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1. Introduction

A C0-cosine family {C(t)}t≥0 in a Banach space X is a family of bounded linear operators in X
satisfying the D’Alembert functional equation (see Definition 1.1), C(0) = I and lim

t−→0+
C(t)x = x, for all

x ∈ X . This notion was introduced by M.Sova in 1966 [12], which associates to each C0-cosine family an
operator called the infinitesimal generator.

It is well-known, in the classical case (where X is a Banach space), that a C0-cosine family {C(t)}t≥0

is exponentially equicontinuous in X [4,8,10]. Therefore the family {C(t)}t≥0 is strongly continuous in
X [12], i.e. the map C(.)x is continuous in R

+, for all x ∈ X . This means that the notions ”strongly
continuous cosine family” and ”C0-cosine family” coincide. The infinitesimal generator A of a C0-cosine
family is a closed operator and is densely defined. The link between the family {C(t)}t≥0 and its generator
is given by the relation: λR(λ2, A) =

∫ ∞

0
e−λtC(t)dt, for some λ ∈ C, with R(λ2, A) = (λ2I − A)−1 [4,8].

If in addition the family {C(t)}t≥0 is uniformly continuous (i.e. ‖ C(t) − I ‖−→ 0, as t −→ 0+), then the
infinitesimal generator is a bounded operator in X [9,13].

If X is a Hausdorff locally convex space, we say that {C(t)}t≥0 is a strongly continuous cosine family
if it satisfies the D’Alembert functional equation, C(0) = I and C(t) −→ C(t0) in Ls(X) as t −→ t0,
for all t0 ≥ 0 [3]. If instead of the last condition, the family {C(t)}t≥0 verifies C(t) −→ I in Ls(X) as
t −→ 0+, we say that {C(t)}t≥0 is a C0-cosine family.

In the second section, we are interested studying in general the C0-cosine families in Hausdorff locally
convex spaces and we rely on the work of M.Sova, on the Banach spaces [12], to show that any locally
equicontinuous C0-cosine family in X (h.l.c.s.) is strongly continuous.

By a well-known analogy of K.Yosida [13] for semi-groups, we show in the third section the existence
of the resolvent of the infinitesimal generator of an exponentially equicontinuous C0-cosine family on X .

In the case of Fréchet spaces, we have given in [3] an example of a uniformly continuous cosine family
whose infinitesimal generator is not defined everywhere in the space, and we showed that if the space is a
Quojection, the infinitesimal generator of all uniformly continuous cosine family is a continuous operator.
In the fourth section, we begin with a proposition that gives an answer of Conejero’s question [6] in the
case of cosine families in the space ω = CN. Finally, we show that if X is a GDP Quojection-Fréchet
space, then all C0-cosine family in X is uniformly continuous, therefore its infinitesimal generator is a
continuous linear operator on X .

2010 Mathematics Subject Classification: Primary: 47D09, 46A04. Secondary: 46A11.
Submitted May 30, 2019. Published October 23, 2019

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.48149


2 R. Ameziane Hassani and A. Blali and A. El Amrani and K. Moussaouja

2. C0-Cosine family of operators in locally convex spaces:

Let X be a sequentially complete locally convex Hausdorff space and ΓX a system of continuous
seminorms determining the topology of X . The strong topology τs in the space L(X), of all continuous
linear operators from X into itself, is determined by the family of seminorms:

qx(S) = q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX , in this case we write Ls(X).
Denote by B(X) the collection of all bounded subsets of X . The topology τb of uniform convergence

on the elements of B(X) is defined by the family of seminorms:

qB(S) = sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX , in this case we write Lb(X).
For a Banach space X , τ b is the operator norm topology in L(X). If ΓX is countable and X is complete,
then X is called a Fréchet space.

Definition 2.1. Let {C(t)}t≥0 ⊆ L(X) be a family of operators verifying the following properties:

1. C(0) = I.

2. 2C(t)C(s) = C(t + s) + C(t − s), for all s, t ≥ 0, with t ≥ s.
(D’Alembert functional equation)

i) We say that {C(t)}t≥0 is a C0-cosine family if:

C(t) −→ I in Ls(X) as t −→ 0+.

ii) We say that {C(t)}t≥0 is a uniformly continuous C0-cosine family if:

C(t) −→ I in Lb(X) as t −→ 0+.

Definition 2.2. Let {C(t)}t≥0 be a family of continuous linear operators in X.

1. We say that {C(t)}t≥0 is exponentially equicontinuous of order ω if the set {e−ωtC(t)}t≥0 is equicon-
tinuous, i.e. ∀p ∈ ΓX , ∃q ∈ ΓX , ∃M ≥ 0 such that:

p(C(t)x) ≤ Meωtq(x), for all x ∈ X, and t ≥ 0.

2. We say that {C(t)}t≥0 is locally equicontinuous if for each t0 ≥ 0 the set {C(t), 0 ≤ t ≤ t0} is
equicontinuous. i.e. ∀p ∈ ΓX , ∃q ∈ ΓX , ∃M ≥ 0 such that:

p(C(t)x) ≤ Mq(x), for all x ∈ X, and t ∈ [0, t0].

It’s clear that every exponentially equicontinuous family is necessarily locally equicontinuous.

It is known that every C0-cosine family in a Banach space is necessary exponentially equicontinuous
[8,12]. For Fréchet spaces this need not be the case. For example, in the sequence space ω = CN, the
family:

C(t)x = (cosh(nt)xn)n≥1 = (
ent + e−nt

2
xn)n≥1, for all x = (xn)n≥1 ∈ ω, and t ≥ 0,

defines a C0-cosine family in ω which is not exponentially equicontinuous.

Based on M. Sova’s theorem ( [12], Theorem 2.7), which shows that for every C0-cosine family, in a
Banach space, the map C(.)x is continuous in R+ for every x ∈ X . The following proposition generalizes
this result in locally convex spaces.
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Proposition 2.3. Let {C(t)}t≥0 be a locally equicontinuous C0-cosine family in locally convex space X.
Then, for all x ∈ X, and t0 ≥ 0:

lim
t−→t0

C(t)x = C(t0)x.

i.e. {C(t)}t≥0 is strongly continuous.

Proof. Suppose that there exist x0 ∈ X and t0 ≥ 0 such that C(.)x0 is not continuous at t0, i.e. ∃ε > 0,
∃q ∈ ΓX , ∀η > 0, ∃t ≥ 0 such that |t − t0| ≤ η and q(C(t)x0 − C(t0)x0) ≥ ε.
For each n ∈ N

∗, put:

Kn = sup{q(C(t)x0 − C(s)x0) : |t − t0| ≤
t0

8n
, |s − t0| ≤

t0

8n
, s, t ∈ R

+ with t 6= s}

1o/ There is K > 0 such that Kn ≥ K, for all n ∈ N∗. Indeed:
First, we have (Kn)∞

n=1 is a decreasing sequence of positive numbers, therefore there exists K ∈ R
+ such

that Kn −→ K. According to the hypothesis, we obtain that K > 0, hence the result.
2o/ There exist (τn)n ⊂ R+ and (σn)n ⊂ R+, with τn < σn, for all n ∈ N∗, such that:

|τn − t0| ≤
t0

8n
, |σn − t0| ≤

t0

8n
, and q(C(τ n)x0 − C(σn)x0) ≥ Kn −

1

n
, for all n ∈ N

∗.

3o/ For all n ∈ N∗, 2τn − σn ≥ 0. Indeed:
For each n ∈ N∗ we have σn − τn ≤ t0

4n
and τn ≥ t0 − t0

8n
= 8n−1

8n
t0 ≥ t0

2n
> t0

4n
.

Which implies 2τn − σn ≥ 0, for all n ∈ N∗.
4o/For all n ∈ N∗, q(C(σ4n)x0 − C(2τ4n − σ4n)x0) ≤ Kn. Indeed:
Just show that for all n ∈ N∗ we have |σ4n − t0| ≤ t0

8n
and |2τ4n − σ4n − t0| ≤ t0

8n
.

Let n ∈ N∗ we have:
|2τ4n − σ4n − t0| ≤ |σ4n − τ4n| + |τ4n − t0| ≤ t0

16n
+ t0

32n
≤ t0

8n
, hence the result.

5o/ lim
n−→∞

Kn = 0. Indeed:

Let s, t ∈ R
+ with s ≤ t, we have:

2C(t)(C(s) − I) = C(t − s) − C(t + s) + 2(C(t + s) − C(t)).

On the other hand, for all p ∈ ΓX , and x ∈ X we have:

2p(C(t + s)x − C(t)x) ≤ 2p(C(t)(C(s) − I)x) + p(C(t + s)x − C(t − s)x).

Now, for each n ∈ N∗ we take: t = τ4n, s = σ4n − τ4n, x = x0, and p = q, we obtain:

2q(C(σ4n)x0 − C(τ4n)x0) ≤ 2q(C(τ 4n)(C(σ4n − τ4n) − I)x0) + q(C(σ4n)x0 − C(2τ4n − σ4n)x0).

According to 2o/ and 4o/ we have:

2(K4n −
1

4n
) ≤ 2q(C(τ4n)(C(σ4n − τ4n) − I)x0) + Kn, for all n ∈ N

∗.

Therefore

K4n ≤ 2q(C(τ4n)(C(σ4n − τ4n) − I)x0) +
1

2n
+ (Kn − K4n), for all n ∈ N

∗.

Since {C(t)}t≥0 is locally equicontinuous in X , there exist q∗ ∈ ΓX , and M ≥ 0 such that:

K4n ≤ 2Mq∗((C(σ4n − τ4n) − I)x0) +
1

2n
+ (Kn − K4n), for all n ∈ N

∗.

As lim
n−→∞

τ4n = t0, lim
n−→∞

σ4n = t0 and lim
t−→0

C(t)x0 = x0, thus lim
n−→∞

Kn = 0.

Which is contradict 1o/, hence the result.
�
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The previous proposition show that if the C0-cosine family {C(t)}t≥0 is locally equicontinuous, then
the following conditions are equivalent:

i) C(t) −→ I in Ls(X) as t −→ 0+.

i′) C(t) −→ C(t0) in Ls(X) as t −→ t0, for all t0 ≥ 0.

In this case, the notions ”C0-cosine family” and ”strongly continuous cosine family” coincide.

By the same procedure, and under the condition of locally equicontinuity, we have the equivalence
between ii) of Definition 1. and the condition:

ii′) C(t) −→ C(t0) in Lb(X) as t −→ t0, for all t0 ≥ 0.

Remark 2.4. Every locally equicontinuous C0-cosine family {C(t)}t≥0 commute. Indeed:
Let t > 0, According to Definition 1.(ii) we have C(t) = 2(C( t

2 ))2 − I, which implies that for all n ≥ 0,
C(t) is polynomial in C( t

2n ), so they commute.

Assume that C(t) commutes with C( rt
2n ) for r = 1, 2, ..., k for some k ≥ 1. Since

C(
(k + 1)t

2n
) = 2C(

kt

2n
)C(

t

2n
) − C(

(k − 1)t

2n
).

It follows that C(t) commutes with C( (k+1)t

2n ). Then C(t) commutes with C( rt
2n ) for all integers

r, n ≥ 1.

Now, let s ≥ 0 we take r = [ s2n

t
]. Then C(t) commute with C([ s2n

t
] t

2n ).

Since [ s2n

t
] t

2n −→ s as n −→ ∞ and {C(t)}t≥0 is strongly continuous by Proposition 2.1, then C(t)
commute with C(s). Hence the result.

Definition 2.5. Let {C(t)}t≥0 be a C0-cosine family in X. The infinitesimal generator is the linear
operator A defined in D(A) by:

Ax = lim
t−→0+

2

t2
(C(t)x − x)

Where D(A) = {x ∈ X/ limt−→0
2
t2 (C(t)x − x) exist in X}.

Proposition 2.6. Let {C(t)}t≥0 be a locally equicontinuous C0-cosine family in X and A its infinitesimal
generator. And let x, y ∈ X, then:

1. For all t ≥ 0 it holds lim
h−→0+

2
h2

∫ t+h

t
(t + h − s)C(s)xds = C(t)x.

2. For all t ≥ 0 we have
∫ t

0 (t − s)C(s)xds ∈ D(A) and A
∫ t

0 (t − s)C(s)xds = C(t)x − x.

3. D(A) is dense in X and A : D(A) → X is a closed operator.

4. x ∈ D(A) and Ax = y if and only if C(t)x − x =
∫ t

0
(t − s)C(s)yds for all t ≥ 0.

5. For x ∈ D(A) the mapping [0, ∞) → X, t 7→ C(t)x is twice continuous differentiable, C(t)x ∈ D(A),

and AC(t)x = C(t)Ax = d2

dt2 C(t)x for all t ≥ 0.

Proof. While 1. is [Proposition 1. [3]] it follows from Proposition 2.3 that {C(t)}t≥0 is strongly con-
tinuous. Thus, 2. follows from [Corollary 1. [3]], 3. is a consequence of [Proposition 2. and Corol-
lary 2. [3]] while 4. is implied by [Proposition 4. [3]]. Finally, if x ∈ D(A) we have: C(t)x =

x + t
∫ t

0 C(s)Axds −
∫ t

0 sC(s)Axds by 4. which yields 5. �
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3. The Resolvent of infinitesimal generator:

In this section we study some spectral properties of the infinitesimal generator, which are important
for our main result.

We begin with the following lemma for ease of reading.

Lemma 3.1. Let {C(t)}t≥0 be a C0-cosine family in X.
Then, for all λ > 0 and x ∈ X We have:

lim
h−→0+

1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))C(t)xdt = −λx.

Proof. Let λ > 0. For all 0 < h < 1 put:

Bh =
1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))dt = −
1

λ
(

2

h2
(cosh(λh) − 1)).

With cosh(λh) = eλh+e−λh

2 , ∀λ ∈ C. Then lim
h−→0+

Bh = −λ.

On the other hand, let p ∈ ΓXand x ∈ X , we have:

p(
1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))C(t)xdt + λx) = p(
1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))(C(t)x − x)dt + Bhx + λx)

≤ (
1

h2

∫ h

0

|e−λ(h−t) − e−λ(t−h)|dt) sup
t∈[0,h]

p(C(t)x − x)

+ p(Bhx + λx)

≤ −Bh sup
t∈[0,h]

p(C(t)x − x) + p(Bhx + λx)

Since ∀x ∈ X , lim
t−→0+

C(t)x = x and Bh −→ −λ as h −→ 0+,

lim
h−→0+

1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))C(t)xdt = −λx, for all x ∈ X.

�

For semigroups, the two next Theorems is due to K.Yosida [13].

Theorem 3.2. Let {C(t)}t≥0 be an exponentially equicontinuous C0-cosine family of order ω in X.
For all λ > ω, consider the linear operator Cλ:

Cλx =

∫ ∞

0

e−λtC(t)xdt, for all x ∈ X.

Then, the following properties hold:

1. Cλ is a continuous linear operator in X.

2. Im(Cλ) ⊆ D(A), and for all x ∈ X we have: ACλx = λ2Cλx − λx.

3. for all x ∈ X: lim
λ−→∞

λCλx = x.

Proof. 1. Let p ∈ ΓX , x ∈ X and λ > ω, then:

p(Cλx) = p(

∫ ∞

0

e−λtC(t)xdt) ≤

∫ ∞

0

p(e−λtC(t)x)dt

≤

∫ ∞

0

e−λtp(C(t)x)dt
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Since {C(t)}t≥0 is exponentially equicontinuous of order ω, there exist M ≥ 0, and q ∈ ΓX such
that:

p(Cλx) ≤

∫ ∞

0

e−λtMeωtq(x)dt ≤
M

λ − ω
q(x).

Then, Cλ ∈ L(X).

2. Let x ∈ X , and h > 0, then:

2

h2
(C(h) − I)

∫ ∞

0

e−λtC(t)xdt =
2

h2

∫ ∞

0

e−λtC(h)C(t)xdt −
2

h2

∫ ∞

0

e−λtC(t)xdt

=
2

h2

∫ h

0

e−λtC(h)C(t)xdt +
2

h2

∫ ∞

h

e−λtC(h)C(t)xdt −
2

h2

∫ ∞

0

e−λtC(t)xdt

=
1

h2

∫ h

0

e−λtC(h + t)xdt +
1

h2

∫ h

0

e−λtC(h − t)xdt +
1

h2

∫ ∞

h

e−λtC(t + h)dt

+
1

h2

∫ ∞

h

e−λtC(t − h)xdt −
2

h2

∫ ∞

0

e−λtC(t)xdt

=
1

h2

∫ ∞

0

e−λtC(t + h)xdt +
1

h2

∫ h

0

e−λtC(h − t)xdt +
1

h2

∫ ∞

h

e−λtC(t − h)xdt

−
2

h2

∫ ∞

0

e−λtC(t)xdt

=
1

h2

∫ ∞

h

e−λ(t−h)C(t)xdt +
1

h2

∫ h

0

e−λ(h−t)C(t)xdt +
1

h2

∫ ∞

0

e−λ(t+h)C(t)xdt

−
2

h2

∫ ∞

0

e−λtC(t)xdt

=
eλh

h2

∫ ∞

h

e−λtC(t)xdt +
e−λh

h2

∫ h

0

eλtC(t)xdt +
e−λh

h2

∫ ∞

0

e−λtC(t)xdt −
2

h2

∫ ∞

0

e−λtC(t)xdt

=
eλh + e−λh − 2

h2

∫ ∞

0

e−λtC(t)xdt +
1

h2

∫ h

0

(e−λ(h−t) − e−λ(t−h))C(t)xdt.

According to Lemma 3.1, as h −→ 0+, we have: Im(Cλ) ⊆ D(A) and ACλx = λ2Cλx − λx.

3. Let λ > ω, since
∫ ∞

0 λe−λtdt = 1, λCλx − x =
∫ ∞

0 λe−λt(C(t)x − x)dt, then for all p ∈ ΓX :

p(λCλx − x) =

∫ ∞

0

λe−λtp(C(t)x − x)dt = I1 + I2

with I1 =
∫ δ

0 λe−λtp(C(t)x − x)dt and I2 =
∫ ∞

δ
λe−λtp(C(t)x − x)dt where δ > 0 is a positive

number.

By continuity of C(.)x en 0, for any ε > 0 we can choose δ > 0 such that:
p(C(t)x − x) ≤ ǫ for 0 ≤ t ≤ δ. Then

I1 ≤ ελ

∫ δ

0

e−λtdt ≤ ελ

∫ ∞

0

e−λtdt = ε.

For the previous δ > 0, by the exponentially equicontinuity of {C(t)}t≥0,
(i.e. ∃ω ≥ 0, ∀p ∈ ΓX ∃q ∈ ΓX and ∃M ≥ 0 such that p(C(t)x) ≤ Meωtq(x), ∀x ∈ X , and t ≥ 0),
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we have:

I2 ≤ λ

∫ ∞

δ

e−λt(p(C(t)x) + p(x))dt

≤ λ

∫ ∞

δ

e−λtp(C(t)x)dt + λ

∫ ∞

δ

e−λtp(x)dt

≤ λ

∫ ∞

δ

e−λtMeωtq(x)dt + λ

∫ ∞

δ

e−λtp(x)dt

≤ λMq(x)

∫ ∞

δ

e(ω−λ)tdt + λp(x)

∫ ∞

δ

e−λtdt

≤
λ

λ − ω
e(ω−λ)δMq(x) + e−λδp(x) −→ 0 as λ −→ ∞.

Hence the result.
�

Theorem 3.3. let {C(t)}t≥0 be an exponentially equicontinuous C0-cosine family of order ω in X. For
every λ > ω, (λ2I − A)−1 exist in L(X).
Moreover, for all x ∈ X:

(λ2I − A)−1x =
1

λ

∫ ∞

0

e−λtC(t)xdt.

Proof. Let λ > ω. Suppose there is x0 ∈ D(A), with x0 6= 0, such that (λ2I − A)x0 = 0. Since

x0 ∈ D(A), C(t)x0 = x0 + t
∫ t

0
C(s)Ax0ds −

∫ t

0
sC(s)Ax0ds, for all t ≥ 0, by 5. of Proposition 2.2 and

d
dt

C(t)x0 =
∫ t

0 C(s)Ax0ds.
On the other hand, as x0 6= 0, ∃f ∈ X ′ suth that f(x0) = 1. Put g(t) = f(C(t)x0), for all t ≥ 0, since

C(.)x0 is continuous in R+ (be cause {C(t)}t≥0 is exponentially equicontinuous in X), g(.) is continuous in

R+. Moreover, d2

dt2 g(t) = d2

dt2 f(C(t)x0) = f( d2

dt2 C(t)x0) = f(C(t)Ax0) = λ2g(t), g(0) = 1 and g′(0) = 0.
Thus

g(t) =
eλt + e−λt

2
, t ≥ 0.

Since {C(t)}t≥0 is exponentially equicontinuous of order ω, there exists M0 ≥ 0 such that: |g(t)| ≤ M0eωt,
for all t ≥ 0. Which is absurd (because λ > ω). Thus (λ2I − A) : D(A) → X is injective. Moreover,
according to Theorem 3.1 we have Im(Cλ) ⊆ D(A) and (λ2 − A)Cλx = λx for every x ∈ X so that
(λ2I − A) is also surjective and (λ2I − A)−1 = 1

λ
Cλ so that (λ2I − A)−1 ∈ L(X) by 1. of Theorem 3.1.

�

4. C0-Cosine family in a GDP Quojection-Fréchet space:

It is known that a Fréchet space X is a projective limit of a sequence of Banach spaces (Xk)k with
respect to the projective operators Pk : Xk+1 −→ Xk. A Fréchet space is a quojection if it is isomorphic
to a projective limit of Banach spaces with surjective projective operators [5].

Recall that a locally convex Hausdorff space is a Grothendieck space, if every sequence in X ′, which
convergent for σ(X ′, X), is also convergent for σ(X ′, X ′′) [1].

A locally convex Hausdorff space X is said to have the Dunford-Pettis property if for all T ∈ L(X, Y ),
for Y any quasicomplete locally convex Hausdorff space, which transforms elements of B(X) into relatively
σ(Y, Y ′)-compact subsets of Y , also transforms σ(X, X ′)-compact subsets of X into relatively compact
subsets of Y [1,9].

A Grothendieck locally convex Hausdorff space X with the Dunford-Pettis property is called, briefly,
a GDP space.

We begin this section with the following lemma [Lemma 2.4 [2]] which plays an important role in the
main results:
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Lemma 4.1. Let X be a barrelled GDP space and {Sn}n≥1 ⊆ L(X) be a sequence of operators satisfying
the following properties:

1. For all m, n ∈ N
∗, SmSn = SnSm.

2. For all m ∈ N∗, lim
n−→∞

(Sn − I)Sm = 0, in Lb(X).

3. lim
n−→∞

Sn = I, in Ls(X).

Then:
lim

n−→∞
(Sn − I)2 = 0, in Lb(X).

If, in addition, X is a Quojection Fréchet space and there exists a fundamental sequence {qj}j≥1, of
seminorms generating the locally convex topology of X which satisfy:
For each j ∈ N there exists cj > 0 such that:

qj(Snx) ≤ cjqj(x), for all x ∈ X and n ∈ N
∗.

Then:
(Sn − I) −→ 0, in Lb(X), as n −→ ∞.

We recall our Theorem [3] about the cosine family in Quojection space.

Theorem 4.2. Let X be a quojection.
The infinitesimal generator of every uniformly continuous cosine family is continuous, (i.e. A ∈ L(X)).
Moreover, for all x ∈ X and t ≥ 0 we have:

C(t)x =

∞∑
k=0

t2k

(2k)!
Akx.

On the other hand, we consider the space ω = CN of all sequence equipped with its topology of
coordinates convergence (i.e. pk(x) = max

0≤j≤k
|xj |, (xj)j∈N ∈ ω, for each k ∈ N). It’s well known that, the

space ω is a Quojection, because it is a product of countable copies of the Banach space C, Moreover
ω is a Montel space, therefore the strong convergence and the uniform convergence coincide on bounded
sets, then every C0-cosine family is actually uniformly continuous.

L. Frerick, E. Jorda, T. Kalmes and J. Wengenroth [11] given a satisfactory answer of Conejero’s
question [6] of whether every C0-semigroup on ω is of the form {etA}t≥0, for some A ∈ L(ω).

The following proposition gives a version of the previous result in the case of cosine families.

Proposition 4.3. Every locally equicontinous C0-cosine family on the space ω = CN has a continuous
infinitesimal generator A and is of the form:

C(t) = cosh(tA) =
etA + e−tA

2
, for all t ≥ 0.

Let {C(t)}t≥0 be an exponentially equicontinous C0-cosine family of order ω in locally convex Haus-
dorff space X , i.e. for all p ∈ ΓX , there exist q ∈ ΓX and M ≥ 0 such that:

p(C(t)x) ≤ Meωtq(x), for all t ≥ 0, and x ∈ X.

For each p ∈ ΓX , we define p̃ in X by:

p̃(x) = sup
t≥0

p(e−ωtC(t)x), for all x ∈ X.

Each p̃ is a continuous seminorm in X . Moreover, since {C(t)}t≥0 is exponentially equicontinuous of
order ω in X , p̃ satisfies:

p(x) ≤ p̃(x) ≤ Mq(x) ≤ Mq̃(x), for all x ∈ X.

Then, the family of seminorms Γ̃X = {p̃, p ∈ Γ } is also a system of continuous seminorms generating
the locally convex topology of X .
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Proposition 4.4. For each seminorm p̃ ∈ Γ̃X , we have:

1. For all t ≥ 0 and x ∈ X:
p̃(C(t)x) ≤ 2eωtp̃(x).

2. For all x ∈ X and λ > ω:

p̃(λ2R(λ2, A)x) ≤
2λ

λ − ω
p̃(x).

Proof. 1. Let t ≥ 0, x ∈ X , then for each p̃ ∈ Γ̃X we have:

2p̃(C(t)x) = 2 sup
s≥0

p(e−ωsC(s)C(t)x) ≤ 2 sup
s≤t

p(e−ωsC(s)C(t)x) + 2 sup
s>t

p(e−ωsC(s)C(t)x)

≤ sup
s≤t

p(e−ωs(C(t + s)x + C(t − s)x)) + sup
s>t

p(e−ωs(C(s + t)x + C(s − t)x))

≤ sup
s≤t

p(e−ωsC(t + s)x) + sup
s≤t

p(e−ωsC(t − s)x) + sup
s>t

p(e−ωsC(s + t)x)

+ sup
s>t

p(e−ωsC(s − t)x)

≤ eωt sup
s≤t

p(e−ω(t+s)C(t + s)x) + eωt sup
s≤t

e−2ωsp(e−ω(t−s)C(t − s)x)

+ eωt sup
s>t

p(e−ω(s+t)C(s + t)x) + e−ωt sup
s>t

p(e−ω(s−t)C(s − t)x)

≤ eωt sup
k≤2t

p(e−ωkC(k)x) + eωt sup
k≤t

p(e−ωkC(k)x) + eωt sup
k>2t

p(e−ωkC(k)x)

+ e−ωt sup
k>0

p(e−ωkC(k)x)

≤ 4eωt sup
k≥0

p(e−ωkC(k)x) = 4eωtp̃(x).

2. For each λ > ω, according to the section 3, we have:

λ2R(λ2, A)x = λ2(λ2I − A)−1x = λ

∫ ∞

0

e−λtC(t)xdt, for all x ∈ X.

Then, for all seminorm p̃ ∈ Γ̃X we have:

p̃(λ2R(λ2, A)x) ≤
2λ

λ − ω
p̃(x), for all x ∈ X.

In particular if λ > ω + 1, then for each p̃ ∈ Γ̃X we obtain:

p̃(λ2R(λ2, A)x) ≤
2λ

λ − ω
p̃(x) ≤ 2(1 + ω)p̃(x), for all x ∈ X.

�

For semigroups, the following Theorem is due to A.A. Albanese, J. Bonet, W.J. Ricker [2].

Theorem 4.5. Let X be a GDP Quojection-Fréchet space and {C(t)}t≥0 be an exponentially equicon-
tinuous C0-cosine family of order ω in X.

Then, {C(t)}t≥0 is uniformly continuous and its infinitesimal generator is a linear continuous operator
in X.

Proof. According to the discussion before Proposition 4.2 there is a fundamental increasing sequence
{qj}j∈N∗ of continuous seminorms on X such that for all j ∈ N∗:

qj(C(t)x) ≤ 2eωtqj(x), for all x ∈ X, and t ≥ 0. (∗)
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For all j ∈ N∗, put Xj = X/q−1
j ({0}) endowed with the quotient locally convex topology. We note by

Qj : X −→ Xj the canonical surjective quotient map, so that Ker(Qj) = q−1
j ({0}), thus Xj is Fréchet

space whose locally convex topology is generating by the family of seminorms giving by:

(q̂j)k(Qjx) = inf{qk(y), with Qjy = Qjx}, for all x ∈ X.

First, we have:
(q̂j)k(Qjx) ≤ qk(x), for all x ∈ X, and k ∈ N.

Moreover,
(q̂j)j(Qjx) = qj(x), , for all x ∈ X, and j ∈ N.

Which implies that, (q̂j)j is a continuous norm in Xj , therefore, (q̂j)k is a continuous norm in Xj , for all
k ≥ j. Since X is a Quojection and according to [Proposition 3. [1]] Xj is a Banach space.

On the other hand, for each k ≥ j we have (q̂j)k(Qjx) ≤ (q̂j)k+1(Qjx), for all x ∈ X , which implies
that the norms {(q̂j)k}k≥j are equivalent. Then, for each j ∈ N∗, we take k(j) ≥ j such that (q̂j)k(j)

is a norm generating the Banach topology of Xj . Consequently, X is isomorphic to the projective
limit of the sequence (Xj , (q̂j)k(j)))j≥1 of Banach spaces, with respect to the surjective linking maps
Qj,j+1 : Xj+1 −→ Xj defined by Qj,j+1(Qj+1x) = Qjx, for all x ∈ X .

On the other hand, let (λn)n ⊆ R+, with each λn > ω + 1 and lim
n−→∞

λn = ∞, put the sequence of

operators defined in X by: Sn = λ2
nR(λ2

n, A), for all n ∈ N.
First, for each n, m ∈ N, we have SnSm = SmSn, and according to Theorem 1 we have Sn −→ I in

Ls(X), as n −→ ∞, and according to 2. of Proposition 2.2 for each seminorm qj we have:

qj(Snx) ≤ 2(1 + ω)qj(x), for all x ∈ X, and n ∈ N.

Let n, m ∈ N such that λn 6= λm, we have:

(Sn − I)Sm = (λ2
nR(λ2

n, A) − I)λ2
mR(λ2

m, A)

= λ2
nλ2

mR(λ2
n, A)R(λ2

m, A) − λ2
mR(λ2

m, A)

= λ2
m(λ2

nR(λ2
n, A)R(λ2

m, A) − R(λ2
m, A))

= λ2
m(λ2

nR(λ2
n, A)R(λ2

m, A) + (λ2
m − λ2

n)R(λ2
n, A)R(λ2

m, A) − R(λ2
n, A))

= λ2
m(λ2

mR(λ2
n, A)R(λ2

m, A) − R(λ2
n, A))

= λ2
m(λ2

m(λ2
n − λ2

m)−1(R(λ2
n, A) − R(λ2

m, A)) − R(λ2
n, A))

= λ2
m(λ2

m − λ2
n)−1(λ2

m(R(λ2
n, A) − R(λ2

m, A)) − (λ2
m − λ2

n)R(λ2
n, A))

= λ2
m(λ2

m − λ2
n)−1(λ2

nR(λ2
n, A) − λ2

mR(λ2
m, A))

= λ2
m(λ2

m − λ2
n)−1(Sn − Sm).

Which implies
lim

n−→∞
(Sn − I)Sm = 0, in Lb(X), for all m ∈ N.

Then according to Lemme 4.1., we have Sn −→ I, in Lb(X), as n −→ ∞.
On the other hand, for each j ∈ N

∗ define a one parameter family {Cj(t)}t≥0 by:

Cj(t)Qjx = QjC(t)x, for all x ∈ X, and t ≥ 0.

Each Cj(t), for t ≥ 0, is a well defined linear continuous operator on Xj . Indeed, let x ∈ X such that
Qjx = 0, which implies that x ∈ Ker(Qj), so qj(x) = 0. Then according to (∗), we have qj(C(t)x) = 0
and hence C(t)x ∈ q−1

j ({0}); therefore QjC(t)x = 0.
Actually, for each j ∈ N∗, the family {Cj(t)}t≥0 is a C0-cosine family in Xj . Note by Aj its infinitesimal

generator.
Moreover {Cj(t)}t≥0 is exponentially equicontinuous of order ω. Indeed, for all x ∈ X , we have:

(q̂j)k(j)(Cj(t)Qjx) = (q̂j)k(j)(QjC(t)x) ≤ qk(j)(C(t)x).
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According to (*) we obtain:

(q̂j)k(j)(Cj(t)Qjx) ≤ 2eωtqk(j)(x), for all x ∈ X.

Taking the infimum with respect to y ∈ Q−1
j ({Qjx}), if follows that (q̂j)k(j)(Cj(t)x̂j) ≤ 2eωt(q̂j)k(j)(x̂j),

for all x̂j ∈ Xj with x̂j = Qjx.
Let λ > ω, then we have: R(λ2, Aj)Qjx = QjR(λ2, A)x, ∀x ∈ X . Indeed, for all x ∈ X we have:

Cj(t)Qjx = QjC(t)x.

⇒ e−λtCj(t)Qjx = e−λtQjC(t)x = Qje−λtC(t)x.

⇒

∫ ∞

0

e−λtCj(t)Qjxdt =

∫ ∞

0

Qje−λtC(t)xdt = Qj

∫ ∞

0

e−λtC(t)xdt.

Moreover, we have Qj(D(A)) ⊆ D(Aj). Indeed, let x ∈ X and h > 0 we have:
2

h2 (Cj(t)Qjx − Qjx) = Qj
2

h2 (C(t)x − x), then, as h −→ 0+, we obtain AjQjx = QjAx. For each j ∈ N∗,

Put S
(j)
n = λ2

nR(λ2
n, Aj), for all n ∈ N∗. {S

(j)
n }∞

n=1 is a sequence of bounded operator in Xj .

Since Sn −→ I, in Lb(X), as n −→ ∞, then S
(j)
n −→ I, in Lb(Xj), as n −→ ∞.

Indeed, let Bj the unit ball of Xj , since X is a Quojection, ∃B ∈ B(X) such that Bj ⊆ Qj(B) [7],
and we have:

sup
xj∈Bj

(q̃j)k(j)(S
(j)
n xj − xj) ≤ sup

xj∈Qj(B)

(q̃j)k(j)(S
(j)
n xj − xj)

≤ sup
x∈B

(q̃j)k(j)(S
(j)
n Qjx − Qjx)

≤ sup
x∈B

(q̃j)k(j)(Qj(Snx − x))

≤ sup
x∈B

qk(j)(Snx − x).

Hence the result. Consequently, there is ηj > 0 such that (q̃j)k(j)(S
(j)
n xj − xj) < 1, ∀n ≥ ηj .

Then for each j ∈ N∗, ∃n(j) ∈ N with n(j) ≥ ηj , such that S
(j)
n(j) is invertible in L(Xj). Therefore,

Im(S
(j)
n(j)) = Xj = D(Aj). Moreover Aj = λn(j)(I − (S

(j)
n(j))

−1) ∈ L(Xj), which implies that {Cj(t)}t≥0

is an uniformly continuous cosine family in Xj .
Finally, let j ∈ N∗ and B ∈ B(X) we have:

sup
x∈B

qj(C(t)x − x) = sup
x∈B

(q̃j)j(QjC(t)x − Qjx)

≤ sup
x∈B

(q̃j)k(j)(Cj(t)Qjx − Qjx)

≤ sup
yj∈Qj(B)

(q̃j)k(j)(Cj(t)yj − yj).

Since {Cj(t)}t≥0 is uniformly continuous in Xj and Qj(B) is a bounded subset of Xj , then {C(t)}t≥0 is
uniformly continuous in X .

Then, according to Theorem 4.1. the infinitesimal generator A of the family {C(t)}t≥0 is a continuous
linear operator in X (A ∈ L(X)). �
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Math. 37, (2018), 103-118.



12 R. Ameziane Hassani and A. Blali and A. El Amrani and K. Moussaouja

4. W. Arendt, C.J.K. Batty, M.Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems,
Birkhauser, Basel, (2001).
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