms of trigonometric and hyperbolic functions [22]. The exp function
approach also determines some periodic solutions including the rational functions of exponential and
trigonometric function in both numerator and denominator [23].

In this study, we focus on the conformable time fractional forms of the KdV equation

Dγ
t u + puuz + quzzz = 0, t > 0, γ ∈ (0, 1] (1.1)

and the modified KdV equation

Dγ
t u + pu2uz + quzzz = 0, t > 0, γ ∈ (0, 1] (1.2)

where u is function of the independent variables t and z, p and q are real parameters. The operator Dγ
t

represents conformal fractional derivative operator defined only for positive region of t [24]. Different
from some classical methods such as various forms of Kudryashov approach, exponential rational func-
tion technique, simple hyperbolic ansatzes, rational exponential approach [25,26,27,28,29,30,31,32], the
fractional form of the Sine-Gordon equation method is implemented to both equations to derive exact
solutions in traveling wave forms. In this perspective, the study is one of the pioneer studies that the
solutions are constructed for various equations in KdV class.

Before constructing the solutions, some preliminaries and basic properties of conformable derivative
are given below. A brief summary of the method is also given in the next sections.

2. Preliminaries of Conformable Derivative

γ.th order conformable derivative of a conformably differentiable function T = T (t) is defined as

Dγ
t (T (t)) = lim

ǫ→0

T (t + ǫt1−γ) − T (t)

τ
, t > 0, γ ∈ (0, 1]. (2.1)

where T = T (t) : [0, ∞) → R [24]. This form of the fractional derivative satisfies many properties required
to be able to study to solve non linear fractional PDEs. Some of these properties can be summarized in
the following theorem.

Theorem 2.1. Let S = S(t) and T = T (t) are γ-differentiable in the positive part of t-axis. Then,

• Dγ
t (k1S(t) + k2T (t)) = k1Dγ

t (S(t)) + k2Dγ
t (T (t))

• Dγ
t (tm) = mtm−γ , ∀m ∈ R

• Dγ
t (k3) = 0, for all constant functions S(t) = k3

• Dγ
t (S(t)T (t)) = S(t)Dγ

t (T (t)) + T (t)Dγ
t (S(t))

• Dγ
t ( S(t)

T (t) ) =
T (t)Dγ

t (S(t)) − S(t)Dγ
t (T (t))

T 2(t)

• Dγ
t (S(t)) = t1−γ dS(t)

dt

for ∀k1, k2, k3 ∈ R [33].

This newly introduced fractional derivative satisfies plenty of helpful properties. Some of these prop-
erties like the chain rule, some integral transforms, and Taylor series expansion were summarized in [34].
The following theorem gives the relation between the classical and conformable derivative.

Theorem 2.2. Let S = S(t) be a γ-conformable differentiable function. Then,

Dγ
t (S ◦ T )(t) = t1−γT ′(t)S′(T (t)) (2.2)

where ◦ denotes composite function, the differentiable function T = T (t) is defined in the range of S(t).
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3. Sine-Gordon Equation (SGE) Method

Consider the one dimensional time fractional SGE of the form

∂2u

∂z2
− D2γ

t u = m2 sin u, c is constant (3.1)

where u = u(z, t). The fractional traveling wave transform

u(z, t) → U(η)

η = a(z − νtγ/γ)
(3.2)

reduces the time fractional SGE (3.1) to

d2U

dη2
=

m2

a2(1 − ν2)
sin U (3.3)

where ν is speed parameter of the wave defined in the fractional traveling wave transform [35]. After
some calculus, the equation is reduced to

(

d(U/2)

dη

)2

=
m2

a2(1 − ν2)
sin2 U/2 + C (3.4)

where C is integration constant and assumed zero. Assume that w(η) = U(η)/2 and m2/(a2(1−ν2)) = 1.
Then, (3.4) takes the form

d(w)

dη
= sin w (3.5)

Thus, (3.5) gives the following relations

sin w(η) =
2ceη

c2e2η + 1

∣

∣

∣

∣

c=1

= sech η (3.6)

or

cos w(η) =
c2e2η − 1

c2e2η + 1

∣

∣

∣

∣

c=1

= tanh η (3.7)

where c 6= 0 is integral constant.
On the other hand, the governing fractional PDE

Ω(u, Dγ
t u, uz, D2γ

tt u, uzz, . . .) = 0 (3.8)

is reduced to an ODE of the form
Ω̃(U, U ′, U ′′, . . .) = 0 (3.9)

by using the fractional traveling wave transform u(z, t) = U(η) with the transform variable η = a(z −
νtγ/γ). Then, a predicted solution to (3.9) of the form

U(η) = A0 +

s
∑

i=1

tanhi−1(η) (Bi sech η + Ai tanh η) (3.10)

is constructed. This solution can be expressed in terms of w as

U(w) = A0 +
s

∑

i=1

cosi−1(w) (Bi sin w + Ai cos w) (3.11)

due to the relations between hyperbolic and trigonometric functions given (3.6) - (3.7). The solution
procedure starts by determining the degree s of the predicted power series solution of trigonometric
functions. The balance between the non linear term and the derivative term with highest order is the
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key to find s. Once it is determined, the predicted solution can be written as a finite power series
of multiplication of trigonometric functions. Substitution of the predicted solution (3.11) into (3.9) is
followed by equating the coefficients of powers of sin w cos w to zero. The resultant algebraic system
is solved for the coefficients A0, A1, B1, . . . and at least one of transform non zero coefficients a and ν.
Later on, the determined parameters are substituted in to the predicted solution (3.11). Changing the
trigonometric functions to hyperbolic functions by using (3.6) - (3.7) gives the next form of the solution.
Finally, the solutions are expressed in original variables z and t. a and ν are also substituted into the
final forms of the solutions.

4. Solutions to the conformable time fractional KdV Equation

The KdV equation (1.1) reads

− aν U
′

+ apUU
′

+ qa3U
′′′

= 0 (4.1)

under the fractional traveling wave transform (3.2). The balance number is calculated as 2 when UU
′

and U
′′′

are considered. Thus, the predicted solution takes the form

U(w) = A0 + B1 sin (w) + A1 cos (w) + cos (w) B2 sin (w) + A2 (cos (w))
2

(4.2)

Substituting the predicted solution (4.2) into (4.1) gives

a3qB2 sin (w (η)) (cos (w (η)))
4

+
(

−8 a3qA2 − 2 apA2
2 + apB2

2
)

(sin (w (η)))
2

(cos (w (η)))
3

+
(

a3qB1 + apA1B2 + apA2B1

)

sin (w (η)) (cos (w (η)))
3

+
(

−18 a3qB2 − 4 apA2B2

)

(sin (w (η)))
3

(cos (w (η)))
2

+
(

−4 a3qA1 − 3 apA1A2 + 2 apB1B2

)

(sin (w (η)))2 (cos (w (η)))2

+ (apA0B2 + apA1B1 − aν B2) sin (w (η)) (cos (w (η)))
2

+
(

16 a3qA2 − apB2
2
)

(sin (w (η)))
4

cos (w (η))

+
(

−5 a3qB1 − 2 apA1B2 − 2 apA2B1

)

(sin (w (η)))3 cos (w (η))

+
(

−2 apA0A2 − apA1
2 + apB1

2 + 2 aν A2

)

(sin (w (η)))
2

cos (w (η))

+ (apA0B1 − aν B1) sin (w (η)) cos (w (η)) + 5 (sin (w (η)))
5

a3qB2

+
(

2 a3qA1 − apB1B2

)

(sin (w (η)))
4

+ (−apA0B2 − apA1B1 − apA2B2 + aν B2) (sin (w (η)))
3

+ (−apA0A1 + aν A1) (sin (w (η)))2 + apA2B2 sin (w (η)) = 0

(4.3)

Following some algebra and substitution of some trigonometric identities and rearrange of coefficients of
the terms, we assume that all coefficients are zero. Thus, we find the system

−3 a
(

2 a2qA1 + pA1A2 − pB1B2

)

+ 8 a3qA1 − apA0A1 + 3 apA1A2 − 4 apB1B2 + aν A1 = 0

5 a3qB2 − apA0B2 − apA1B1 + aν B2 = 0

24 a3qB2 + 4 apA2B2 = 0

6 a3qB1 + 3 apA1B2 + 3 apA2B1 = 0

−28 a3qB2 + 2 apA0B2 + 2 apA1B1 − 3 apA2B2 − 2 aν B2 = 0

−5 a3qB1 + apA0B1 − 2 apA1B2 − 2 apA2B1 − aν B1 = 0

a
(

24 a2qA2 + 2 pA2
2 − 2 pB2

2
)

= 0

6 a3qA1 + 3 apA1A2 − 3 apB1B2 = 0

a
(

−16 a2qA2 + 2 pA0A2 + pA1
2 − pB1

2 + pB2
2 − 2 ν A2

)

− a
(

24 a2qA2 + 2 pA2
2 − 2 pB2

2
)

= 0

−14 a3qA1 + apA0A1 − 6 apA1A2 + 7 apB1B2 − aν A1 + 3 a
(

2 a2qA1 + pA1A2 − pB1B2

)

= 0

−a
(

−16 a2qA2 + 2 pA0A2 + pA1
2 − pB1

2 + pB2
2 − 2 ν A2

)

= 0

(4.4)
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Solution of this algebraic system for ν, A0, A1, A2, B1 and B2 gives

ν = −8a2q + pA0, A1 = 0, A2 = −12a2q

p
, B1 = 0, B2 = 0

ν = −5a2q + pA0, A1 = 0, A2 = −6a2q

p
, B1 = 0, B2 =

6a2q

p
i

ν = −5a2q + pA0, A1 = 0, A2 = −6a2q

p
, B1 = 0, B2 = −6a2q

p
i

(4.5)

where a, A0 arbitrarily chosen constants and i =
√

−1. The real solution of the conformable KdV
equation is expressed as

u1(z, t) = A0 − 12a2q

p
tanh2

(

a(z + (8a2q − pA0)
tγ

γ
)

)

(4.6)

for arbitrary a 6= 0 and A0. On the other hand, the complex solutions are represented as

u2,3(z, t) = A0 − 6a2q

p
tanh2

(

a(z + (5a2q − pA0)
tγ

γ
)

)

± 6a2q

p
tanh

(

a(z + (5a2q − pA0)
tγ

γ
)

)

sech

(

a(z + (5a2q − pA0)
tγ

γ
)

) (4.7)

The real valued exact solution is pictured out in Fig 1(a)-1(d) for various derivative orders in a finite
domain of z and t. This solution is a particular form of u1(z, t) determined by assuming A0 = 1, a = −1,
q = −1/2, p = 1. These parameters gives a solution with upside-down pulse whose nadir is located at
the origin initially. Parallel to proceeding time, the initial wave with negative amplitude moves along the
positive z−direction by preserving its shape and depth. Even though the velocity of the pulse changes
for smaller values of γ, we observe a linear motion with constant speed for γ = 1, Fig 1(d).

(a) γ = 0.25 (b) γ = 0.50

(c) γ = 0.75 (d) γ = 1

Figure 1: The solution u1(z, t) = 1 + 6 tanh2

(

−z +
5tγ

γ

)

for various derivative orders
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5. Solutions to the conformable time fractional mKdV Equation

The fractional traveling wave transform (3.2) reduces the mKdV equation (1.2) into

− aν U
′

+ apU2U
′

+ qa3U
′′′

= 0 (5.1)

where
′

denotes the classical derivative with respect to η. s is determined as 1 by balancing U2U
′

and
U

′′′

. Thus, the predicted solution is set as

U(w) = A0 + B1 sin (w) + A1 cos (w) (5.2)

Substitution of this solution into (5.1) reads

(

a3qB1 + apA1
2B1

)

sin (w (η)) (cos (w (η)))
3

+
(

−4 a3qA1 − apA1
3 + 2 apA1B1

2
)

(sin (w (η)))
2

(cos (w (η)))
2

+ 2 (cos (w (η)))
2

apA0A1B1 sin (w (η))

+
(

−5 a3qB1 − 2 apA1
2B1 + apB1

3
)

(sin (w (η)))3 cos (w (η))

+
(

−2 apA0A1
2 + 2 apA0B1

2
)

(sin (w (η)))
2

cos (w (η))

+
(

apA0
2B1 − aν B1

)

sin (w (η)) cos (w (η))

+
(

2 a3qA1 − apA1B1
2
)

(sin (w (η)))
4

+
(

−apA0
2A1 + aν A1

)

(sin (w (η)))
2

− 2 (sin (w (η)))3 apA0A1B1 = 0

(5.3)

Some algebra and equating the coefficients of sin and cos functions to zero leads the following algebraic
system:

−aA1

(

6 a2q + pA1
2 − 3 pB1

2
)

+ 8 a3qA1 − apA0
2A1 + apA1

3 − 4 apA1B1
2 + aν A1 = 0

−2 apA0A1B1 = 0

6 a3qB1 + 3 apA1
2B1 − apB1

3 = 0

4 apA0A1B1 = 0

−5 a3qB1 + apA0
2B1 − 2 apA1

2B1 + apB1
3 − aν B1 = 0

6 a3qA1 + apA1
3 − 3 apA1B1

2 = 0

2 apA0

(

A1
2 − B1

2
)

= 0

−2 apA0

(

A1
2 − B1

2
)

= 0

−14 a3qA1 + apA0
2A1 − 2 apA1

3 + 7 apA1B1
2 − aν A1 + aA1

(

6 a2q + pA1
2 − 3 pB1

2
)

= 0

(5.4)
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Solving this system for a, ν, A0, A1 and B1 gives the solution set

ν = a2q, A0 = 0,A1 = 0, B1 =

√

6q

p
a

ν = a2q, A0 = 0,A1 = 0, B1 = −
√

6q

p
a

ν = −a2q, A0 = 0,A1 =

√

−6q

p
a, B1 =0

ν = −a2q, A0 = 0,A1 = −
√

−6q

p
a, B1 =0

ν = −a2q/2, A0 = 0,A1 =

√

−3q

2p
a, B1 =

√

3q

2p
a

ν = −a2q/2, A0 = 0,A1 =

√

−3q

2p
a, B1 = −

√

3q

2p
a

ν = −a2q/2, A0 = 0,A1 = −
√

−3q

2p
a, B1 =

√

3q

2p
a

ν = −a2q/2, A0 = 0,A1 = −
√

−3q

2p
a, B1 = −

√

3q

2p
a

(5.5)

for arbitrary constant a. Thus, the solutions in both real and complex forms are constructed as

u4,5(z, t) = ±
√

6q

p
a sech a(z − a2q

tγ

γ
)

u6,7(z, t) = ±
√

−6q

p
a tanh a(z + a2q

tγ

γ
)

u8,9(z, t) =

√

−3q

2p
a tanh a(z +

a2q

2

tγ

γ
) ±

√

3q

2p
a sech a(z +

a2q

2

tγ

γ
)

u10,11(z, t) = −
√

−3q

2p
a tanh a(z +

a2q

2

tγ

γ
) ±

√

3q

2p
a sech a(z +

a2q

2

tγ

γ
)

(5.6)

for arbitrary a. A particular form of the solution u6(z, t) (the positive signed one) calculated by choosing
the parameters a = q = 1 and p = −1 is pictured out in Fig 2(a)-2(d) for various values of γ. The initial
wave moves along z−axis without changing its initial shape and height as time proceeds. The velocity
of propagation is not constant when γ < 1. When γ value approaches 1, the propagation speed also gets
closer to a constant. Finally, γ = 1 allows the initial wave a uniform propagation with constant speed.
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(a) γ = 0.25 (b) γ = 0.50

(c) γ = 0.75 (d) γ = 1

Figure 2: The solution u6(z, t) =
√

6 tanh

(

z +
2tγ

γ

)

for various derivative orders

6. Conclusion

Fractional traveling wave transform succeeds both reducing the time fractional KdV and mKdV
equations to some ODEs and giving the relation between trigonometric and hyperbolic functions based
on time fractional Sine-Gordon equation. The predicted solution of a finite series form is constructed with
aid of time fractional Sine-Gordon equation and homogeneous balance technique. The relation derived
from time fractional Sine-Gordon equation provides the solutions to be expressed in multiplication of
hyperbolic functions. Some real and complex valued solutions are calculated for both time fractional
KdV and time fractional mKdV equations. The plots of some solutions are indicators of shape and
height preserved initial wave propagations.
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Özlem Ersoy Hepson,
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