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On a Class Of h-Fourier Integral Operators With The Complex Phase

Chahrazed Harrat

ABSTRACT: In this work, we study the L2-boundedness and L?-compactness of a class of h-Fourier integral
operators with the complex phase. These operators are bounded (respectively compact) if the weight of the
amplitude is bounded (respectively tends to 0).
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1. Introduction

Since 1970, numerous mathematicians are interested in these types of operators:

P (z) = (2rh) " / / A S@O10) 4 (1 0) o (y) dydh, o € S(R™) | (1.1)

like [6,12,1,9,7,18]. The integral operators (1.1) appear naturally in the expression of the solutions
of the semiclassical hyperbolic partial differential equations and when expressing the C'*° solution of
the associated Cauchy’s problem. Two C functions appear in (1.1): the phase function ¢ (z,y,0) =
S (x,0) — yb and the amplitude a.

In 1974 Melin and Sjostrand [15] studied an extension of the computation of the Fourier integral in
the case where the phase functions assume complex values.

Our work consist a spectral study the L?-boundedness and L?-compactness of a class of h-Fourier
integral operators with the complex phase; we’re more particularly interested in continuity studies and
on compactness on L%(R™).

It was proven in [1] by a very elaborate demonstration and under certains conditions (relatively
strong) on the phase function ¢ and the amplitude a that all operators of the form:

(I (a,6:1) ) (x) = (20h) ™" / / @OV o (1.0, y) ) (y) dydd

n RN
Ry RQ

are bounded on L? | where ¢ € 8§ (R") (the Schwartz space), z € R", n € N* and N € N .

The used technique is to show that I (a,¢)I* (a,), I* (a,) I (a,d) are h—pseudodifferential and
apply the Calderon-Vaillancourt’s theorem (here I* (a, ¢) is the adjoint of I (a, ¢)).

In this paper, we will apply the same technic of [1] to establish L?-boundedness and L2-compactness
of form (1.1) operators. That’s why we will give brief demonstrations .
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2 C. HARRAT

We mainly prove the continuity of the operator Fj, on L?(R™) when the weight of the amplitude a is
bounded. Moreover, F}, is compact on L?(R") if this weight tends to zero. Using the estimate given in
[17,19] for h—pseudodifferential (h—admissible) operators, we also establish an L2-estimate of || F},|| .

We note that if the amplitude a is just bounded, the Fourier integral operator F' is not necessarily
bounded on L?(R™).

2. A general class of h-Fourier integral operators with the complex phase

We consider the following integral transformations

(I (a,¢;h)¥) (x) = (27h) ™" / / RO g (3,0, ) ¢ () dydd (2.1)

n RN
Ry R@

forp € S(R"), 2 € R", n € N* and N € N ((if N =0, § doesn’t appear in (2.1)).

In general, the integral (2.1) is not absolutely convergent, so we use the technique of the oscillatory
integral developed by Hormander [13]. The phase function and the amplitude a are assumed to satisfy
the following hypothesis:

(H1)

¢ € C™ (R} x Ry xR}, C)

when ¢ is a complex function , I'm(¢) is non negative.
(H2) For all (a, 8,7) € N® x NV x N there exists Cy 5 > 0, such that :

5;853;"¢ (x,@,y)‘ < CQ,MA(?—M‘—W‘—W‘” (7,0,y)

where

1/2
A, 0,y) = (1+ |l + 101 + )

2 —laf = 18] = [7]) 4 = max (2 — |af = [B] =[], 0)
(H3) There exists K1, K2 > 0, such that:
KiXx,0,y) < AN0yd, 0g0,y) < Ko(z,0,y), for all (z,0,y) € R x RY x Ry
(H3)* There exists K7, K5 > 0, such that:
KXz, 0,y) < \(x,000,0.0) < K3\(x,0,y), for all (z,0,y) € R” x RY x Ry

For any open subset  of R} x R’ x R}, € R and p € [0,1]; we set:

v Q a€C>®(Q); V(8,7 e N* x NV xN" 3 C, 5, > 0;
Fp( - lagagaﬁa(xﬁ,y) < Ca’ﬁﬁ)\u—p(la\ﬂﬁlﬂv\)(x’9’y)

When Q = R? x RY x Ry, we denote I'f (2) = I'). To give a meaning to the right hand side of (2.1), we
consider g € 8 (R x Ry x R7), g (0) = 1.
If a € Ty, we define
as (z,0,y) =g (z/o,0/0,y/0)a(x,0,y), 0 >0

Theorem 2.1. If ¢ satisfies (H1),(H2),(H3), (H3)* and if a € T}y then:

1. For ally € § (R"), Erf_l [I (ap, d; h) Y] (x) exists for every point x € R™ and is independent of the
choice of the function g. We define:

(I(a,p;h)¥) (z) := lim (I (aq,$;h) ) (z),

o—+00
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I(a,p;h) € L( S(R™)) and I (a,d;h) € L( 8'(R™)) (here L( S(R™)) (resp. L( 8 (R™)) is the space
of bounded linear mapping from S(R™) to S(R™) (resp. 8 (R™) to 8' (R™)) and 8’ (R™) the space of
all distributions with temperate growth on R™).

Proof. Let n € C°°(R™) such that suppn C [—1,2] and n = 1 on [0, 1]. For all € > 0, we set

10,07 + 1009|°

)
The hypothesis (H3) implies that there exsits C' > 0 such that we have on the support of w,

A, 0,y) < C [(1+ [y + 5@, 0,y)
Therefore, there exists g and a constant Cj, such that Ve < &g we have on the support of w,
A, 0,y) < Co(1+ [yl*)2.

In the sequel, we fix € = €. Then it is immediate that I (weaq,@;h) is an absolutely convergent
integral and we have

Iwea,¢;h)yp = lim I(weao,d;h)y. (2.2)

Using (H2) we prove also that I (wea, ¢; h) ¢ is a continuous operator from $(R™) into itself. To study
11111 I((1 —we)agy,P; h)1 we introduce the operator
o—r+00

n

L =—ih (|8y<b|2 + |89¢| ) Z yl¢ a9z¢) (891)] :

=1

Clearly we have , ,
L(en?) = en?. (2.3)

Let € be the open subset of R” x RY x R™ defined by
0y = {(x 8,y) € R" x RN x R™; |9,¢]* + |9p9|> > 2/\(33 0,y)? }
We need the following lemma.
Lemma 2.2. For all integer ¢ > 0, and b € C*°(R}} x R, we have

(L) (A—we)b) = > g2 5059, (1—we,)b),

lal+|B<q

'L designantes the transpose of L, g, 5 € T(Q0) and depend only on ¢.
We prove the lemma by recurrence. It is obvious for ¢ = 0. Now we see easily that

tL = Z(anl + GLaGL) + Ha (24)

1

where F,, G, in Ty (Q), and H € Ty*(Q) (wich results from (H2)). Therefore, the recurrence is
immediately proved.

We have from (2.3), Vg >0

I((l—w60 Ao, @y h) Y(x)
27rh // ro(z, 09 (L) (1 — wey)aoth; h) (.60, y) dydd . (2.5)

R? RY
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Now (*L)? ((1 — we, )astp) described (when ¢ varies) a bound of 'y %, and for all (z,0,y) € R? x RY x
R”
y

lim (L) (1~ we,)aot) (2.0,9) = ('L)" (1~ wey)ar) (z.0.). (2.6)

T —>00

Finally, Vs > n + N we have

// (2,0, y)dydd < CA"TN7(2). (2.7)

R? RY
So it results from (2.5),(2.7) and using Lebesgue’s theorem we have

lim 1 ((1 —we,)ao, ¢; k) (z)

g—r 00

= (2ah) [ [ RO (L) (1~ o o ) (,6,) duds (2)

n RNV
R? R)

where ¢ > n+ N + p. From (2.2)and(2.8) we can prove the first part of the theorem.
Now let us show that I ((1 — we,)as, ¢; h) is continuons. Taking account of (2.4)and(2.8), we get

I = we)a i) (o) = 2y " Y [ [er @00 (w6, Gpui)dyas . (29)

[7I€a pn pN
R?} RQ

with b2 € 't~ On the other hand, we have
298 (eR @OV (3,0, y)) € Ty~ THHAL (2.10)

We deduce from (2.9)and(2.10) that, for all ¢ > n+ N + pu + |a| + | 5], there exists a constant C, g 4
such that

‘xaafj((l — We, )@, G5 h) @b(x)‘ < Cabyq su]é) |[07w(x)],
T€R™

[vI<q

which proves the continuity of I ((1 — we,)a, ¢;h). O

Example 2.3. Let us give two examples of operators of the form (1.1) which satisfy (H1) to (H3)*:

1. The Fourier transform

S(R™) 5 6 s T (a) = / e kv (y) dy,

R~

2. Pseudodifferential operators

S(R™) 5 v s Opts (x) = (27h) " / eHE=00 (2, . 0) ) (y) dydo,

R2n

a €Tl (R3).
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3. Special form of the phase function

We consider the phase function ¢(z,y,0) = S(z,0) — y0. Where
S(x,0) = f(2,0) +iT(,0), (3.1)

and S satisfies: (G1) S € C* (R? x Ry, C), (S is a complex function)
(G2) For all (o, B) € N?", there exists C;,B > 0,

020] f(,6)| < Cl s\, 0)2 1117

(G3) For all (x,0) € R*™, T(z,0) is nonnegative, and for all (a, 3) € N*", there exists Chp >0,

agaf:r(x,e)‘ < Ol Az, 0)101-18D

(G4) There exists dg > 0,
*f

det8 2

inf
z,0eR"

({E, 9)’ > 50.

Lemma 3.1. [16] If S satisfies (G1), (G2), (G3) and (G4). Then the function ¢(x,y,0) = S(z,0) — yb
satisfies (H1), (H2), (H3) and (H3)*.

Lemma 3.2. [16] If S satisfies (G1), (G2),(G3) and (G4), then there exists Co > 0, such that for all
(z,0),(2',0') € R*"

oo +10-0] < Ca[|@)(,0) - @of) (@' 6)] + |6 - 6] (3.2)

Lemma 3.3. [8] If S satisfies (G1),(G2) et (G3). Then there exists a constant g > 0, such that the
phase function ¢ belongs to T'3(Qs <, ), where

Qoo = {(2,0,9) € B 1006 (2,0,9)° < 2o (o + Iy +10)}

Proposition 3.4. [8] If (z,0) — a(x,0) belongs to T (R x RY), then the function (z,0,y) — a(z,0)
belongs to I (RE x Ry x RY) NI (e, ), k€ {0,1}.

4. L?-boundedness and L?-compactness of Fj, with the complex phase

Theorem 4.1. Let F}, be the integral operator of distribution kernel

K(x’y):/e%f( ’

Rn

Lz, 0)d0 (4.1)

where df = (2m)~"db, a € FZL(RIQ?Z), k=0,1 and S satisfies (G1), (G2), (G3) and (G4). Then FF* and
F*F are h-pseudodifferential operators with symbol in F%m (R?"), k = 0,1, given by

82
(det 898];)_1(;3,9)‘

(det 889(';;)_1(3:’0)‘

2T (x,0)

e la(z, 0)?

2T (x,0)

e Ja(, 0)[

o(FF*)(x,0,f(x,0))

o(F"F) (0o f(x,0),0)

We denote here a = b for a,b € I‘ip(]Rgn) if (a—0)e€ Fip_Q(]R%) and o stands for the symbol.
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Proof. Tf u € §(R™), we have

Fyuz) = /K@unmmdyz//?ﬂﬂwﬂﬁwﬁwmaawwm@@
Rn

R™ R™

/e’%f(“e)*w a(x, 0) (/ e~V u(y)dy)do

R R
- / eFF@O="52 (0 0) Fu(9)dd, (4.2)
Rn

where F the Fourier transform and for all v € §(R"),

< Fhu,v >p2@n)y = /(/ eiif(@0) = T2 a(z, 0)Fu(0)dd) v(z) dx

R" R»
< Fpu,v >r2@n)y = /17,(9)(/@ L f(x,0)— 120 mv(x) dm)@,
R» R»
then
< Fu(z),v(z) >p2@n= 27h) " < Fu(0),F (F*0)) () > L2,
and,
F((Ffv) (6) = /?h“”>””)@9><> (4.3)
e
We have,
_ —(7.0)+7(.0)) _
(FF*v) (z) = / / R @0)=FG0) = 1 07 (3, 0) v(F)dT D, (4.4)

R"L R"L
for all v € §(R™). The main idea to show that F'F* is a h—pseudodifferential operator, is to use the fact
that f (x,0) — f (z,0) can be expressed by the scalar product < x — z,& (z,Z,0) > after considering the
change of variables

(z,7,0) = (z,2,£ =& (z,x,0)) .
The distribution kernel of F'F* is

7(T(m,9)+T(‘z,9))

K (2,&) = / W @O fE0) e g(z,0)a (Z,6) df.
RTL
We obtain from(3.2)that if
|z —z| > %)\ (x,7,0) (where e > 0 is sufficiently small)
Then
(06 f) (2,0) = (D6) (7,0)] > 5= (2,7,0). (4.5)
20,
Choosing C*° (R) such that

w(z) >0, VreR
w(z)=1 si ze -1 1]
suppw C  |-1,1]

and setting

*(T(mw9)+T(5,9))

b(x,2,0):=
bie(z,2,0) =w (EA‘ZET jle)) ( 33 )
boe (2,7,0) = [1 - w (St )| b (22,0
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We have
K (2,72) =K1 (2,7) + Koo (2,2),

where

o~

Kjc(z,7) = /e%;(f(w»@)*f(“))bj@ (z,2,0)df, j =1,2.
R
We will study separately the kernels K; . and Ko ..
The study of K, .. We shall show that for all A, we have

Ky, (z,7) € $(R" x R").
Indeed, let
Then L is a linear partial differential operator L of order 1 such that

I (e%(f(zﬂ)—f(fﬂ))) — F@O-1@0)

n

where L = —ih |(95.f) (2,0) — (0.f) (Z,6)|* Y _ (36, f) (x,6) — (Do,f) (. 6)] Ds,.

=1

The transpose operator of L is

'L=>Y F(,%6)0, + G (z,T,0)
=1

where Fj (,7,0) € Tg' (%), G (2,7,0) € Ty % (Q.):

Fi (,7,0) = ih|(9of) (2,0) — (Do) (.0)| " (D6, f) (x,0) — (Do, f) (&,0))

G (2,5,0) = ih' > 0o, [1(00f) (2,6) = (90) (7 0)| > (Do) (2,0) — (D0.) (7.6))]

=1

nf:@aawem%w%ﬂ%w—%f@ﬁn>§§Maaw}.

On the other hand we prove by induction on ¢ that

(‘L) boe (2,8,0) = > gl? (2, 2,60) 0 bc (,2,0), ' €T3, Vg €N,

and so,
Ko, (2,%) = /e;%(f(x,e)—f(i,e)) (tL)qbz’E (x,a?,&)@
]Rn

Using Leibnitz’s formula, (G2) and the form (*L)?, we can choose ¢ large enough such that

Va, Ct/, Ba B/ € Nna 3 Ca,a',ﬁ,ﬁ’ > 07 sup xa%a,agag K27€ (x’ E) S Ca,a’,ﬁ,,@"

z,TER™

Next, we study K .This is more difficult and depends on the choice of the parameter . It follows from
Taylor’s formula that

f(x,0)— f(Z,0) =<2 —2,£(x,T,0) >gn

1
§(x,§,9):/(&ef)(f—f—t(x—f),ﬁ)dt.
0
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We define the vectorial function:

€ (2,7,0) —w (%) £ (2,7,0) + (1 w (%)) (0.1) (7.0)

We have
55 (xa Ev 9) = 5 (xv ZE, 9) on Suppbl,Ea

Moreover, for ¢ sufficiently small,
A(x,0) 2 X(z,0) ~ A(x,7,0) on suppby .

Let us consider the mapping
RS (2,3,0) + (2,5,E, (2,3,0));

I, 0 0

0 L, 0 |

0:€.  0z8.  0pé,
¢ 9% f

g =gy ~ |z — & o . Pf
891 (x,x,G) _80¢8$]‘ (x’e) tw (26)\ (x,i,@) 891 (x,x,G) 8018$J (x’e)

z—a[ 0A
2e\ (z,Z,0) 00;

Thus, using that supp w’ C supp w C |—1, 1] and % (z,2,0) <1, we obtain

for which Jacobian matrix is

We have

(z,%,0) AL (z,%,0)

0., 0% f |z — 7| 65] _ 2f
: <
| a0, &80 = 5p oz, @0) ‘ (%A (z,7,0 )H ©%9) = 550w, (”"9)‘
+ 27 (2, 2,0)
/ |{E — i' ~ _ ﬁ ~
| (g o =20 o1, W)’
Now it follows from (G2), (4.6) and Taylor’s formula that
o8 2f
’aei (z,2,6) - ae axj ’ /’ae Oz, EHt@=2).0) -5 (%0)’ dt
<Csl|lr - N\t (2,2,0), C5 >0
_ f f . of
. < _ _ =
6 @5.0) - 5L @0) < / S t@-1.0)- gL @0 a
0

< CG|$—%|, C@>O.

From (4.8) and (4.9), there exists a positive constant C7 > 0, such that

9., Pf
891 (x’ s 6‘) B 8918$J (LC, 6‘)

< Cre, Vi, j € {1, ,n}

(4.8)

(4.10)
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Ife< 2 then(4 10) and (G4) yields the estimate

92 _ -
§0/2 < —Ce+ 6y < Cs—f—deta afe(x,ﬁ) < det 9p&, (z,x,0), with C >0
RBn. . '

. (4.11)
If € is such that (4.6) and (4.11) are true, then the mapping given in (4.7) is a global diffeomorphism of
Hence there exists a mapping

0:R" xR" x R"

(,2,§) > 6 (z,2,8) €eR”
such that
e (2,7,0 (2,7,8)) = 3
0 (2,78 (x,7, 0)) - z (4.12)
0%0 (v,7,6) = O (1), Va e N3\ {0}.
If we change the variable & by 0 (z,7,€) in K . (x

x,T) we obtain

K. (x,f):/ehQ” 520y o (2,%,0 (2,7, €))

R™

00

deta—f (z,T f)’ d¢ (4.13)
From (4.12) we have, for k = 0,1, that by . (x,Z,0 (2, T,& ’det (x,2,¢)
a €Ty (R™).

, ‘ belongs to g™ (R®") if
Applying the stationary phase theorem (cf. [20,17])
of the h—pseudodifferential operator F'F™*

(4.13), we obtain the expression of the symbol
(FF*) =b1c(2,2,0 (x,7,8))

00,
det — (z, 7, & R(x,&),
o€ ( ) - (@,€)
where R(z,§) € T2 (R*) if a € T} (R?™) ,k = 0,1
For & = x, we have
bie (2,5,0 (@, 7,8) =e + la(@,0(,0)7,
where 6 (z, z,£) is the inverse of the mapping 6 — 0, f (z,0) = £. Thus
—27T(x, 2 -1
o (FF*) (2,0, f (,0)) = e — 2" |a (2, 0)[? |det 8%8]; (2,0)
By (4.2) and (4.3) we have:
(FFF)F ) v () = / RS0 (2.0) (F(F0) (x)de
]Rn
]Rn
([ etED 60 (o7
Rn

(£ 0)- f(2)) —(L0rCD)

h )
R™ R™

xa(z,0) a (x,g) v (é) @dw, Yo e 8§ (R™).
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The distribution kernel of the integral operator F(F*F)F~1 is

[}(9,5) — /e—%(f(xﬁ)—f(x,é)) e_(Tu,e):T(m,e))a(x, 0)a (m, é) T

Rn

Observe that we can deduce K (z, %) from K (6, 5) by replacing x by 6. On the other hand, all assumptions
used here are symmetrical on x and 6 therefore F(F*F)F ! is a nice h—pseudodifferential operator with

symbol
-1

o (F(F*FYF 1) (0, s f(2,0)) = e~ 5" |a(z, 0)| |det 0°f (z,0)
) 9 ) - ) 8x89 )
Thus the symbol of F*F is given by (cf. [14])
. _ 20 2 *f -
o(F*F)(Ogf(2,0),0)=e »  |a(x,0)|” |det 5200 (z,0)

Corollary 4.2. Let F}, be the integral operator with the distribution kernel

K(z,y) = /ei(f(I’e)HT(””’G))a(x,9)55

R™

where a € F{)"(RZ’,ZG) and S satisfies (G1), (G2), (G3) and (G4).
Then, we have:
1) If m <0, Fj, can be extended to a bounded linear mapping on L? (R™).
2) If m < 0, Fj, can be extended to a compact operator on L? (R™).

Proof. 1t follows from Theorem 4.1 that F}' F, is a h-pseudodifferential operator with symbol in I'3™ (RQ").

1) If m < 0, the weight A*™(z,0) is bounded, so we can apply the Caldéron-Vaillancourt theorem (cf.
[3,17,19]) for F}' F}, and obtain the existence of a positive constant y(n)
and a integer k (n) such that

1(F3 F) wll oy < 1) Qi (0055 F)) gy » Yt € SR,

where

Quw (@(FF) = Y swp |0:0]0(FF)(00f(.0),0)|.

|al+]B|<k(n) (@OER"

Hence, we have for all u € S(R™)

* X 1/2
1Bl oy < WEREI2, ey < (20) Qi (0 CF F) 2l
Thus F}, is also a bounded linear operator on L?(R™).
2) If m < 0, lim  A"(z,0) = 0, and the compactness theorem (see. [17,19]) show that the

|z|+|0|—+o0
operator FjfFy, can be extended to a compact operator on L?(R™). Thus, the Fourier integral operator
Fy, is compact on L*(R™) . Indeed, let (;)jen be an orthonormal basis of L*(R™), then

n
FiFy =Y <. > FiFup, ey
j=1
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Since Fj, is bounded, we have for all [ € L?(R™)

2

Fhl—z <@l > Frpjll <
=1

FrFul = <l > FrFrps || [[1=Y <@l > ¢,

=1 j=1
Hence
n
Fy, — Z <@, > icpj n_>—+>oo 0.
Jj=1
O
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