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On a Positive Solutions for (p, q)-Laplacian Steklov Problem with Two Parameters

A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim

abstract: We study the existence and non-existence of positive solutions for (p, q)-Laplacian Steklov
problem with two parameters. The main result of our research is the construction of a continuous curve in
plane, which becomes a threshold between the existence and non-existence of positive solutions.
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1. Introduction

In this paper, we prove various existence and non-existence of positive solutions for the following
(p, q)-Laplacian Steklov eigenvalue problem:

(Pα,β)

{

div[Ap,q(|∇u|)∇u] = Ap,q(u)u in Ω,
〈Ap,q(|∇u|)∇u, ν〉 = α|u|p−2u + β|u|q−2u on ∂Ω

where Ω is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂Ω, ν is the outward unit normal

vector on ∂Ω, 〈., .〉 is the scalar product of RN . α, β ∈ R, Ap,q(s) = |s|p−2 + |s|q−2 and 1 < q < p < ∞.
Not that the assumption q < p is taken without loss of generality, due to the symmetry of symbols in
(Pα,β); therefore all results of the present work have corresponding counterparts in the case p > q. It is
easy to see that div[Ap,q(∇u)] = ∆p + ∆q, called (p, q)-Laplacian, occurs in quantum field theory, where
∆p = div(|∇u|p−2∇u).

The problem (Pα,β) comes, for example, from a general reaction diffusion system

ut = div(D(u)∇u) + c(x, u), (1.1)

where D(u) = (|∇u|p−2 + |∇u|q−2). This system has a wide range of applications in physics and related
sciences like chemical reaction design [2], biophysics [8] and plasma physics [17]. In such applications,
the function u describes a concentration, the first term on the right-hand side of (1.1) corresponds to the
diffusion with a diffusion coefficient D(u); whereas the second one is the reaction and relates to source
and loss processes. Typically, in chemical and biological applications, the reaction term c(x; u) has a
polynomial form with respect to the concentration. In the last few years, the (p, q)-Laplace attracts a lot
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of attention and has been studied by many authors (see [12,16,20,23]). However, there are few results
one the eigenvalue problems for the (p, q)-Laplacian, we cite [3,7,14,18].

Under the zero Dirichlet boundary condition in Ω, the authors obtained in [15] reasonably complete
description of the subsets of (α, β) plane which correspond to the existence/nonexistence of positive
solutions to the following problem:

(Dα,β)

{

−∆pu − ∆qu = αmp(x)|u|p−2u + βmq(x)|u|q−2u in Ω,
u = 0 on ∂Ω,

(1.2)

where mr ∈ L∞(Ω), mr 6≡ 0 and mr ≥ 0 a.e in Ω for r = p, q.
In [21,22] the authors of the present article studied the existence and non-existence results of a positive
solution for the Steklov eigenvalue problem P(λ,λ) ( α = β = λ).

Our goal in this paper is to provide a complete description of 2-dimensional sets in the (α, β) plane,
which correspond to the existence and non-existence of positive solutions for (Pα,β) by generalizing and
complementing the research [21,22], and seems more natural, due to the structure of the equation. We
restrict ourselves to the case where mp and mq are constants, to save transparency and simplicity of
presentation. However, we emphasize that all the results of the present article remain valid for the
following problem with non-negative weights (Pα,β,mp,mq

):

{

∆pu + ∆qu = |u|p−2u + |u|q−2u in Ω,
〈|∇u|p−2∇u + |∇u|q−2∇u, ν〉 = αmp(x)|u|p−2u + βmq(x)|u|q−2u on ∂Ω

(1.3)

Let r = p, q and let N−1
r−1 < sr < ∞ if r < N and sr ≥ 1 if r ≥ N . The function weight mr ∈ M

+
r ,

where M
+
r := {mr ∈ Lsr (∂Ω); mr 6≡ 0, mr ≥ 0}. Hereinafter, ‖u‖1,r := ‖u‖W 1,r(Ω) denotes the norm of

Sobolev space W 1,r(Ω).
We say that u ∈ W 1,p(Ω) is a weak solution of (Pα,β) if its holds

∫

Ω

(|∇u|p−2∇u∇ϕ + |u|p−2uϕ)dx+

∫

Ω

(|∇u|q−2∇u∇ϕ + |u|q−2uϕ)dx

=

∫

∂Ω

(α|u|p−2u + β|u|q−2u)ϕdσ

for all ϕ ∈ W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure.

As usual, we say that λ is an eigenvalue of ∆r with weight function mr ∈ Mr if the problem

(Pλ)

{

∆ru = |u|r−2u in Ω,
|∇u|r−2 ∂u

∂ν = λmr(x)|u|r−2u on ∂Ω

has a non-trivial solution. If the Lebesgue measure of {x ∈ Ω : mr(x) > 0} is positive, then (Pλ) possesses
the first positive eigenvalue λ1(r, mr) (cf. [11]) that can be obtained by minimizing the Rayleigh quotient:

λ1(r, mr) := inf

{

Φ(u)

Ψ(u)
; u ∈ W 1,r(Ω), Ψ(u) > 0

}

. (1.4)

where Φ(u) :=
∫

Ω |∇u|rdx +
∫

Ω |u|rdx and Ψ(u) :=
∫

∂Ω mr|u|rdσ.
Note that λ1(r, mr) is simple and isolated. It is also worth mentioning that λ1(r, mr) has positive eigen-
functions ϕ1(r, mr) ∈ C1,αr (Ω) with some αr ∈ (0, 1) (see [1]). Hereinafter we will also use the notation
λ1(r) := λ1(r, 1) for the first eigenvalue of ∆p without weight and ϕr for the corresponding eigenfunction.
In what follows, we will say that λ1(p) and λ1(q) have different eigenspaces if the corresponding eigen-
functions ϕp and ϕq are linearly independent, i.e. the following assumption is satisfied:

∀k 6= 0 its holds ϕp 6≡ kϕq in Ω. (1.5)

Let us note that availability or violation of the assumption (1.5) significantly affects the sets of
existence of solutions for P(α,β), see Fig. 1 and the section 3 for precise statements.
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Figure 1: Shaded sets correspond to existence, unshaded to non-existence

The rest of this paper is organized as follows. In section 2, we give some preliminary results and
definitions which are needed in the proof of the main results. Section 3, we state our main results.
Section 4, we prove the existence of solution for P(α,β) in the neighborhood of (λ1(p), λ1(q)) provided
(1.5) is satisfied. Section 5, we prove our results stated in section 4.

2. Preliminaries

In this section, we give some preliminary results and definitions which well be used in the following
sections. First, we give three results from [21,22], where they were proved using the variational methods.

Theorem 2.1. ([21], Theorem 2.5) One assumes that mp ∈ Mp and mq ∈ Mq. If 0 < λ < min{λ1(p, mp),
λ1(q, mq)}, then the problem (Pλ,λ,mp,mq

) has no non-trivial solutions.

Theorem 2.2. ( [21], Theorem 3.1) One supposes that mp ∈ Mp, mq ∈ Mq and λ1(p, mp) 6= λ1(q, mq).
If

min{λ1(p, mp), λ1(q, mq)} < λ < max{λ1(p, mp), λ1(q, mq)},

then the problem (Pλ,λ,mp,mq
) has at least one positive solution.

Theorem 2.3. ( [22], Theorem 1.4) One supposes that mp ∈ Mp and mq ∈ Mq. If

λ = λ1(p, mp) > λ1(q, mq) (2.1)

and
∫

Ω

(|∇ϕ1(p, mp)|q + |ϕ1(p, mp)|q)dx − λ

∫

∂Ω

mqϕ1(p, mp)qdσ > 0, (2.2)

then the problem (Pλ,λ,mp,mq
) has at least one positive solution.

Next, we introduce the super- and sub-solution method for the problem (Pα,β).
We recall the notations of sub- and super-solutions of our problem.

Definition 2.4. A function u ∈ W 1,p(Ω) is called a super-solution of (Pα,β) if the following holds

∫

Ω

(

|∇u|p−2 + |∇u|q−2
)

∇u∇ϕdx +

∫

Ω

(

|u|p−2 + |u|q−2
)

uϕdx −

∫

∂Ω

(

α|u|p−2 + β|u|q−2
)

ϕdσ ≥ 0

for any ϕ ∈ W 1,p(Ω)+.

Definition 2.5. A function u ∈ W 1,p(Ω) is called a sub-solution of (Pα,β) if the following holds

∫

Ω

(

|∇u|p−2 + |∇u|q−2
)

∇u∇ϕdx +

∫

Ω

(

|u|p−2 + |u|q−2
)

uϕdx −

∫

∂Ω

(

α|u|p−2 + β|u|q−2
)

ϕdσ ≤ 0

for any ϕ ∈ W 1,p(Ω)+.
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Here, W 1,p(Ω)+ := {ϕ ∈ W 1,p(Ω) : ϕ ≥ 0} stands for all nonnegative functions of W 1,p(Ω). To
simplify the notation, we set

fα,β := α|u|p−2u + β|u|q−2u

We introduce truncation function fα,β
[u,u] of fα,β defined by two L∞(∂Ω) functions u and u with u ≥ u

(a.e.in ∂Ω)

fα,β
[u,u] =:







fα,β(u(x)) if s ≥ u
fα,β(s) if u < s < u

fα,β(u) if s ≤ u

Set F α,β
[u,u] :=

∫ u(x)

0
fα,β

[u,u](x, s)ds. Then, we define a C1-functional

Eα,β
[u,u] :=

1

p

∫

Ω

(

|∇u|p + |u|p
)

dx +
1

q

∫

Ω

(

|∇u|q + |u|q
)

dx −

∫

∂Ω

F α,β
[u,u](x, u)dσ (2.3)

It is easily seen that fα,β
[u,u](x, s) = fα,β(u(x)) provided u < s < u. Let us show the following elementary

result which implies the existence of global minimizer (cf. [13], Theorem 1.1 )

Lemma 2.6. Let u, u ∈ L∞(∂Ω) satisfy u ≥ u (a.e.on ∂Ω), then Eα,β
[u,u] defined by (2.3) is weakly lower

semi-continuous, bounded from below and coercive.

Proof. Because fα,β is bounded on ∂Ω × [−|u|L∞(∂Ω), |u|L∞(∂Ω)] , there exists positive d such that

|fα,β
[u,u](x, s)| ≤ d for every s ∈ R, a.e, x ∈ ∂Ω. Thus we obtain

Eα,β
[u,u](u)

‖u‖1,p
=

1
p‖u‖p

1,p + 1
q ‖u‖q

1,q −
∫

∂Ω F α,β
[u,u](x, u)dσ

‖u‖1,p

≥
1
p‖u‖p

1,p − d‖u‖L1(∂Ω)

‖u‖1,p

≥
1
p‖u‖p

1,p − d′‖u‖1,p

‖u‖1,p
→ ∞ as ‖u‖1,p → ∞

Where the inclusion W 1,p(Ω) into Lp(∂Ω) is compact and d′ > 0. This implies that Eα,β
[u,u] is bounded

from below and coercive. Moreover, its easy to see that Eα,β
[u,u] is weakly lower semi-continuous. It well

known that the properties of Eα,β
[u,u] started in lemma 2.6, imply the existence of a global minimizer u of

Eα,β
[u,u] (cf. [13], Theorem 1.1 ), which becomes a solution of (Pα,β). Moreover, u ∈ [u, u]. Indeed, since u

is a super-solution, taking (u − u)+ as a test function, we have

0 ≥ 〈(Eα,β
[u,u])

′(u), (u − u)+〉 − 〈∆pu + ∆qu, (u − u)+〉

+

∫

∂Ω

(α|u|p−2u + β|u|q−2u)(u − u)+dσ

=

∫

u>u

(|∇u|p−2∇u − |∇u|p−2∇u)(∇u − ∇u)dx

+

∫

u>u

(|∇u|q−2∇u − |∇u|q−2∇u)(∇u − ∇u)dx ≥ 0

where we take into account that fα,β
[u,u])(x, s) = α|u|p−2u + β|u|q−2u provided s ≥ u(x). This implies

that u ≤ u. Similarly, by taking (u − u)− as test function, we see that u ≥ u holds. Therefore,

fα,β
[u,u](x, u(x)) = α|u|p−2u + β|u|q−2u, whence u is a solution of (Pα,β). In particular, if a sub-solution
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u ≥ 0 and u is not-trivial, then it is known that u ∈intC1(Ω)+(see Remark 2.7). Where intC1(Ω)+

denotes the interior of the positive cone

C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0 for every x ∈ Ω}

in the Banach space C1(Ω), given by

intC1(Ω)+ =

{

u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω

}

. (2.4)

�

Remark 2.7. It can be shown that non-trivial critical points of Eα,β
[u,u] correspond to non-negative solu-

tions of (Pα,β) by taking u− as test function. Moreover, any non-negative solution of (Pα,β) belongs to

intC1(Ω)+. Indeed, we can check that each non-trivial critical point u of Eα,β
[u,u] belongs to C1,β(Ω) for

some β ∈ (0, 1) (see [1]), then the maximum principle of Vasquez [19] can be applied to ensure that u > 0
in Ω. As result, u ∈ intC1(Ω)+. Here we denote u± := max{±u, 0} in ∂Ω.

Lemma 2.8. Assume that β > λ1(q) and u ∈ intC1(Ω)+ is a positive super-solution of (Pα,β). Then

minW 1,p(Ω) Eα,β
[0,u] < 0 holds, and hence (Pα,β) has a positive solution belonging to intC1(Ω)+.

Proof. Let β > λ1(q) and u ∈ intC1(Ω)+ be a positive super-solution of (Pα,β). Recall that Eα,β
[0,u] has a

global minimum point. Since u ∈ intC1(Ω)+, for sufficiently small t > 0 we have u − tϕq ≥ 0 in ∂Ω. This

implies that fα,β
[0,u](x, tϕq) = αtq−1ϕp−1

q + βtp−1ϕq−1
q . Hence, for sufficiently small t > 0, we obtain

Eα,β
[0,u](tϕq) =

tp

p
(‖ϕq‖p

1,p − α‖ϕq‖p
Lp(∂Ω)) −

tq

q
(β − λ1(q))‖ϕq‖q

Lq(∂Ω).

Recalling that q < p and β − λ1(q) > 0, we see that Eα,β
[0,u](tϕq) < 0 for sufficiently small t > 0, whence

minW 1,p(Ω) Eα,β
[0,u] < 0. Therefore, Eα,β

[0,u](tϕq has a non-trivial critical point, and our conclusion follows. �

Finally, we give the Picone’s identity for (p, q)-Laplacian. We state a proposition that well be used.

Proposition 2.9. (Proposition A.2, [6]). Let 1 < q < p < ∞. Then there exists ρ > 0 such that for any
differentiable functions u > 0 and ϕ ≥ 0 in Ω it holds

(|∇u|p−2 + |∇u|q−2)|∇u|∇u

(

ϕp

up−1 + uq−1

)

≤
|∇ϕ|p + |∇(ϕp/q)|q

ρ
.

3. Main results

In this section we state our main results.

3.1. Case (α, β) ∈ R
2\[λ1(p), +∞) × [λ1(q), +∞)

First, we state the result of non-existence which generalize Theorem 2.1 from [21] for the problem
(Pα,β , mp, mq) with non-negative weights.

Proposition 3.1. If
(α, β) ∈ (−∞, λ1(p)] × (−∞, λ1(q)]\{(λ1(p), λ1(q))},

then (Pα,β) has non-trivial solutions. Moreover, (Pα,β) with α = λ1(p) and β = λ1(q) has a non-trivial
(positive) solution if and only if they have the same eigenspace, namely, there exists k 6= 0 such that
ϕp ≡ kϕq in Ω (that is, (1.5) is not satisfied).

Next, we state the existence results of our problem (Pα,β). These results generalize Theorem 2.2 from
[21].
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Proposition 3.2. If

(α, β) ∈ (λ1(p), +∞) × (−∞, λ1(q)) ∪ (−∞, λ1(p)) × (λ1(q), +∞),

then(Pα,β,mp,mq
) has at least one positive solution.

Theorem 3.3. Assume that (1.5) does not hold. Then (Pα,β) has at least one positive solution if and
only if

(α, β) ∈ (λ1(p), +∞) × (−∞, λ1(q)) ∪ (−∞, λ1(p)) × (λ1(q), +∞) × {(λ1(p), λ1(q))}. (3.1)

The main novelty of the work is the treatment of the rest part of (α, β) plane, i.e. (α, β) ∈
[λ1(p), +∞) × [λ1(q), +∞), where we construct a threshold curve, which separates the regions of ex-
istence and non-existence of positive solutions for (Pα,β).

3.2. Case (α, β) ∈ [λ1(p), +∞) × [λ1(q), +∞)

3.2.1. Instruction of the curve. Note first that for any α, β ∈ R the problem (Pα,β) is equivalent to
(Pβ+s,β), where s = α − β. Denoting now, for convenience, λ = β, for each s ∈ R we consider

λ∗(s) := sup{λ ∈ R : (Pλ+s,λ) has a positive solution}, (3.2)

provided (Pλ+s,λ) has a positive solution for some λ. If there are no such λ, we set λ∗(s) = −∞. Define
also

s∗ := λ1(p) − λ1(q) and s∗
+ :=

‖ϕq‖p
1,p

‖ϕq‖p
Lp(∂Ω)

− λ1(q).

Figure 2: (α, β) plane. Construction of the curve C

Obviously, s∗ ≤ s∗
+, and s∗ = s∗

+ if and only if (1.5) is not satisfied.
In the next proposition we collect the main facts about λ∗(s):

Proposition 3.4. Let λ∗(s) be defined by (3.2) for s ∈ R. Then the following assertions hold: (i)
λ∗(s) < +∞ for all s ∈ R;
(ii) λ∗(s) + s ≥ λ1(p) and λ∗(s) ≥ λ1(q) for all s ∈ R;
(iii) λ∗(s) = λ1(q) for all s ≥ s∗

+;
(iv) λ∗(s) + s∗

+ > λ1(p) and λ∗(s) > λ1(q) if and only if (1.5) is satisfied;
(v) λ∗(s) is continuous on R;
(vi) λ∗(s) is non-increasing and λ∗(s) + s is non-decreasing on R.
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Notice that it is still unknown if there is s∗
− ∈ R, such that λ∗(s) + s = λ1(p) for all s ≤ s∗

−, or
λ∗(s) + s > λ1(p) for all s ∈ R, whenever (1.5) is satisfied. Now we define the curve C in(α, β) plane as
follows:

C := {(λ∗(s) + s, λ∗(s)), s ∈ R}.

From proposition 3.4 there directly follow the corresponding conclusion for C, namely, C is locally finite,
C ⊂ [λ1(p), +∞)× [λ1(q), +∞), C is continuous, monotone, and coincides with [λ1(q)+s∗

+, +∞)×{λ1(q)}
for s ≥ s∗

+(see Figure2).
We especially note that λ1(s) + s = λ1(p) for s ≤ s∗ and λ1(s) = λ1(q) for s ≥ s∗ if and only if
(1.5) doesn’t hold. It directly follows from the combination of the criterion (iv), estimations (ii) and
monotonicity (vi) from Proposition 3.4. In other words, our curve C coincides with the polygonal line
{λ1(p)} × [λ1(q), ∞) ∪ [λ1(q), ∞) × {λ1(p)} if and only if (1.5) is violated.
Let us note that the main disadvantage of characterization 3.2 of λ∗(s) is its non-constructive form.
However, using the extended functional method (see [5,10]) we provide the equivalent characterization of
λ∗(s) by an explicit minimax formula, which can be used in further numerical investigations of (Pα,β):

Λ∗(s) = sup
u∈intC1(Ω)+

inf
ϕ∈C1(Ω)+\{0}

Ls(u; ϕ), (3.3)

where

Ls(u; ϕ) =
Ψp(u, ϕ) + Ψq(u, ϕ) − s

∫

∂Ω |u|p−2uϕdσ
∫

∂Ω |u|p−2uϕdσ +
∫

∂Ω |u|q−2uϕdσ
.

Where Ψr(u, ϕ) :=
∫

Ω
|∇u|r−2∇u∇ϕdx +

∫

Ω
|u|r−2uϕdx.

The next proposition shows that (3.2) and (3.3) are in fact, equivalent.

Proposition 3.5. Λ∗(s) = λ∗(s) for all s ∈ R.

3.2.2. Existence and non-existence results. First, we state our second main theorem, which shows that
(Pα,β) possesses a positive solution if (α, β) is below the curve C, and has no positive solutions if (α, β)
is above C.

Theorem 3.6. Assume that (1.5) is satisfied. If one of the following cases holds, then (Pα,β) has at least
one positive solution:
(i) λ1(q) < β and β < λ∗(α − β);
(ii) λ1(p) < α and β < λ∗(α − β).
Conversely, if β > λ∗(α − β), then (Pα,β) has no positive solutions.

Next, we provide the results about existence and non-existence on the curve C.

Proposition 3.7. The following assertion holds:
if λ∗(s) + s > λ1(p) and λ∗(s) > λ1(q), then (Pλ∗(s)+s,λ∗(s)) has at least one positive solution;
if s > s∗ then (Pλ∗(s)+s,λ∗(s)) ≡ (Pλ1(q)+s,λ1(q)) has no positive solutions.

4. Existence result in the neighborhood of (λ1(p), λ1(q))

In this section we prove the existence of solution for α = λ1(p)+ε, β = λ1(q)+ε under the assumption
(1.5). First, we define the energy functional corresponding to (Pα,β) by

Eα,β(u) =
1

p
Hα(u) +

1

q
Gβ(u),

where for further simplicity we denote

Hα(u) :=

∫

Ω

|∇u|pdx +

∫

Ω

|u|pdx − α

∫

∂Ω

|u|pdσ,

Gβ(u) :=

∫

Ω

|∇u|qdx +

∫

Ω

|u|qdx − β

∫

∂Ω

|u|qdσ,
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Note that Eα,β ∈ C1(W 1,p(Ω),R).
Next, we introduce the so-called Nehari manifold (see [4])

Nα,β :=

{

u ∈ W 1,p(Ω)\{0} : 〈E′
α,β(u), u〉 = Hα(u) + Gβ(u) = 0

}

.

Proposition 4.1. Let u ∈ W 1,p(Ω). If Hα(u).Gβ(u) < 0, then there exists a unique extremum point
t(u) > 0 of Eα,β(tu) w.r.t. t > 0, and t(u)u ∈ Nα,β. In particular, if

Gβ(u) < 0 < Hα(u), (4.1)

then t(u) is the unique minimum point of Eα,β(tu) w.r.t. t > 0, and Eα,β(t(u)u) < 0.

Proof. Fix some non-trivial function u ∈ W 1,p(Ω) and consider the fibred functional corresponding to
Eα,β(u):

Eα,β(tu) =
1

p
Hα(tu) +

1

q
Gβ(tu)

=
tp

p
Hα(tu) +

tq

q
Gβ(tu), t > 0

Under the assumption Hα(u).Gβ(u) < 0 the equation

d

dt
Eα,β(tu) = tp−1Hα(u) + tq−1Gβ(u) = 0 t > 0.

is satisfied for unique t > 0 given by

t = t(u) =

(

−Gβ(u)

Hα(u)

)
1

p−q

> 0.

This implies that

〈E′
α,β(t(u)u, t(u)u〉 = t(u)

d

dt
Eα,β(tu)

∣

∣

∣

∣

t=t(u)

= 0,

and hence t(u)u ∈ Nα,β .
Moreover, recalling that q < p, if (4.1) holds, then

Eα,β(t(u)u) =
1

p
Hα(t(u)u) +

1

q
Gβ(t(u)u) =

p − q

pq
Gβ(t(u)u) < 0,

and

d2

dt2
Eα,β(tu)

∣

∣

∣

∣

t=t(u)

= (p − 1)t(u)p−2Hα(u) + (q − 1)t(u)q−2Gβ(u)

=
1

t(u)2
(p − 1)Hα(t(u)u) + (q − 1)Gβ(t(u)u) =

q − p

t(u)2
Gβ(t(u)u) > 0,

which implies that t(u) is minimum point of Eα,β(tu) w.r.t. t > 0. �

Lemma 4.2. Assume that (1.5) is satisfied. Then there exists ε0 > 0 such that Nλ1(p)+ε,λ1(q)+ε 6= ∅ for
all ε ∈ (0, ε0). Moreover, there exists u ∈ Nλ1(p)+ε,λ1(q)+ε, such that Eλ1(p)+ε,λ1(q)+ε < 0.

Proof. Since (1.5) is satisfied and due to the simplicity of λ1(p), we have Hλ1(p)(ϕq) 6= 0, which yields
Gλ1(p)(ϕq) > 0. At the same time, Gλ1(q)(ϕq) = 0, by the definition of λ1(q). Hence, there exists suffi-
ciently small ε0 > 0 such that for all ε ∈ (0, ε0) it still holds Hλ1(p)+ε(ϕq) > 0. Moreover Gλ1(q)+ε(ϕq) < 0.
Applying now proposition 4.1 we get the desired results. �
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Lemma 4.3. Assume that Hα(u) 6= 0 or Gβ(u) 6= 0. If u ∈ Nα,β is a critical point of Eα,β on Nα,β,
then u is a critical point of Eα,β on W 1,p(Ω).

Proof. Let u ∈ Nα,β be a critical point of Eα,β on Nα,β . Since we are assuming that Hα(u) 6= 0 or
Gβ(u) 6= 0, u satisfies

〈(Hα(u) + Gβ(u))′, u〉 = pHα(u) + qGβ(u) = (p − q)Hα(u) = (q − p)Gβ(u) 6= 0,

where we used the fact that Hα(u) + Gβ(u) = 0 for u ∈ Nα,β . This implies that (Hα(u) + Gβ(u))′ 6= 0 in
W 1,p(Ω)∗. Due to the Lagrange multiplier rule (see, e.g.[ [24],Theorem 48.B and Corollary 48.10]), there
exists µ ∈ R such that

〈E′
α,β(u), ξ〉 = µ〈(Hα(u) + Gβ(u))′, ξ〉

for each ξ ∈ W 1,p(Ω). Taking ξ = u we get

0 = 〈E′
α,β(u), u〉 = µ(pHα(u) + qGβ(u)) = µ(p − q)Hα(u) = µ(q − p)Gβ(u),

since Hα(u) + Gβ(u) = 0. Therefore µ = 0 and

〈E′
α,β(u), ξ〉 = 0 for all ξ ∈ W 1,p(Ω),

i.e u is a critical point of Eα,β on W 1,p. If u ∈ Nλ1(p)+ε,λ1(q)+ε is a minimizer of Eλ1(p)+ε,λ1(q)+ε < 0
on the Nehari manifold Nλ1(p)+ε,λ1(q)+ε and satisfies Hλ1(p)+ε(u) 6= 0 (orGλ1(q)+ε(u) 6= 0), then u is a
critical point of Eλ1(p)+ε,λ1(q)+ε by Lemma 4.3, i.e. u is a solution of (Pλ1(p)+ε,λ1(q)+ε).
Since Lemma 4.2 implies the existence of ε0 > 0 such that Nλ1(p)+ε,λ1(q)+ε 6= ∅ for every ε ∈ (0, ε0), we
can find a corresponding minimization sequence {uε

k}∞
k=1 ∈ Nλ1(p)+ε,λ1(q)+ε namely,

Eλ1(p)+ε,λ1(q)+ε(uε
k) → inf{Eλ1(p)+ε,λ1(q)+ε(u) : u ∈ Nλ1(p)+ε,λ1(q)+ε} =: Mε

as k → ∞. The following result states that this minimization sequence is bounded for any sufficiently
small ε > 0, and so Mε > −∞ holds, since Eλ1(p)+ε,λ1(q)+ε is bounded on bounded sets. �

Lemma 4.4. Assume that (1.5) is satisfied. Then there exist ε1 > 0 and C > 0 such that ‖uε
k‖1,p ≤ C

for all k ∈ N and ε ∈ (0, ε1).

Proof. Notice that for ε ∈ (0, ε0) Lemma 4.2 implies Mε < 0. Hence, considering sufficiently large k ∈ N,
we may assume that Gλ1(q)+ε(uε

k) < 0 by noting that for uε
k ∈ Nλ1(p)+ε,λ1(q)+ε it holds

p − q

pq
Gλ1(q)+ε(uε

k) = Eλ1(p)+ε,λ1(q)+ε(uε
k) (4.2)

with q < p. Consequently, we also get that Hλ1(p)+ε(uε
k) > 0 for such k ∈ N there exist ε(m) ∈ (0, 1/m)

and k(m) ∈ N such that for um := u
ε(m)
k(m) ∈ Nλ1(p)+ε(m),λ1(q)+ε(m) it holds ‖um‖1,p > m. Consider the

normalized sequence {vm}∞
m=1, such that um = tmvm, tm = ‖um‖1,p > m and ‖vm‖1,p = 1. Then the

Sobolev embedding theorem imply the existence of a subsequence of {vm}∞
m=1 (which we denote again

{vm}∞
m=1) and v∗ ∈ W 1,p such that

vm ⇀ v∗ weakly in W 1,p(Ω) and W 1,q(Ω) as m → ∞,

vm → v∗ strongly in Lp(∂Ω) and Lq(∂Ω) as m → ∞.

Moreover, by weakly lower semicontinuity of the norms of W 1,p(Ω) and W 1,q(Ω) we have

‖v∗‖1,p ≤ lim inf
m→∞

‖vm‖1,p, ‖v∗‖1,q ≤ lim inf
m→∞

‖vm‖1,q. (4.3)

Since Hλ1(p)+ε(m)(um) = −Gλ1(q)+ε(m)(um) for all m ∈ N we have

tp−q
m |Hλ1(p)+ε(m)vm)| = |Gλ1(q)+ε(m)(vm)| ≤ C1 < +∞
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for some constant C1 uniformly w.r.t. m ∈ N, because Gλ1(q)+ε is bounded on bounded sets and ε(m) → 0.
Therefore, taking into account that tm → ∞, we conclude that Hλ1(p)+ε(m)(vm) → 0 as m → ∞. Using
this fact, (4.3), and recalling that Gλ1(q)+ε(m)(vm) < 0 for all m ∈ N, we deduce

Hλ1(p)(v
∗) ≤ lim inf

m→∞
Hλ1(p)+ε(m)(vm) = 0, (4.4)

Gλ1(q)(v
∗) ≤ lim inf

m→∞
Gλ1(q)+ε(m)(vm) ≤ 0. (4.5)

Noting that vm → v∗ in Lp(∂Ω) and Hλ1(p)+ε(m)(vm) = 1 − (λ1(p) + ε(m))‖vm‖p
Lp(∂Ω), we get

λ1(p)

∫

∂Ω

|v∗|pdσ = lim sup
m→∞

(λ1(p) + ε(m))

∫

∂Ω

|v∗|pdσ

= 1 − lim inf
m→∞

Hλ1(p)+ε(m)(vm) = 1,
(4.6)

which implies that v∗ 6= 0. At the same time, in view of (4.4) and (4.5), using definition of λ1(r) for
(r = p, q), we get

Hλ1(p)(v
∗) = 0 and Gλ1(q)(v

∗) = 0,

and therefore from the simplicity of the first eigenvalue λ1(p) and λ1(q) we must have |v∗| = ϕp/‖ϕp‖
and |v∗| = ϕq/‖ϕq‖ simultaneously. However, it contradicts (1.5). �

From Lemma 4.4 it follows that there exist non-trivial weak limits uε
0 ∈ W 1,p(Ω) of the corresponding

minimization subsequence {uε
k}∞

k=1 ∈ Nλ1(p)+ε,λ1(q)+ε for any ε ∈ (0, ε1).

Lemma 4.5. Assume that (1.5) is satisfied. Then there exists ε2 > 0 such that

Gλ1(q)+ε(uε
0) < 0 < Hλ1(p)+ε(uε

0) (4.7)

for all ε ∈ (0, ε2).

Proof. Let ε1 > 0 be given by Lemma 4.4 and ε ∈ (0, ε1). Note that from (4.2) and weakly lower
semicontinuity of the norm of W 1,p(Ω) it follows that Gλ1(q)+ε(uε

0) < 0. Therefore, we need to show only
that Hλ1(p)+ε(uε

0) > 0 for sufficiently small ε > 0.
To obtain a contradiction, suppose that for any m ∈ N there exists ε(m) < 1/m such that

Hλ1(p)+ε(m)(u
ε(m)
0 ) ≤ 0. We consider the normalized sequence {vm}∞

m=1, where vm = u
ε(m)
0 /tm, tm =

‖u
ε(m)
0 ‖1,p and ‖vm‖1,p = 1. Hence, proceeding as in the proof of Lemma 4.4, we get a contradiction. �

Now we are able to prove the main result of this section.

Proposition 4.6. Assume that (1.5) is satisfied. Then uε
0 ∈ Nλ1(p)+ε,λ1(q)+ε and

Mε := inf{Eλ1(p)+ε,λ1(q)+ε(u) : u ∈ Nλ1(p)+ε,λ1(q)+ε}

is attained on uε
0 for all ε ∈ (0, ε2), where ε2 > 0 is given by Lemma 4.5.

Proof. Fix any ε ∈ (0, ε2). Then there exists a weak limit uε
0 ∈ W 1,p of the minimizing sequence

{uk}∞
k=1 ∈ Nλ1(p)+ε,λ1(q)+ε and (4.7) is satisfied. Let us show that uε

k → uε
0 strongly in W 1,p(Ω) and

uε
0 ∈ Nλ1(p)+ε,λ1(q)+ε.

Indeed, contrary to our claim, we suppose that

‖uε
0‖1,p < lim inf

k→∞
‖uε

k‖1,p

Then

Hλ1(p)(u
ε
0) + Gλ1(q)(u

ε
0) < lim inf

k→∞

(

Hλ1(p)(u
ε
k) + Gλ1(q)(u

ε
k)

)

= 0,
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which implies that uε
0 /∈ Nλ1(p)+ε,λ1(q)+ε. However, according to 4.7, the assumptions of Proposition 4.1

are satisfied. Therefore, there exists a unique minimum point t(uε
0) 6= 1 of Eλ1(p)+ε,λ1(q)+ε(tuε

0) w.r.t.
t > 0, such that t(uε

0)uε
0 ∈ Nλ1(p)+ε,λ1(q)+ε. Hence,

Mε ≤ Eλ1(p)+ε,λ1(q)+ε(t(uε
0)uε

0) < Eλ1(p)+ε,λ1(q)+ε(uε
0)

< lim inf
k→∞

Eλ1(p)+ε,λ1(q)+ε(uε
k) = Mε,

which leads to a contradiction. Therefore, uε
0 ∈ Nλ1(p)+ε,λ1(q)+ε and uε

k → uε
0 strongly in W 1,p(Ω). �

Lemma 4.7. Assume that (1.5) is satisfied. Then (Pλ1(p)+ε,λ1(q)+ε) possesses a positive solution for all
ε ∈ (0, ε2).

Proof. According to Lemma 4.5 and Proposition 4.6, uε
0 ∈ Nλ1(p)+ε,λ1(q)+ε satisfies (4.7) and it is a

minimizer of Eλ1(p)+ε,λ1(q)+ε on Nλ1(p)+ε,λ1(q)+ε for all ε ∈ (0, ε2). Since the functional Eλ1(p)+ε,λ1(q)+ε

is even, we may assume that uε
0 ≥ 0. Hence, due to Lemma 4.3 and noting (4.7), uε

0 is a non-trivial and
non-negative critical point of Eλ1(p)+ε,λ1(q)+ε on W 1,p(Ω). This ensures that uε

0 is a positive solution of
(Pλ1(p)+ε,λ1(q)+ε) (see Remark 2.7). �

5. Proofs of main results

In this section, we collect the proofs of our results stated in section 3.

Proof. Proof of Proposition 3.1. Let α ≤ λ1(p) and β ≤ λ1(q). Assume that u ∈ W 1,p(Ω) is a non-trivial
solution of (Pα,β). Taking u as a test function we have

0 ≤ (λ1(p) − α)‖u‖p
Lp(∂Ω) ≤ ‖u‖p

1,p − α‖u‖p
Lp(∂Ω)

= β‖u‖q
Lq(∂Ω) − ‖u‖q

1,q

≤ (β − λ1(q))‖u‖q
Lq(∂Ω) ≤ 0.

This chain of inequalities is satisfied if and only if α = λ1(p), β = λ1(q) and u is the eigenfunction
corresponding to λ1(p) and λ1(q) simultaneously. As a result, our conclusion is shown.
�

To prove Proposition 3.2 we introduce functional Iα,β on W 1,p(Ω) by

Iα,β(u) :=
1

p
‖u‖p

1,p +
1

q
‖u‖q

1,q −
α

p
‖u+‖p

Lp(∂Ω) −
β

q
‖u+‖q

Lq(∂Ω). (5.1)

Proof. Proof of Proposition 3.2. Case( i): α > λ1(p) and 0 < β < λ1(q). In this case, we note that

λ1

(

p,
α

β

)

=
λ1(p)β

α
< β < λ1(q) = λ1(q, 1)

and

α|u|p−2u + β|u|q−2 = β

(

α

β
|u|p−2 + |u|q−2

)

Thus, our conclusion follows from application of Theorem 2.2 to the problem (1.3) with λ = β, mp = α
β

and mq = 1.
Case( ii): 0 < α < λ1(p) and β > λ1(q). We proceed as above, applying theorem 2.2 to (1.3) with
λ = α, mp = 1 and mq = β

α
Case( iii): α > λ1(p) and β ≤ 0. By the same argument as in [ [21] lemma3.3], it can be shown that
Iα,β satisfies the Palais-Smail condition. Moreover, it is proved in [ [21] Theorem3.1] that for functional
J on W 1,p(Ω) defined by

J(u) =
1

p
‖u‖p

1,p +
1

q
‖u‖q

1,q −
α

p
‖u+‖p

Lp(∂Ω)
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there exist δ > 0 and ρ > 0 such that

J(u) ≥ δ provided ‖u‖Lp(∂Ω) = ρ.

Since β ≤ 0, this implies that Iα,β ≥ J(u) ≥ β provided ‖u‖Lp(∂Ω) = ρ. For the positive eigenfunction
ϕp corresponding to λ1(p) and sufficiently large t > 0, we have

Iα,β(tϕp) =
tp

p
(λ1(p) − α)‖ϕp‖p

Lp(∂Ω) +
tq

q

(

‖ϕp‖q
1,q − β‖ϕp‖q

Lq(∂Ω)

)

< 0,

since λ1(p)−α < 0 and q < p. Consequently, by applying the mountain pass theorem, Iα,β has a positive
critical value (see [ [21] Theorem 3.1])
Case( iv): α ≤ 0 and β > λ1(q). In this case, it can be easily shown that Iα,β is coercive and bounded
from below, due to q < p and the inequality

Iα,β(u) ≥
1

p
‖u‖1.p −

β

q
‖u+‖q

Lq(∂Ω) ≥
1

p
‖u‖p

1,p − C‖u+‖p
1,p,

where C > 0 is independent of u ∈ W 1,p(Ω). Moreover, Iα,β is weakly lower semi-continuous by the
compactness of the embedding W 1,p(Ω) to Lp(∂Ω) and Lq(∂Ω), and therefore Iα,β has a global minimizer
u ∈ W 1,p(Ω) (cf. [13] Theorem 1.1). On the other hand, for the positive eigenfunction ϕq corresponding
to λ1(q) and sufficiently small t > 0, we have

Iα,β(tϕq) =
tq

q
(λ1(q) − β)‖ϕq‖q

Lq(∂Ω) +
tp

p

(

‖ϕq‖q
1,q − α‖ϕq‖p

Lp(∂Ω)

)

< 0,

whence I(u) = minW 1,p(Ω) Iα,β < 0, and therefore u is a non-trivial solution of (Pα,β). �

Proof of Proposition 3.4. Here we prove Properties of λ∗(s)
Part (i). Fix any s ∈ R and let u ∈ W 1,p(Ω) be a positive solution of (Pλ+s,λ) for some λ ∈ R.

Then u ∈ intC1(Ω)+ (see Remark 2.7), Replacing Eα,β
[u,u] with Iα,β . Choose any ϕ ∈ intC1(Ω)+. Then,

ϕ/u ∈ L∞(∂Ω), and hence we can take

ξ =
ϕp

up−1 + uq−1
∈ W 1,p(Ω)

as a test function. Therefore, from Proposition 2.9, there follows the existence of ρ > 0 independent of u
and λ such that

∫

Ω

(|∇u|p−2∇u + |∇u|q−2∇u)∇

(

ϕp

up−1 + uq−1

)

dx +

∫

Ω

ϕpdx

= λ

∫

∂Ω

ϕpdσ + s

∫

∂Ω

up−1ϕp

up−1 + uq−1
dσ ≤

1

ρ

(
∫

Ω

(|∇ϕ|pdx +

∫

Ω

|∇ϕp/q|qdx +

∫

Ω

ρϕ|pdx

)

.

Combining this inequality with the estimation

s

∫

∂Ω

up−1ϕp

up−1 + uq−1
dσ ≥ min{0, s

∫

∂Ω

ϕpdσ}, s ∈ R,

we conclude that

λ

∫

∂Ω

ϕpdσ + min{0, s

∫

∂Ω

ϕpdσ} ≤
1

ρ

(
∫

Ω

(|∇ϕ|pdx +

∫

Ω

|∇ϕp/q|qdx +

∫

Ω

ρϕ|pdx

)

. (5.2)

Since
∫

∂Ω ϕpdσ,
∫

Ω(|∇ϕ|pdx,
∫

Ω |∇ϕp/q|qdx,
∫

Ω ρϕ|pdx and ρ are positive constants independent of u and
λ, λ satisfying (5.2) is bounded from above.Therefore, λ∗(s) < +∞, which completes the proof of Part
(i).
Part (iv). Assume first that (1.5) holds. Then Lemma 4.7 implies that
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(Pλ1(p)+ε,λ1(q)+ε) possesses a positive solution for sufficiently small ε > 0. Noting that (λ1(p) + ε, λ1(q) +
ε) = λ1(q) + ε + s∗, λ1(q) + ε), by definition of λ∗(s∗) we have λ∗(s∗ ≥ λ1(q) + ε, and so λ∗(s∗) + s∗ ≥
λ1(q) + ε + s∗ = λ1(p) + ε, which is the desired conclusion.

Assume that (1.5) is violated, i.e. ϕp = kϕq in Ω for some k 6= 0. Let u be a positive weak solution
of (Pα,β) for some α, β ∈ R. Then, due to the regularity of ϕp and u (see Remark 2.7), the Proposition
2.9 implies

∫

Ω

(|∇u|p−2∇u∇

(

ϕp
p

up−1

)

dx +

∫

Ω

(|u|p−2u

(

ϕp
p

up−1

)

dx ≤

∫

Ω

(|∇ϕp|p + |ϕp|p)dx

= λ1(p)

∫

∂Ω

ϕp
pdσ

(5.3)

At the same time, generalized Picone’s identity from [ [9]. Lemma 1, p.536] yields
∫

Ω

(|∇u|q−2∇u∇

(

ϕp
p

up−1

)

dx +

∫

Ω

(|u|q−2u

(

ϕp
p

up−1

)

dx

≤

∫

Ω

(|∇ϕp|q−2∇ϕp∇

(

ϕp−q+1
p

up−q

)

dx +

∫

Ω

|ϕp|p−2ϕp

(

ϕp−q+1
p

up−q

)

dx

= λ1(q)

∫

∂Ω

ϕp
puq−pdσ

(5.4)

where the last equality is valid because ϕp is an eigenfunction of ∆p, by assumption.
Hence, using (5.3) and (5.4), we obtain for the solution u of (Pα,β) the following inequality:

∫

Ω

(

|∇u|p−2 + |∇u|q−2

)

∇u

(

ϕp
p

up−1

)

dx +

∫

Ω

(

|u|p−2 + |u|q−2

)

ϕp
p

up−1
dx

= α

∫

∂Ω

ϕp
pdσ +

∫

∂Ω

ϕp
puq−pdσ ≤ λ1(p)

∫

∂Ω

ϕp
pdσ + λ1(q)

∫

∂Ω

ϕp
puq−pdσ

which is impossible if α > λ1(p) and β > λ1(q) simultaneously, and the proof is complete.
Part(ii). Assume that s 6= s∗. Then taking α = λ + s and β = λ, Proposition 3.2 implies that
λ∗(s) + s ≥ λ1(p) and λ∗(s) ≥ λ1(q). If now s = s∗ and λ1(p) and λ1(q) have the same eigenspaces,
i.e. there exists k 6= 0 such that ϕp ≡ kϕq in Ω, then from Proposition 3.1 it follows that (Pλ1(p),λ1(q))
possesses a positive solution, i.e. λ∗(s) + s ≥ λ1(p) and λ∗(s∗) ≥ λ1(q). Finally, if λ1(p) and λ1(q) have
different eigenspaces, that is, (1.5) is satisfied, then Part (iv) of Proposition 3.4 yields desired result.
Part(vi). Let s < s′. Part (ii) of Proposition 3.4 implies that λ∗(s), λ∗(s′) ≥ λ1(q). Thus, in order to
prove λ∗(s) ≥ λ∗(s′), it sufficient to consider only the case λ∗(s′) > λ1(q).
Fix any ε > 0 such that λ∗(s′) − ε > λ1(q). Then, by definition of λ∗(s′), there exists µ satisfying
λ∗(s′) > µ > λ∗(s′) − ε such that (Pµ+s′,µ) has a positive solution uµ ∈ intC1(Ω)+. It is easy to see that
uµ is a positive super-solution of (Pµ+s,µ), since s < s′. Hence, Lemma 2.8 ensures the existence of a
positive solution of (P µ + s, µ)(note µ > λ∗(s′) − ε > λ1(q)). Hence, λ∗(s) ≥ µ > (λ∗(s′) − ε). Since ε is
arbitrary, we have λ∗(s) > µ > λ∗(s′).
Next, we show that λ∗(s)+s ≤ λ∗(s′)+s′ for s < s′. If λ∗(s)+s−s′ ≤ λ1(q), then λ∗(s)+s ≤ λ1(q)+s′ ≤
λ∗(s′) + s′, due to the fact that λ1(q) ≤ λ∗(s′). So, we may suppose that λ∗(s) + s − s′ > λ1(q). Fix any
ε > 0 such that λ∗(s) + s − s′ − ε > λ1(q). By the definition of λ∗(s), there exists µ > λ∗(s) − ε such that
(Pµ+s,µ) has a positive solution uµ. Putting β = µ + s − s′, uµ is the positive solution of (Pβ+s′,β+s′−s).
Noting that β+s′−s−ε > β, uµ is a positive super-solution of (Pβ+s′,β). Since β > λ∗(s)+s−s′−ε > λ1(q)
by the same argument above, we get λ∗(s′) ≥ λ∗(s) + s − s′, whence λ∗(s) + s ≤ λ∗(s′) + s′.
Part(iii). Assume first that (1.5) doesn’t hold. Then s∗ = s∗

+ and, due to Part (iv) of Proposition 3.4,
λ∗(s) ≥ λ1(q) for all s ∈ R by Part (ii). Hence, λ∗(s∗) = λ1(q) and noting that λ∗(s) is non-increasing
by Part (vi) we get the desired result.
Let now (1.5) hold and suppose, by contradiction, that exists s > s∗

+ such that λ∗(s) > λ1(q). Since
λ∗(s∗) + s∗ > λ1(p) by Part (iv) of Proposition 3.4, using Part (vi) and recalling that s, we get

λ∗(s) + s ≥ λ∗(s∗) + s∗ > λ1(p).
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By definition of λ∗(s), for any ε0 > 0 there exists ε ∈ [0, ε0) such that (Pλ∗(s)+s−ε,λ∗(s)−ε) possesses a
positive solution. Let us take ε0 small enough to satisfy

λ∗(s) + s − ε0 > λ1(p), λ∗(s) − ε0 > λ1(q), (5.5)

and let u be a corresponding solution of (Pλ∗(s)+s−ε,λ∗(s)−ε), where ε ∈ [0, ε0).
Using the Picone Identities (5.3) and (5.4) implied to ϕp, we obtain the following inequality:

∫

Ω

(

|∇u|p−2 + |∇u|q−2

)

∇u

(

ϕp
q

up−1

)

dx +

∫

Ω

(

|u|p−2 + |u|q−2

)

ϕq
p

up−1
dx

= (λ∗(s) + s − ε)

∫

∂Ω

ϕp
qdσ + (λ∗(s) − ε)

∫

∂Ω

ϕp
quq−pdσ

≤

∫

Ω

|∇ϕq|pdx +

∫

Ω

|ϕq|pdx + λ1(q)

∫

∂Ω

ϕp
quq−pdσ,

(5.6)

on the other hand, since ε < ε0, from (5.5) it follows that

(λ1(q) + s)

∫

∂Ω

ϕp
qdσ + λ1(q)

∫

∂Ω

ϕp
quq−pdσ

< (λ∗(s) + s − ε)

∫

∂Ω

ϕp
qdσ + (λ∗(s) − ε)

∫

∂Ω

ϕp
quq−pdσ

(5.7)

Finally, combining (5.6) and (5.7) we conclude that

s <

∫

Ω |∇ϕq|pdx +
∫

Ω |ϕq|pdx
∫

∂Ω
ϕp

qdσ
− λ1(q) = s∗

+,

which contradicts our assumption s ≥ s∗
+.

Part(v). Since λ∗(s) is bounded for any s ∈ R by Part (i) of Proposition 3.4 and non-increasing by
Part(vi), for every s′ ∈ R there exist one-sided limits of λ∗(s) and

lim
s→s′−0

λ∗(s) ≥ λ∗(s′) ≥ lim
s→s′+0

λ∗(s). (5.8)

On the other hand, λ∗(s) + s is non-decreasing by Part(vi) of Proposition 3.4, and hence

lim
s→s′−0

(λ∗(s) + s) ≤ λ∗(s′) + s′ ≤ lim
s→s′+0

λ∗(s) + s,

which yields
lim

s→s′−0
λ∗(s) ≤ λ∗(s′) ≤ lim

s→s′+0
λ∗(s). (5.9)

Combining (5.8) with (5.9) we conclude that the one-sided limits are equal to λ∗(s′), which establishes
the desired continuity, due to the arbitrary choice of s′ ∈ R. �

Proof. Proof of Proposition 3.5. We prove that (3.2) and (3.3) are in fact, equivalent.
Fix any s ∈ R. Since λ∗(s) is bounded from below by Part(ii) of Proposition 3.4, the definition (3.2)
implies the existence of a sequence of solutions {un}∞

n=1 ∈ intC1(Ω)+ (see Remark 2.7) for (Pλn+s,λ) such
that λn → λ∗(s) as n → ∞ and each λn ≤ λ∗(s) (note that there we allow λn = λ∗(s) for all n ∈ N.)
Using un as admissible function for (3.3) and noting that for any 0 6= ϕ ∈ C1(Ω)+ the denomination of
Ls(un; ϕ) is positive , namely,

∫

Ω

(up−1
n + uq−1

n )ϕdx > 0,

we get
Λ∗(s) ≥ inf

ϕ∈C1(Ω)+\{0}
Ls(un; ϕ) = λn → λ∗(s)
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and therefore Λ∗(s) ≥ λ∗(s) for any s ∈ R.
Assume now that there exists s0 ∈ R such that Λ∗(s0) > λ∗(s0). Then, by the definition of Λ∗(s), there
exist u ∈ C1(Ω)+ which we have

Λ∗(s0) ≥ µ := inf
ϕ∈C1(Ω)+\{0}

Ls(u; ϕ) > λ∗(s0).

However, this implies that u is a positive super-solution of (Pµ+s0,µ). Indeed

Ls(u; ϕ) ≥ µ > λ∗(s0) for all ϕ ∈ C1(Ω)+\{0},

and therefore
∫

Ω

(

|∇u|p−2 + |∇u|q−2
)

∇u∇ϕdx +

∫

Ω

(

|u|p−2 + |u|q−2
)

uϕdx

−

∫

∂Ω

(

(µ + s0)|u|p−2 + µ|u|q−2
)

uϕdσ ≥ 0

for any ϕ ∈ W 1,p(Ω)+, due to approximation arguments. Hence, recalling that µ > λ∗(s0) ≥ λ1(q),
Lemma 2.8 guarantees the existence of a positive solution for (Pµ+s0,µ), however it contradicts the
definition of λ∗(s0). �

Proof. Proof of Theorem 3.3. Note first that from Proposition 3.1 and 3.2 it directly follows that if (3.1)
is satisfied, then (Pα,β) has at least one positive solution.
Conversely, if (Pα,β) has at least one positive solution, then by the definition of λ∗(s), Part(iv) of Propo-
sition 3.4 and Proposition 3.1, it has to satisfy

(α, β) ∈ (λ1(p), +∞) × (−∞, λ1(q)] ∪ (−∞, λ1(p)) × (λ1(q), +∞) ∪ {(λ1(p), λ1(q))}.

To prove (3.1), it is sufficient to show that (α, β) /∈ {λ1(p)} × (λ1(q), +∞) and (α, β) /∈ (λ1(p), +∞) ×
{λ1(q)}. Suppose that (Pα,β) has a positive solution u for α = λ1(p) and β ≥ λ1(q) (res. α ≥ λ1(p) and
β = λ1(q)). Then, as in the proof of Proposition 3.4, Part(iv), from (5.3) and (5.4) we have

∫

Ω

(

|∇u|p−2 + |∇u|q−2

)

∇u

(

ϕp
q

up−1

)

dx +

∫

Ω

(

|u|p−2 + |u|q−2

)

ϕq
p

up−1
dx

= α

∫

∂Ω

ϕp
qdσ + β

∫

∂Ω

ϕp
quq−pdσ ≤ λ1(p)

∫

∂Ω

ϕp
qdσ + λ1(q)

∫

∂Ω

ϕp
quq−pdσ

which implies that β = λ1(q)(res.α = λ1(p)). Hence, we get the desired result. �

Proof. Proof of Theorem 3.6. Consider first the non-existence result. Let β > λ∗(α − β). Then the
definition of λ∗(α − β) implies that (Pα,β) has no positive solutions.
(i) Assume that λ1(q) < β < λ∗(s) with s = α − β. Then, by the definition of λ∗(s), there exists
µ ∈ (β, λ∗(s)) such that (Pµ+s,µ) has a positive solution u ∈ intC1(Ω)+(see Remark 2.7). Moreover, u is
a positive super-solution of (Pα,β) ≡ (Pβ+s,β), since µ > β. Hence, the assumptions of Lemma 2.8 are
satisfied, which guarantees the existence of a positive solution of (Pα,β).
(ii) Assume now that λ1(p) < α and β < λ∗(s) with s = α − β. Note that if β > λ1(q), then Part (i)
gives the claim. If β < λ1(q), then Proposition 3.2 implies the desired result. Therefore, it remains to
consider the case β = λ1(q).
Let us divide the proof into tree cases:
Case 1. ϕq satisfied ‖ϕq‖p

1,p − α‖ϕq‖p
Lp(∂Ω) > 0. Note that

λ1

(

q,
λ1(q)

α

)

=
αλ1(q)

λ1(q)
= α > λ1(p) = λ1(p, 1).

This yields (2.1) with r = q, r′ = p, λ = α, mp ≡ λ1(q)
α . Moreover, since λ1(r, c) and λ1(r, 1) = λ1(r)

have the same eigenspace for any constant c > 0, namely, ϕ1(r, c) = tϕ1(r, 1) = ϕr for same t > 0, the
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hypothesis of Case 1 ensures (2.2). Hence, Theorem 2.3 guarantees our conclusion.
Case 2. ϕq satisfies ‖ϕq‖p

1,p − α‖ϕq‖p
Lp(∂Ω) < 0. Since β < λ∗(s), by definition of λ∗(s) there exists

µ ∈ (β, λ∗(s)] such that (Pµ+s,µ) possesses a positive solution u ∈ intC1(Ω)+. As in proof of Part(i) it is
easy to see that u is a positive super-solution of (Pα,β) ≡ (Pβ+s,β).

Let Eα,β
[0,u] be the functional defined by (2.3) with a positive super-solution u and sub-solution 0. Since

u and ϕq belong to intC1(Ω)+, for sufficiently small t > 0 we get tϕq ≤ u in Ω, whence fα,β
[0,u](x, tϕq) =

αtp−1ϕp−1
q + βtq−1ϕq−1

q . Therefore, noting that β = λ1(q), for such small t > 0 we have

Eα,β
[0,u](tϕq) =

tp

p
(‖ϕq‖p

1,p − α‖ϕq‖p
Lp(∂Ω)) < 0.

This ensures that infW 1,p(Ω) Eα,β
[0,u](tϕq) < 0. Hence, (Pα,β) has a positive solution (refer to Lemma 2.8).

Case 3. ϕq satisfied ‖ϕq‖p
1,p − α‖ϕq‖p

Lp(∂Ω)) = 0. Similarly to Case 2, we know that Eα,β
[0,u](tϕq) = 0 for

sufficiently small t > 0. minW 1,p(Ω) Eα,β
[0,u](tϕq) < 0. Holds, then (Pα,β) has a positive solution. On the

other hand, if minW 1,p(Ω) Eα,β
[0,u](tϕq) = 0, then tϕq is a global minimizer of Eα,β

[0,u], whence tϕq is a positive

solution of (Pα,β). Consequently, the proof is complete. �

Proof. Proof of Proposition 3.7. For the proof of Proposition 3.7, we prepare two lemmas. The following
lemma is needed to prove the boundedness of approximate solutions.

Lemma 5.1. Let un be a positive solution of (Pαn,β
n
) with αn → α and βn → β. If ‖un‖1, p → ∞ as

n → ∞, then α = λ1(p).

Proof. Let un be a positive solution of (Pαn,β
n
) with αn → α and βn → β and ‖un‖1,p → ∞ as

n → ∞. Setting wn := un/‖un‖1,p, we my admit, up to subsequence, that wn → w0 weakly in W 1,p(Ω)

and strongly in Lp(∂Ω) and Lq(∂Ω) for some w0 ∈ W 1,p(Ω). By taking (wn − w0)/‖un‖p−1
1,p as a test

function, we obtain

0 =

∫

Ω

|∇wn|p−2∇wn∇(wn − w0)dx +

∫

Ω

|wn|p−2wn(wn − w0)dx

+
1

‖un‖p−q
1,p

∫

Ω

|∇wn|q−2∇wn∇(wn − w0)dx +
1

‖un‖p−q
1,p

∫

Ω

|wn|q−2wn(wn − w0)dx

− αn

∫

∂Ω

wp−1
n (wn − w0)dσ −

βn

‖un‖p−q
1,p

∫

∂Ω

wp−1
n (wn − w0)dσ

=

∫

Ω

|∇wn|p−2∇wn∇(wn − w0)dx +

∫

Ω

|wn|p−2wn(wn − w0)dx + o(1),

where o(1) → 0 as n → ∞. Due to the (S+) property of ∆p implies that wn → w0 strongly in W 1,p(Ω).

Then, for any ϕ ∈ W 1,p(Ω), by taking ϕ/‖un‖p−1
1,p as function test we have

0 =

∫

Ω

(|∇wn|p−2∇wn∇ϕdx +

∫

Ω

(|wn|p−2wnϕdx

+
1

‖un‖p−q
1,p

intΩ(|∇wn|q−2∇wn∇ϕdx +
1

‖un‖p−q
1,p

∫

Ω

(|wn|q−2wnϕdx

− αn

∫

∂Ω

(wp−1
n ϕdσ −

βn

‖un‖p−q
1,p

∫

∂Ω

(wp−1
n ϕdσ.

Letting n → ∞ we conclude that w0 is a non-negative, non-trivial solution of (Pα,β) (not w0 ≥ 0 and
‖w0‖1,p = 1). According to the strong maximum principle (see Remark 2.7), we have w0 > 0 in Ω. This
yields that w0 is a positive eigenfunction corresponding to α and α = λ1(p), since any eigenvalue other
than λ1(p) has no positive eigenfunctions.
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Lemma 5.2. If u is a positive solution of (Pα,β), then

∫

Ω

|∇ϕ|q|∇u|p−qdx +

∫

Ω

ϕqup−qdx

∫

Ω

|∇ϕ|qdx +

∫

Ω

ϕqdx ≥

∫

∂Ω

(αup−q + β)ϕqdσ

for every ϕ ∈ intC1(Ω)+.

Proof. Let u be a positive solution of (Pα,β). Then, u ∈ intC1(Ω)+. (see Remark 2.7). Choose any
ϕ ∈ intC1(Ω)+. Then, ϕ/u ∈ L∞(∂Ω), and hence we can take

ξ =
ϕq

uq−1
∈ W 1,p(Ω)

as a test function, By the similar estimation as in the proof in[ [6], Proposition A.2], we have

|∇u|p−2∇u∇

(

ϕq

uq−1

)

= q|∇u|p−2∇u∇ϕ

(

ϕ

u

)q−1

− (q − 1)|∇u|p
(

ϕ

u

)q

≤ q|∇u|p−1∇u|∇ϕ|

(

ϕ

u

)q−1

− (q − 1)|∇u|p
(

ϕ

u

)q

≤ ∇ϕ|q|∇u|p−q

(5.10)

in ∂Ω, where we use the standard Young’s inequality

ab ≤
aq

q
+

(q − 1)bq/(q−1)

q

with a = |∇ϕ||∇u|p−1−d, b = (ϕ/u)q−1|∇u|d and d = (q − 1)p/q = p − p/q.
T the same time, the standard Picone identity (Proposition 2.9 implies

|∇u|p−2∇u∇

(

ϕq

uq−1

)

≤ |∇ϕ|q in Ω. (5.11)

Applying now estimation (5.10) and (5.11) to the definition of a weak solution, we obtain the desired
result.
Proof of Proposition 3.7. Part (i). Put α = λ∗(s) + s > λ1(p) and β = λ∗(s) > λ1(q) for some s ∈ R.
By the definition of λ∗(s), there exists βn > λ1(q) such that βn → β = λ∗(s) and (Pαn,β

n
) has a positive

solution un, where αn = βn + s. Since αn → β + s = λ∗(s) + s > λ1(p), Lemma 5.1 guarantees the
boundedness of {un} in W 1,p(Ω).
The {un} is a bounded Palais-Smale sequence for the functional Iα,β defined by (5.1). Indeed, I ′

αn,β
n

= 0
and so

‖I ′
α,β(un)‖W 1,p(Ω)∗ = ‖I ′

αn,β
n

(un) − I ′
α,β(un)‖W 1,p(Ω)∗

≤
|αn − α|

pλ1(p)1/p
‖un‖p−1

Lp(∂Ω) +
|βn − β|

qλ1(p)1/q
‖un‖q−1

Lq(∂Ω)|∂Ω|1/q−1/p

On the other hand, by a standard argument based on the (S+) property of −∆p, it can be readily
shown that Iα,β satisfies the bounded Palais-Smale condition. Hence, {un} has a subsequence converging
to some critical point u0 of Iα,β . Thus, if we show that u0 6= 0, then u0 is a positive solution of (Pα,β),
whence the proof is complete.
Now, we will prove that u0 6= 0 by way of contradiction. Assume that un strongly converges to 0 ∈
W 1,p(Ω). Applying Lemma 5.2 with ϕ = ϕq, we see that any un satisfies the inequality

∫

Ω

|∇ϕq|qq|∇u|p−qdx +

∫

Ω

ϕqup−qdx +

∫

Ω

|∇ϕq|qdx +

∫

Ω

ϕq
qdx ≥

∫

∂Ω

(αup−q + β)ϕq
qdσ.

Letting n → ∞, we have ‖ϕq‖q
1,q ≥ β‖ϕq‖q

Lq(∂Ω). However, this is a contradiction, since λ1(q)‖ϕq‖q
Lq(∂Ω) =

‖ϕq‖q
1,q ≥ β‖ϕq‖q

Lq(∂Ω) and β > λ1(q).
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Parti (ii). From Parti (iii) of Proposition 3.4 it follows that (Pλ∗(s)+s,λ∗(s)) ≡ (Pλ1(q)+s,λ1(q)) for all
s ≥ s∗

+. Suppose, contrary to our claim, that (Pλ1(q)+s,λ1(q)) possesses a positive solution u for some
s > s∗

+. As in the proof of Part (iii), Proposition 3.4, we replace ϕp by ϕq in Picone’s identities (5.3) and
(5.4), and get

∫

Ω

|∇u|p−2∇u∇

(

ϕp
q

up−1

)

dx +

∫

Ω

up−2u

(

ϕp
q

up−1

)

dx

+

∫

Ω

|∇u|q−2∇u∇

(

ϕp
q

up−1

)

dx +

∫

Ω

uq−2u

(

ϕp
q

up−1

)

dx

= (λ1(q) + s)

∫

∂Ω

ϕq
qdσ + λ1(q)

∫

∂Ω

ϕq
quq−pdσ

≤

∫

Ω

|∇ϕq|pdx +

∫

Ω

ϕp
qdx + λ1(q)

∫

∂Ω

ϕq
quq−pdσ,

which implies that

s ≤

∫

Ω
|∇ϕq|pdx +

∫

Ω
ϕp

qdx
∫

∂Ω
ϕq

qdσ
− λ1(q) = s∗

+.

However, it is a contradiction, since s > s∗
+. �
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