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abstract: In this paper, we show that for each real α there exists a unique real tn(α) such that λn(αm1 +
tn(α)m2) = 1, where m1 and m2 are bounded weight functions and λn(m) is the nth Ljusternik-Schinerlmann
eigenvalue of the p-Laplacian operator with weight m. We also study the asymptotic behavior, the variational
formulation and some topological properties of the eigencurve tn(·).
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1. Introduction

The study of differential equations and variational problems has become an important topic of modern
nonlinear analysis because of their important applications, we refer the reader to [8] for more.
Consider the following nonlinear eigenvalue problem

{

−∆pu = λm(x)|u|p−2u in Ω,
u = 0 on ∂Ω

(P)

where Ω is a smooth bounded domain in R
N , −∆pu = −div(|∇u|p−2∇u) is the p-Laplacian, 1 < p <

+∞, m(·) ∈ M+(Ω), with

M+(Ω) =
{

ϕ ∈ L∞(Ω) : meas {x ∈ Ω : ϕ(x) > 0} 6= 0
}

.

We say that λ is an eigenvalue of the p-Laplacian with weight m(.) when the problem (P) has at least a
nontrivial solution u ∈ W 1,p

0 (Ω). The set of positive eigenvalues constitutes the spectrum σ+
p (−∆p, m, Ω).

For p = 2 (∆p = ∆ is the Laplacian operator), it is well known (see [6,7]), that σ+
2 (−∆, m, Ω) =

{µk(m), k = 1, 2, . . .}, with
0 < µ1(m) < µ2(m) ≤ µ3(m) . . . → +∞,

each eigenvalue µk(m) is repeated as many times as its multiplicity. For p 6= 2, the critical point theory
of Ljusternik-Schnirelmann (see [9]) provides a sequence in σ+

p (−∆p, m, Ω) given by λ1(m) < λ2(m) ≤
λ3(m) ≤ . . . ≤ λn(m), . . . → +∞ and formulated as follows

1

λn(m)
= sup

K∈Γn

min
u∈K

∫

Ω

m|u|p (1.1)

where Γn is defined by:

Γn = {K ⊂ S : K is symmetrical, compact and γ(K) ≥ n},
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where S is the unit sphere of W 1,p
0 (Ω) and γ is the genus function (see [9]). We may also define the

negative spectrum by λ−n(m) = −λn(−m) (See [3]). Whether or not this sequence of both the positive
and negative eigenvalues, denoted λk(m), constitutes the whol set of all eigenvalues remains an open
question when N > 1 and p 6= 2.
Consider two weight functions m1, m2 ∈ M+(Ω), it is rather desirable to gather more information about
the question ”Whether or not Cn = {(α, β) ∈ R

2 : λn(αm1 + βm2) = 1} constitutes a curve?” . Several
applications related to these problems can be found in the bifurcation domain, we refer the reader to [2].
On the other hand, this is a kind of inverse problem in the following sense:
For δ > 0 given, we look for a weight m(·) ∈ span{m1, m2} such that λn(m) = δ. By the homogeneity of
λn we take δ = 1.
Existence results for the curves Cn with n ∈ {1, 2} were studied in [1,4,5] among other. In [1] the
authors considered the case where n = 1 and m2 is a constant, they established some properties relating
to the first eigencurve C1 such as concavity, differentiability and the asymptotic behavior. The authors
in [4] showed that Cn 6= ∅ under the assumption ess inf

Ω
m2 > 0, the technique used is based on the

strict monotonicity property, which is not applicable in the general case where ess inf
Ω

m2 = 0. In [5],

the authors considered the case where n = 2 they showed that for each α ∈ R there exists a real number
β2(α) such that (α, β2(α)) ∈ C2. They proved the asymptotic behavior of β2(·). The techniques used
are not adaptable when n ≥ 3.
In this paper, we assume that

m1, m2 ∈ M+(Ω), m2 ≥ 0 a.e.in Ω and ess inf
Ω⋆

m1

m2 > 0 (H0)

where Ω⋆
m1

= {x ∈ Ω : m1(x) 6= 0}. For each α ∈ R, we prove the existence of a unique real number
tn(α) such that λn(αm1 + tn(α)m2) = 1, we give the variational formulation of tn(α), we also study its
monotonicity, continuity properties and its asymptotic behavior .
This paper is organized as follows. In section 2, we present our main results. In section 3, we introduce
some basic preliminary results. In section 4, we give the proofs of our main results.

2. Main results

We will use below the notation Ω+
m1

= {x ∈ Ω : m1(x) > 0}, Ω−
m1

= {x ∈ Ω : m1(x) < 0} and
Ω⋆

m2
= {x ∈ Ω : m2(x) 6= 0}.

Our main results are the following.

Theorem 2.1. Assume (H0) holds, then we have:

1. For α ∈ [0, λn(m1)], there exists a unique real tn(α) ∈ R
+ such that λn(αm1 + tn(α)m2) = 1.

2. For α ∈]λn(m1), +∞[, there exists a unique real tn(α) ∈ R
− such that λn(αm1 + tn(α)m2) = 1.

3. If m1 ≥ 0 a.e.in Ω, then for α ∈] − ∞, λn(m1)], there exists a unique real tn(α) ∈ R
+ such that

λn(αm1 + tn(α)m2) = 1.

4. If meas(Ω−
m1

) > 0, then

• For α ∈ [λ−n(m1), 0[, there exists a unique real tn(α) ∈ R
+ such that λn(αm1 + tn(α)m2) = 1.

• For α ∈]−∞, λ−n(m1)[, there exists a unique real tn(α) ∈ R
− such that λn(αm1 + tn(α)m2) = 1.

Denoting by Γ1
n = {K ∈ Γn : K ⊂ S

′

}, S
′

= {u ∈ S :
∫

Ω
m2|u|p 6= 0}, we have the following results.

Theorem 2.2. Assume (H0) holds, then we have:

1. For α ∈ R, the unique real tn(α) such that λn(αm1 + tn(α)m2) = 1, is given by

tn(α) = inf
K∈Γ1

n

max
u∈K

1 − α
∫

Ω m1|u|p
∫

Ω m2|u|p



Some Topological Properties and Asymptotic Behavior · · · 3

2. tn(·) is continuous in R.

3. If meas(Ω−
m1

) > 0, then tn(·) is decreasing in [λn(m1), +∞[ and increasing in ] − ∞, λ−n(m1)].

4. If m1(·) ≥ 0 a.e.in Ω, then tn(·) is decreasing in R.

Theorem 2.3. Assume (H0) holds, then we have:

1. lim
α→+∞

tn(α)
α = −ess sup

Ω+
m1

m1

m2
.

2. If meas (Ω−
m1

) > 0, then lim
α→−∞

tn(α)
α = −ess inf

Ω−

m1

m1

m2
.

3. If m1 ≥ 0 in Ω, then lim
α→−∞

tn(α)
α = −ess inf

Ω⋆
m2

m1

m2
.

3. Preliminary results

First we recall the following results which will be used later.

Proposition 3.1. If m, m′ ∈ M+(Ω) such that m′(x) ≥ m(x) a.e.x ∈ Ω and m′(x) > m(x) for a.e.
x ∈ Ω+

m, then for each n in N
⋆ we have λn(m) > λn(m′).

Proof. we have
1

λn(m)
= sup

K∈Γn

min
u∈K

∫

Ω

m|u|p.

Let (Kj) a sequence in Γn such that

lim
j→+∞

min
Kj

∫

Ω

m|u|p = sup
K∈Γn

min
u∈K

∫

Ω

m|u|p =
1

λn(m)
,

since Kj is compact we have

min
Kj

∫

Ω

m′|u|p =

∫

Ω

m′|uKj
|p uKj

∈ Kj .

The sequence (uKj
) is bounded, so uKj

⇀ ũ in W 1,p
0 (Ω) and uKj

→ ũ in Lp(Ω), in other hand we have

min
Kj

∫

Ω

m|u|p ≤

∫

Ω

m|uKj
|p =

∫

Ω

m′|uKj
|p −

∫

Ω

(m′ − m)|uKj
|p, (3.1)

passing to the limit in (3.1) we get

1

λn(m)
≤

∫

Ω

m|ũ|p ≤
1

λn(m′)
−

∫

Ω

(m′ − m)|ũ|p. (3.2)

We claim that δ =
∫

Ω
(m′ − m)|ũ|p > 0, indeed if δ = 0 then ũ = 0 in Ω+

m hence from (3.2) we get
1

λn(m) ≤ 0 contradiction, so we conclude that

1

λn(m)
<

1

λn(m′)

that is λn(m′) < λn(m).

Proposition 3.2. ( [5]) We have

1. If m, m
′

∈ M+(Ω) and m(x) ≤ m
′

(x) for a.e. x ∈ Ω, then λn(m) ≥ λn(m
′

).

2. The mapping λn : m → λn(m) is continuous in M+(Ω) for the distance d(m, m′) = ||m − m′||∞.

Proposition 3.3. ( [5]) Let (mk) be a sequence in M+(Ω) such that mk → m in L∞(Ω) then,

lim
k→+∞

λn(mk) = +∞ if and only if m(x) ≤ 0 for a.e.x ∈ Ω.
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4. Proofs of the main results

Proof of theorem 2.1.

1. To show the first result, we distinguish several cases.
if α = 0, the unique real tn(0) such that: λn(0m1 + tn(0)m2) = 1 is tn(0) = λn(m2).
If 0 < α < λn(m1), we consider the function hα(·) defined by hα(t) = λn(αm1 + tm2). It is clear
that hα(·) is well defined on [0, +∞[, decreasing and continuous (see proposition 3.2). In other
hands, we have

hα(0) =
λn(m1)

α
> 1 (4.1)

and

lim
t→+∞

hα(t) = lim
t→+∞

λn(α
t m1 + m2)

t
= 0. (4.2)

Using (4.1), (4.2) and the fact that hα is continuous, we deduce that there exists a real tn(α) ∈
]0, +∞[ such that hα(tn(α)) = 1, i.e. λn(αm1 + tn(α)m2) = 1.
If α = λn(m1), we take tn(α) = 0.

To show the uniqueness, we proceed as follows, let β < β
′

, assume λn(αm1 + βm2) = λn(αm1 +

β
′

m2) = 1, denote m = αm1 + βm2 and m
′

= αm1 + β
′

m2. If x ∈ Ω+
m By (H0) we deduce that

m2(x) > 0, hence βm2 < β
′

m2, so we conclude that m
′

(x) ≥ m(x) for a.e.x∈ Ω and m
′

(x) > m(x)
for a.e.x ∈ Ω+

m, then by proposition 3.1 we get λn(m) > λn(m
′

) which gives a contraduction.

2. Since α > λn(m1) we deduce that

0 < hα(0) < 1. (4.3)

Let Aα = {t ≤ 0 : αm1 + tm2 ≤ 0 in Ω}, we have d =
−α||m1||∞
ess inf

Ω+
m1

m2
∈ Aα, hence Aα 6= ∅. Set

τα = sup Aα, we will show that Aα =] − ∞, τα]. Indeed, for k ∈ N
⋆, there exists tk ∈ Aα such that

τα −
1

k
≤ tk, it follows that αm1 + ταm2 ≤ αm1 + tkm2 +

1

k
m2, then αm1 + ταm2 ≤

1

k
||m2||∞.

Using the fact that k ∈ N
⋆ is arbitrary, we deduce that αm1 + ταm2 ≤ 0, so τα ∈ Aα, hence

Aα =] − ∞, τα] (since 0 /∈ Aα then τα < 0).
Let (ti)i be a sequence in ]τα, 0[ such that lim

i→+∞
(ti) = τα. Then we have

αm1 + tim2 → αm1 + ταm2 in L∞(Ω). (4.4)

The function hα(·) is well defined on ]τα, 0[, hence by (4.4) and proposition 3.3 we deduce that

lim
i→+∞

hα(ti) = +∞. (4.5)

So relations (4.3) and (4.5) imply that there exists tn(α) ∈]τα, 0[ such that hα(tn(α)) = 1, i.e.,
λn(αm1 + tn(α)m2) = 1. As in the first result, we show the uniqueness.

3. For the third result, we prove only the case α < 0, the case α ∈ [0, λn(m1)] has been already treated.
For this, we consider the set Bα = {t > 0 : αm1 + tm2 ∈ M+(Ω)}. It is easy to see that

t >
|α|||m1||∞
ess inf

Ω+
m1

m2
implies that t ∈ Bα.

Let ηα = inf Bα. We show that ηα /∈ Bα. Indeed, for k ∈ N
⋆, ηα − 1

k /∈ Bα. Hence αm1 +

ηαm2 −
1

k
m2 ≤ 0 in Ω. It follows that αm1 + ηαm2 ≤

1

k
||m2||∞. Since k ∈ N

⋆ is arbitrary we get

αm1 + ηαm2 ≤ 0. Hence ηα /∈ Bα and Bα =]ηα, +∞[. Let (tj)j be a sequence in Bα such that
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lim
j→+∞

tj = ηα, then αm1 + tjm2 → αm1 + ηαm2 in L∞(Ω). According to proposition 3.3, we

obtain

lim
t→η+

α

hα(t) = +∞. (4.6)

On the other hand we have

lim
t→+∞

hα(t) = lim
t→+∞

λn(α
t m1 + m2)

t
= 0,

then from (4.6) and the previous results, we deduce that there exists a unique real tn(α) ∈]ηα, +∞[
such that hα(tn(α)) = 1, i.e., λn(αm1 + tn(α)m2) = 1.

4. This case is treated in the same way.

Proof of Theorem 2.2.

1. First we claim that Γ1
n 6= ∅. Indeed, assume by contradiction that Γ1

n = ∅, then for all K ∈ Γn

there exists u ∈ K such that u /∈ S
′

. Hence, taking into account that Ω⋆
m1

⊂ Ω⋆
m2

, we deduce that
∫

Ω(αm1|u|p + βm2|u|p)dx = 0 for each (α, β) ∈ Cn, which gives

min
K

∫

Ω

(αm1|u|p + βm2|u|p)dx ≤ 0 ∀K ∈ Γn.

It follows that

1 =
1

λn(αm1 + βm2)
= sup

Γn

min
K

∫

Ω

αm1|u|p + βm2|u|pdx ≤ 0.

Which is a contradiction, so Γ1
n 6= ∅.

Let θn(α) = inf
K∈Γ1

n

max
K

1 − α
∫

Ω
m1|u|p

∫

Ω m2|u|p
, so for each K ∈ Γ1

n we have

θn(α) ≤ max
K

1 − α
∫

Ω
m1|u|p

∫

Ω
m2|u|p

.

Since K is compact, there exists uk ∈ K such that

max
K

1 − α
∫

Ω
m1|u|p

∫

Ω m2|u|p
=

1 − α
∫

Ω
m1|uk|p

∫

Ω m2|uk|p
.

Then

θn(α)

∫

Ω

m2|uk|p + α

∫

Ω

m1|uk|p ≤ 1,

hence

min
K

(

θn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

≤ 1. (4.7)

On the other hand, if K /∈ Γ1
n we have

min
K

(

θn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

≤ 0. (4.8)

From (4.7) and (4.8), we get

min
K

(

θn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

≤ 1, ∀K ∈ Γn
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thus

sup
K∈Γn

min
u∈K

(

θn(α)

∫

Ω

m2|uk|p + α

∫

Ω

m1|uk|p
)

≤ 1.

Hence
1

λn(θn(α)m2 + αm1)
≤ 1,

which gives
λn(θn(α)m2 + αm1) ≥ 1. (4.9)

On other hand, for K /∈ Γ1
n, we have

min
K

(

tn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

≤ 0,

hence

sup
K /∈Γ1

n

min
u∈K

(

tn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

≤ 0. (4.10)

Since λn(αm1 + tn(α)m2) = 1, we have

sup
K∈Γn

min
u∈K

(

tn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

= 1. (4.11)

From (4.10) and (4.11) we deduce that

sup
K∈Γ1

n

min
u∈K

(

tn(α)

∫

Ω

m2|u|p + α

∫

Ω

m1|u|p
)

= 1. (4.12)

Assume by contradiction that, there exists K1 ∈ Γ1
n such that

tn(α) > max
u∈K1

1 −
∫

Ω αm1|u|p
∫

Ω m2|u|p
,

then for all u ∈ K1 we have

tn(α)

∫

Ω

m2|u|p +

∫

Ω

αm1|u|p > 1.

Since K1 is compact, we get

min
u∈K1

(

∫

Ω

αm1|u|p + tn(α)

∫

Ω

m2|u|p) > 1,

so we conclude that

sup
K∈Γ1

n

min
u∈K

(
∫

Ω

αm1|u|p + tn(α)

∫

Ω

m2|u|p
)

> 1. (4.13)

This contradicts the equality (4.12). So for all K ∈ Γ1
n we have

tn(α) ≤ max
u∈K

1 −
∫

Ω
αm1|u|p

∫

Ω m2|u|p
.

Hence

tn(α) ≤ inf
Γ1

n

max
u∈K

1 −
∫

Ω αm1|u|p
∫

Ω
m2|u|p

= θn(α). (4.14)

Using the monotonicity of λn with respect to the weight (see Proposition 3.2), (4.9) and (4.14) we
get 1 = λn(αm1 + tn(α)m2) ≥ λn(αm1 + θn(α)m2) ≥ 1. Hence we deduce that tn(α) = θn(α).
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2. Let K ∈ Γ1
n, we define a functional h(·) in K × R by

h(u, α) =
1 − α

∫

Ω m1|u|p
∫

Ω
m2|u|p

.

For (α, α′) ∈ R
2, we have

h(u, α) − h(u, α′) =
(α′ − α)

∫

Ω m1|u|p
∫

Ω
m2|u|p

,

hence

|h(u, α) − h(u, α′)| ≤ δ|α − α′| where δ =
||m1||∞

ess inf
Ω⋆

m2

m2
.

It follows that
h(u, α′) − δ|α − α′| ≤ h(u, α) ≤ h(u, α′) + δ|α − α′|.

So we conclude that we have

sup
K

h(u, α′) − δ|α − α′| ≤ sup
K

h(u, α) ≤ sup
K

h(u, α′) + δ|α − α′|.

Since K is arbitrary,

inf
K∈Γ1

n

sup
K

h(u, α′) − δ|α − α′| ≤ inf
K∈Γ1

n

sup
K

h(u, α) ≤ inf
K∈Γ1

n

sup
K

h(u, α′) + δ|α − α′|.

Hence we get
|tn(α) − tn(α′)| ≤ δ|α − α′|.

3. For α ∈]λn(m1), +∞[, we have tn(α) < 0. Denote Γ1+
n = {K ∈ Γ1

n : inf
K

∫

Ω m1|u|p ≥ 0}. Since

tn(α) = inf
Γ1

n

max
K

1 − α
∫

Ω m1|u|p
∫

Ω
m2|u|p

< 0, we conclude that there exists K ∈ Γ1
n such that

max
K

1 − α
∫

Ω
m1|u|p

∫

Ω m2|u|p
< 0. Hence max

K
(1 − α

∫

Ω m1|u|p) < 0, it follows that Γ1+
n 6= ∅ and

tn(α) = inf
Γ1+

n

max
K

1 − α
∫

Ω
m1|u|p

∫

Ω
m2|u|p

.

Let K ∈ Γ1+
n and α, α′ ∈]λn(m1), +∞[, assume α ≥ α′, we get

1 − α′
∫

Ω
m1|u|p

∫

Ω
m2|u|p

≥
1 − α

∫

Ω
m1|u|p

∫

Ω
m2|u|p

∀u ∈ K.

It follows that

max
u∈K

1 − α′
∫

Ω
m1|u|p

∫

Ω
m2|u|p

≥ max
u∈K

1 − α
∫

Ω
m1|u|p

∫

Ω
m2|u|p

.

Since K ∈ Γ1+
n is arbitrary, we conclude that tn(α′) ≥ tn(α). Hence tn(·) is decreasing.

Similarly we show that tn(·) is increasing in ] − ∞, λ−n(m1)[.

4. The case m1 ≥ 0 is treated in the same way.

Proof of Theorem 2.3.

1. For α > λn(m1), set g(α) =
−tn(α)

α
. We will show that g(·) is an increasing function on

]λn(m1), +∞[. Indeed let α, α
′

∈]λn(m1), +∞[ such that α > α
′

. Assume by contradiction that

tn(α)

α
≥

tn(α
′

)

α′
. Hence we have m1 +

tn(α)

α
m2 ≥ m1 +

tn(α
′

)

α′
m2. By proposition 3.2, we get

α = λn(m1 +
tn(α)

α
m2) ≤ λn(m1 +

tn(α
′

)

α′
m2) = α

′

,
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which gives a contradiction. Then
tn(α)

α
<

tn(α
′

)

α′
, this implies g(α) > g(α

′

), i.e., g(.) is increasing.

On the other hand, we have

αm1(x) + tn(α)m2(x) > 0 in Ωα with meas(Ωα) > 0.

Since α > 0 and tn(α) ≤ 0 ( see theorem 2.2). The inequality above implies that Ωα ⊂ Ω+
m1

. Hence

−tn(α)

α
<

m1

m2
∀x ∈ Ωα ⊂ Ω+

m1
.

So we conclude that

g(α) ≤ ess sup
Ω+

m1

m1

m2
≤

||m1||∞
ess inf

Ω⋆
m1

m2
.

It follows that g is bounded from above and is an increasing function.
Let l = lim

α→+∞
g(α), we have

l ≤ ess sup
Ω+

m1

m1

m2
(4.15)

and

m1 +
tn(α)

α
m2 → m1 − lm2 in L∞(Ω). (4.16)

Since λn(m1 +
tn(α)

α
m2) = α → +∞, from proposition 3.3 and (4.16), we deduce that m1 − lm2 ≤

0 ∀x ∈ Ω, thus

ess sup
Ω+

m1

m1

m2
≤ l. (4.17)

The inequalities (4.15) and (4.17) yield the result.

2. The proof can be carried out as we did in the first result. We consider the mapping f(α) =
−tn(α)

α
,

we affirm that f is decreasing on ]−∞, λ−n(m1)[. Taking into account that tn(α) ≤ 0, we conclude
that

f(α) ≥ ess inf
Ω−

m1

m1

m2
.

Hence, f is bounded from below. Let k = lim
α→−∞

f(α), we have

k ≥ ess inf
Ω−

m1

m1

m2

and

−m1 −
tn(α)

α
m2 → −m1 + km2 in L∞(Ω).

Since λn

(

−m1 − tn(α)
α m2

)

= |α| → +∞, we get −m1 +km2 ≤ 0 in Ω. This yields k ≤ ess inf
Ω−

m1

m1

m2
.

Hence, we get

lim
α→−∞

tn(α)

α
= −ess inf

Ω−

m1

m1

m2
.

3. We show the third result in a similar way.
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M. Moussaoui,

LANOL Laboratory,

Faculty of sciences,

Department of Mathematics,

Oujda, Morocco.

E-mail address: mmoussaoui 2@yahoo.fr

and

A. Dakkak,

LSI Laboratory,

Sidi Mohamed ben Abdellah University,

Polydisciplinary Faculty,

Taza, Morocco

E-mail address: dakkakahmed@hotmail.com

and

O. Chakrone,

LANOL Laboratory,

Faculty of sciences,

Department of Mathematics,

Oujda, Morocco.

E-mail address: chakrone@yahoo.fr


	Introduction 
	Main results
	Preliminary results
	Proofs of the main results 

