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Zero-divisor Graphs of Small Upper Irredundance Number

Khalid Louartiti

abstract: In this paper, we classify finite rings with upper irredundance number less than or equal to two.
We note that, for such zero-divisor graphs, the upper irredundance number coincides with the independence
number.
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1. Introduction

By a graph Γ = (V, E) we mean a finite, undirected graph without loops or multiple edges. For graph
theoretic terminology we refer to Chartrand and Lesniak [9]. One of the fastest growing areas in graph
theory is the study of domination and related subset problems such as independence, irredundance, cov-
ering and matching. An excellent treatment of fundamentals of domination in graphs is given in the book
by Haynes et al. [13]. For any vertex u ∈ V , N(u) is the open neighborhood of the vertex u, i.e. the set of
vertices that are adjacent to u in Γ, and the closed neighborhood of u is the set N [u] = N(u)∪u. Let S be
a subset of V and let u ∈ S. A vertex v is called a private neighbor of u with respect to S if N [v]∩S = {u}.
The private neighbor set of u with respect to S is defined as pn[u, s] = {v | N [v] ∩ S = {u}}. The set S
is called an irredundant set if for every u ∈ S, pn[u, s] 6= ∅. The maximum cardinality of an irredundant
set in Γ is called the upper irredundance number of Γ and is denoted by IR(Γ). The subset S of V is said
to be independent if no two vertices in S are adjacent. The maximum cardinality of an independent set
in Γ is called the independence number of Γ and is denoted by β0(Γ). These two parameters concerning
independence and irredundance satisfy the inequality β0(Γ) ≤ IR(Γ) (see [5]). Note that this inequality
may be strict and that many research papers have treated some particular cases of graphs Γ over which
we have β0(Γ) = IR(Γ) (see for example [10,11,12,14]).

Throughout the paper R will denote a commutative ring with identity 1 6= 0. If X is either an element
or a subset of the ring R, then annR(X) denotes the annihilator of X in R. If X is any subset of a ring,
then X∗ = X\{0}. The concept of a zero-divisor graph was first introduced by Beck in 1988 for his
study of the coloring of a commutative ring [7]. In his work, all elements of the ring were vertices of the
graph. In [4], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are
the non-zero zero-divisors. Let R be a ring and let Z(R) denote the set of zero-divisors of R. The zero
divisors graph of a ring R, denoted by Γ(R), is the simple graph whose vertices are the elements of the
set Z(R)∗ and, for distinct x, y ∈ Z(R)∗, there is an edge connecting x and y if and only if xy = 0.
Let Γ be a graph. We say that Γ is connected if there is a path between any two distinct vertices of Γ. For
distinct vertices x and y of Γ, let d(x, y) be the length of the shortest path between x and y (d(x, y) = ∞ if
there is no such path). The diameter of Γ is diam(Γ) := sup{d(x, y) | x and y are distinct vertices of Γ}.
The girth of Γ, denoted by gr(Γ), is defined as the length of the shortest cycle in Γ (gr(Γ) = ∞ if Γ
contains no cycles).
It is proved that Γ(R) is connected with diam(Γ(R)) ≤ 3 ( [4, Theorem 2.3]) and gr(Γ(R)) ≤ 4 if Γ(R)
contains a cycle ( [15, (1.4)]). Thus, diam(Γ(R)) = 0, 1, 2 or 3 and gr(Γ(R)) = 3, 4 or ∞ (examples of
different cases can be found in [2]). The zero-divisor graphs of commutative rings have attracted the
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attention of several researchers (see, for instance, [1,3,6,16]). For a survey and recent results concerning
zero-divisor graphs of commutative rings, we refer the reader to [2].

2. Zero-divisor graphs of small upper irredundance number

We start with the following easy remarks.

Remark 2.1. (1) A graph Γ = (V, E) is said a complete bipartite graph if V can be decomposed into two
disjoint independent sets such that every pair of graph vertices in the two sets are adjacent. If there are
n and m vertices in the two sets, the complete bipartite graph is denoted K(n,m). It is easily seen that
β0(K(n,m)) = max{n, m}. On the other hand, we have β0(K(n,m)) = IR(K(n,m)) ( [11]). Now, let F
and K be finite fields with distinct orders n and m, respectively. By [4, Example 3.4], Γ(F × K) is the
complete bipartite graph K(n−1,m−1). Hence, β0(Γ(F × K)) = IR(Γ(F × K)) = max{n − 1, m − 1}. In
particular, for any finite field F , we have β0(Γ(Z2 × F )) = IR(Γ(Z2 × F )) = |F | − 1.
(2) Note that zero-divisor graphs of non isomorphic rings may have the same upper irredundance number
and the same independence number. For example, take R1 = Z2 × Z3 and R2 = Z3 × Z3. From (1),
β0(Γ(R1)) = IR(Γ(R1)) = β0(Γ(R2)) = IR(Γ(R2)) = 2.

Proposition 2.2. Let R be a ring. Then, the following are equivalent:

1. IR(Γ(R)) = 0.

2. β0(Γ(R)) = 0.

3. R is a domain.

Proof. The implication (1) ⇒ (2) follows from the inequality β0(Γ(R)) ≤ IR(Γ(R)).
(2) ⇒ (3) If R is not a domain then Z(R)∗ 6= ∅. Hence, for any x ∈ Z(R)∗ is an independent set, a
contradiction.
(3) ⇒ (1) By hypothesis, Z(R)∗ = ∅. Thus, IR(Γ(R)) = IR(∅) = 0. �

Proposition 2.3. Let R be a ring which is not a domain. Then, the following are equivalent:

1. IR(Γ(R)) = 1.

2. β0(Γ(R)) = 1.

3. Γ(R) is a complete graph.

4. R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

Proof. (1) ⇒ (2) follows from the inequality β0(Γ(R)) ≤ IR(Γ(R)) and Proposition 2.2.
(2) ⇒ (3) Suppose that Z(R)∗ contains at least two different elements x and y. Then, by hypothesis,
{x, y} is not independent. Hence, xy = 0. Hence, Γ(R) is a complete graph.
(3) ⇒ (4) Follows from [2, Theorem 2.8].
(4) ⇒ (1) By remark 2.1, IR(Γ(Z2 × Z2)) = 1. So, suppose that xy = 0 for all x, y ∈ Z(R). Let S be
an irredundant set with maximum cardinality. Clearly, |S| ≥ 1, otherwise IR(Γ(R)) = 0 and so R is
domain. Let u ∈ S. We have pn[u, s] 6= ∅, and so there exists v ∈ Z(R)∗ such that N [v] ∩ S = {u}. Now,
by hypothesis N [v] = Z(R)∗. Thus, {u} = S. Hence, |S| = 1, and then IR(Γ(R)) = 1. �

Example 2.4. 1. An easy example of a local finite ring R with IR(Γ(R)) = 1 is Z25.

2. Set R := R[x]/(x2). It is easy to see that R is an infinite local ring with maximal ideal M = (x).
Moreover, M2 = (0). Hence, IR(Γ(R)) = 1.

The main goal of this paper is to characterize rings R (local or not) with IR(Γ(R)) = 2. To do so,
we need the following lemma.
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Lemma 2.5. Let R be a local ring with β0(Γ(R)) = 2. Then, for all a, b ∈ Z(R)∗ such that ab 6= 0 the
ideals annR(a) and annR(b) are comparable; that is annR(a) ⊆ annR(b) or annR(b) ⊆ annR(a).

Proof. Since β0(Γ(R)) = 2, we can always find a, b ∈ Z(R)∗ such that ab 6= 0. Suppose that annR(a) *
annR(b) and that annR(b) * annR(a). Implicitly, we have a 6= b.
Assume first that | annR(a)\annR(b) |> 2 and let x, y, z ∈ annR(a)\annR(b) distinct elements. Consider
also α ∈ annR(b)\annR(a). Trivially, x + α, y + α and z + α are distinct. Hence, we can suppose that
α + x 6= a and that α + x 6= b. Then, (α + x)a = αa + xa = αa 6= 0 and (α + x)b = αb + xb = xb 6= 0.
Hence, {a, b, α+x} is an independent set, a contradiction since β0(R) = 2. Thus, | annR(a)\annR(b) |≤ 2.
Similarly, we get | annR(b)\annR(a) |≤ 2.
Case 1: Assume that annR(b)\annR(a) = {x} for some x ∈ annR(b).
We have annR(b) ⊆ annR(a)∪{x}. Consider α ∈ annR(b)\{0, x} ⊆ annR(a). Then, α+x ∈ annR(b)\{x}.
Thus, α+x ∈ annR(a). Thus, x ∈ annR(a) since α ∈ annR(a), a contradiction. Consequently, annR(b) =
{0, x}. But Z(R) = annR(z) for some non zero element z. We must have zb = 0, and so z = x. Hence, x
is adjacent to every other element. Hence, x ∈ annR(a). Then, annR(b) ⊆ annR(a), a contradiction.
Case 2: Assume that annR(b)\annR(a) = {x, y} for some x, y ∈ annR(b).
Case 2.1: Assume that annR(a)\annR(b) = {z} for some z ∈ annR(b). This case is analogous to Case
1, and so we will obtain a contradiction.
Case 2.2: Assume that annR(a)\annR(b) = {z, t} for some y, z ∈ annR(a). As in Case 1.2, we obtain
annR(a) = {0, z, t} or annR(a) = {0, z, t, α} for some α. Moreover, we have annR(b) ⊆ annR(a) ∪ {x, y}
and Z(R) = annR(a) ∪ annR(b) ∪ {a, b}. Thus, Z(R) = {0, z, t, x, y, a, b} or Z(R) = {0, z, t, x, y, a, b, α}.
Note that x, y, z and t are all different. Then, 5 ≤ |Z(R)| ≤ 8. Moreover, the fact that |annR(a)| = 3, or 4
implies that |Z(R)| = 8. On the other hand, R is local and so Z(R) is an annihilator ideal. Hence, there
is an element of Z(R)∗ which is adjacent to every element in Z(R). The only possibility for this element is
to be equal to α. Hence, Z(R) = annR(α). Hence, annR(a) = {0, z, t, α} and annR(b) = {0, x, y, α}. It is
clear that a + b 6= 0, otherwise annR(a) = annR(b). Also, a + b 6= α, otherwise annR(a) = annR(b) again.
Hence, a + b ∈ {x, y, z, t}. For example, suppose that a + b = x. The set {a, x, y} is not independent.
Then, xy = 0 since ax 6= 0 and ay 6= 0. Hence, 0 = xy = (a + b)y = ay. Hence, y ∈ annR(a), a
contradiction.
All cases are impossible. Then, our hypothesis is false, and so annR(a) ⊆ annR(b) or annR(b) ⊆ annR(a).
�

Theorem 2.6. Let R be a finite local ring. Then β0(Γ(R)) = 2 if and only if R is isomorphic to one of
the rings Z8, Z2[x]/(x3), and Z4[x]/(2x, x2 − 2).

Proof. Suppose that β0(Γ(R)) = 2. Then, necessarily |Z(R)| ≥ 3. If |Z(R)| = 3 then Z(R) = {0, a, −a}
for some a ∈ R. Hence, we have immediately a2 = 0, and so β0(Γ(R)) = 1, a contradiction. Hence, we
must have |Z(R)| ≥ 4. Consider x, y ∈ Z(R)∗ such that xy 6= 0. Such elements exist since β(Γ(R)) = 2.
Using Lemma 2.5, annR(x) ⊆ annR(y) or annR(y) ⊆ annR(x). Take for example the first case. The
hypothesis β(Γ(R)) = 2 implies that Z(R) = annR(x) ∪ annR(y) ∪ {x, y} = annR(y) ∪ {x, y}. Hence,
|Z(R)| = |annR(y)| + 1 if y2 = 0 and |Z(R)| = |annR(y)| + 2 if y2 6= 0. Since, R is local, |Z(R)| = pn

for some p prime and a positive integer n. Set |annR(y)| = pk for 1 ≤ k < n. Then pn = pk + 1 if
y2 = 0 and pn = pk + 2 if y2 6= 0. The first case (when y2 = 0) is impossible, and the unique possibility
in the second case is p = 2, k = 1, and n = 2. Hence, |Z(R)| = 4 = 22. Following [8, Corollary 2], R
is isomorphic to one of the rings Z8, Z2[x, y]/(x, y)2, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z4[x]/(2x, x2), the
Galois ring GR(16, 4) (∼= Z4[x]/(x2 + x + 1)), and F4[x]/(x2). By drawing the zero divisors graphs of
these rings, we can see that those of the rings Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2) are isomorphic to K(1,2)

and those of the rings Z2[x, y]/(x, y)2, Z4[x]/(2x, x2), ∼= Z4[x]/(x2 +x+1), and F4[x]/(x2) are isomorphic
to K3.
Since β0(Γ(R)) = 2, Γ(R) is not complete. Thus, Γ(R) must be isomorphic to K(1,2). Conversely,
β0(K(1,2)) = 2. Hence, we obtain the desired equivalence. �

Theorem 2.7. Let R be a non local finite ring. Then, β0(Γ(R)) = 2 if and only if R is isomorphic to
Z2 × Z3 or to Z3 × Z3.



4 K. Louartiti

Proof. Without loss of generality, set R = R1 ×R2 × ...×Rn where n ≥ 2 and Ri are local rings. Suppose
that n ≥ 3. Clearly, the set {(1, 1, 0, ..., 0), (0, 1, 1, 0, ..., 0), (1, 0, 1, 0, ..., 0)} is an independent set with
cardinality ≥ 3. Hence, β0(R) ≥ 3, a contradiction. Thus, n = 2.
Assume that |R1| ≥ 4 and let x ∈ R1\{0, 1}. We have (x, 0)(1, 0) = (x, 0) 6= (0, 0). Then, for any
y ∈ R1\{1, x}, we have (y, 0)(1, 0) = (0, 0) or (y, 0)(x, 0) = (0, 0). Then y = 0 or xy = 0. So, Z(R1) =
R1\{1}. Set |R1| = pn for some prime p and integer n ≥ 1. Hence, Z(R1) = pn − 1 = pk for some integer
k ≥ 0. Thus, pk(pn−k − 1) = 1. Hence, p = 2, k = 0, and n = 1. Thus, |R1| = 2, a contradiction since
|R1| ≥ 4. Hence, we conclude that R1

∼= Z2 or R1
∼= Z3. Similarly, R2

∼= Z2 or R2
∼= Z3. To finish, it

suffices to remind that β0(Z2 × Z2) = 1 and β2(Z2 × Z3) = β2(Z3 × Z3) = 2. �

Corollary 2.8. Let R be a finite ring. Then, the following are equivalent:

1. IR(Γ(R)) = 2.

2. β0(Γ(R)) = 2.

3. R is isomorphic to one of the rings

Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2), Z2 × Z3, Z3 × Z3.

Proof. (1) ⇒ (2) Follows from the inequality β0(Γ(R)) ≤ IR(Γ(R)) and Propositions 2.2 and 2.3.
(2) ⇒ (3) Follows from Theorems 2.6 and 2.7. (3) ⇒ (3) Note that the zero divisors graphs of
Z8, Z2[x]/(x3), Z4[x]/(2x, x2 − 2) and Z2 × Z3 are isomorphic to K(1,2) and the zero divisors graph
of Z3 × Z3 is isomorphic to K(2,2). In the both cases, the upper irredundance number is two. �
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