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Yamabe Solitons on Some Types of Generalized Sasakian Space Forms
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ABSTRACT: The object of the present paper is to study Yamabe solitons on three dimensional generalized
Sasakian space forms with quasi-Sasakian metric and Kenmotsu metric. Illustrative examples have been given.
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1. Introduction

In differential geometry an interesting problem is that whether a compact connected Riemannian man-
ifold is conformally equivalent to a manifold of constant scalar curvature. This problem was formulated
by Yamabe in 1960 [15]. Yamabe himself gave the affirmative answer, though there were some lacuna in
his arguments. Later Trudinger [14], Aubin [2] and Schoen [12] solved the problem satisfactorily.

Another important topic of differential geometry is Ricci low which was devolved by Richerd Hamilton
[6] in order to solve the century long open problem ‘Poincare conjecture’. The notion of Yamabe flow also
arose parallelly from the work of Hamilton.

A Yamabe flow on Riemannian manifold is a heat type parabolic partial differential equation of the
form

0
59 = "9, 9(0) = go, (1.1)

where ¢ is Riemannian metric and r is the scalar curvature of the matric.
Self similar solutions of the geometric flows are known as solitons. A Yamabe soliton on a Riemannian
manifold is defined by
Lug=(c—r)y, (1.2)

where £y denotes the Lie-derivative operator along the vector field U and the constant ¢ = —&(go),
where o is a scaling function.

A generalized Sasakian space form is an almost contact metric manifold whose Riemannian curvature is
given by

R(X,Y)Z gV, 2)X — g(X, 2)Y'} + f2{9(X,02)0Y — g(Y,pZ)pX
+ 29(X,0Y)oZ} + fa{n(X)n(2)Y —n(Y)n(Z2)X
+ 9(X, Z)n(Y)§ —g(Y, Z)n(X)E}, (1.3)

where f1, fo and f3 are C°°-functions on the manifold.
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The concept of generalized Sasakian space forms was introduced by P. Algree, D. E. Blair and A.
Carrizo subsequently. The first author of the present paper has studied generalized Sasakian space forms
(3], [9], [10], [11].

P. Algree and A. Carrizo gave some more characterizations of such space forms in the paper [1]. In
that paper they also have introduced generalized Sasakian space forms with trans-Sasakian structure and
developed some of its properties. In the paper[4] U. C. De and A. Sarkar studied generalized Sasakian
space forms with quasi-Sasakian metric.

Yamabe solitons on contact and almost contact manifolds have been studied by several authors [5],
[8]. Motivated by these works, in the present paper we would like to study Yamabe soliton on generalized
Sasakian space forms with quasi-Sasakian metric. We also, would like to study generalized Sasakian space
forms with Kenmotsu metric.

The paper is organized as follows. After the introduction we mention some required preliminaries in
Section 2. In Sections 3 and 4 we deduce some characteristic properties of three dimensional generalized
Sasakian space forms with quasi-Sasakian metric and Kenmotsu metric respectively admitting Yamabe
soliton. The last section contains examples.

2. Preliminaries

A smooth odd dimensional manifold (M, g) is said to be an almost contact metric manifold if it admits
a (1,1) tensor field ¢, a vector field £, a 1-form 7 and a Riemannian metric g which satisfy

o’ =—-T+n®¢ nE) =1 (2.1)
and
90X, 9Y) = g(X,Y) — n(X)n(Y). (2.2)

For such manifolds, we also have the following :

6 =0, g(X, &) =n(X), nod=0. (2.3)
9(¢X,Y) = —g(X,9Y), g(¢X,X)=0. (2.4)
(Vxn)Y =g(Vx&,Y). (2.5)

An almost contact metric manifold is called contact metric manifold if dn(X,Y) = ®(X,Y) = g(X, ¢Y).
® is called the fundamental two form of the manifold. For a three dimensional generalized Sasakian
space form we know the following [4]

RX,Y)Z = f{g(YV,2)X = g(X, 2)Y} + fo{9(X, 02)8Y — g(Y, 9 Z)¢ X
+ 29(X,0Y)oZ} + fa{n(X)n(2)Y —n(Y)n(Z2)X
+ 9(X, Z)n(Y)E = g(Y, Z)n(X)&}- (2.6)
S(X,Y) = (2f1 +3f2 = f3)9(X,Y) = Bf2 + fa)n(X)n(Y). (2.7)
r==6f1+6f —4fs. (2.8)

Definition 2.1. A vector field U in an n-dimensional Riemannian manifold (M, g) is said to be
conformal if

£Lug =2pg, (2.9)

for a smooth function p on M. Moreover, a conformal vector field satisfies

(LuS)X,Y) =—(n—2)g(VxDp,Y) + (Ap)g(X,Y) (2.10)
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and

Lyr=—=2pr+2(n—1)Ap, (2.11)
where D is the gradient operator and A = —divD is the Laplacian operator of g. For details, we refer to
Yano [16].

Lemma 2.1. In an almost contact metric manifold, the following relations hold

() n(£0€) = -
(i) (£om)é = "5~
(iii) p = ; .

If a generalized Sasakian space form M(f1, fo, f3) admits quasi-Sasakian metric [4] then
(Vxo)Y = Bg(X,Y) = n(Y)X), VX, Y € x(M), (2.12)

where (3 is a C'°°-function on the manifold.
As a consequence, it follows that
Vxé=—-p0X. (2.13)

(Vxn)Y = —Bg(¢X,Y). (2.14)

For details about quasi-Sasakian generalized Sasakian space forms see [4].

If the space form admits Kenmotsu metric, then
(Vx9)Y = a(g(oX,Y)E = n(Y)pX), (2.15)

where « is a C°°-function on the manifold.
It follows that
Vx€ = a(X —n(X)¢). (2.16)

(Vxn)Y = ag(¢X,¢Y). (2.17)
3. Yamabe solitons on generalized Sasakian space forms with quasi-Sasakian metric

In this section we like to characterize three dimensional generalized Sasakian space forms with quasi-
Sasakian metric admitting Yamabe soliton.
Putting the value of p from Lemma 2.1 in (2.10) and (2.11), respectively, we have

(Lu9)(X,Y) = % [9(VxDr,Y) — (Ar)g(X,Y)] (3.1)
and
Lur = =2Ar —r(c—r). (3.2)
Taking Lie-derivative of (2.7) in the direction of U and using (3.1) we get
g(VxDr,Y) = [U(dfi+6fa—2f3)+ (4f1 +6f2 —2f3)(c—7)+ Ar]g(X,Y)
{U6f2+2f3) n(X)n(Y) = (6f2 + 2f3)[n(Y) (£un) X
+ n(X) (Lun)Y]. (3.3)

As £ is killing, we have {r = 0. Differentiating it covariantly along the arbitrary vector field X and using
(2.13) we get g(VxDr, &) = B(¢pX)r.
Substituting € in place of Y in (3.3) and using the above equation and Lemma 2.1, we get
BleX)r = [U(dfi—Afs)+ (4f1+3f2—3f3)(c—r) + Ar]n(X)
— (6f2+2f3)(£Lun)X. (3.4)
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Substituting ¢ for X and using Lemma 2.1 we obtain from above

Ar=-U(4dfi —4f3) — (4f1 —4f3)(c — 7).
From (3.4) and (3.5), we have

(6f2 +2f3)(£Lun)X = (3f2 + f3)(c —1)n(X) — B(¢X)r.

Using (3.5) and (3.6) in (3.3), we get
VxDr = [U(6f2+2fs)+ (6f2+2f3)(c — r)[{X — n(X)¢}
+  B((¢X)r)§ — B(¢ Dr)n(X).

Differentiating the above equation covariantly along the direction of Y, we obtain
VvV xDr
Y(U(6f2+2f3)) + (Y (6f2+2f3))(c —r) — (6f2 +2f3) Y] {X — n(X)&}
[U(6f2 +2f3) + (6f2 + 2f3)(c = r)[{Vy X —n(Vy X)§ + Bg(oY, X)¢
B(X)oY } + (YB) (6 X)r)E + BY (¢ X)r) € — B2 ((¢X)r) ¢Y
(YB)(¢ Drin(X) = B{o(Vy Dr) + B (Yr)&}n(X)
B¢ Dr){n(Vy X) — Bg(oY, X)}.

Interchanging X and Y in the above, we get

I+ +

VxVyDr

[(X(U6f242f3)) + (X (6f2+ 2f3))(c — 1) — (6f2 + 2f3) Xr]{Y — n(Y)¢}
[U(6f2+2fs) + (6f2+2f3)(c =) {VxY —n(VxY){ + Bg(o X, Y)E
Bn(Y)oX} + (XB) (Y )r)é + BX((¢Y)r) € — B*((6Y)r) 9 X

(XB)(¢ Dr)n(Y) — B{¢(VxDr) + B (Xr)&In(Y)

= BloDr){n(VxY) - Bg(¢X,Y)}.

Again from (3.7), we obtain
V[Y7X]D7‘ = [U(sz +2f3)+ (6f2+2f3)(c— 7”)] {VyX —VxY —n(VyX)¢

+ n(VxY)&t+ B((@ Vy X)r)§ — B((¢ VxY)r)¢
— B(@Dr)n(VyX)+ (¢ Dr)n(VxY).

From (3.8), (3.9) and (3.10) we get

o+ +

R(Y,X)Dr

[Y (U(6f2+2f3)) + (Y (6f2+ 2f3))(c — ) — (62 + 2f3)Yr] {X — n(X)¢}
(X(U(6f2+2f3)) + (X (6f2+2f3))(c —7) = (6f2 +2f3)Xr[{Y —n(Y )}
[U(6f2+2f3) + (6f2 + 2f3)(c — r)] {28g(¢Y, X )& + Bn(X )Y — Bn(Y)¢X }
(YB) (o X)r)E — (XB) (oY )r)E + BY (0 X)1) € — BX((¢Y)r) €

B((6X)r) ¢Y + B2((#Y)r) ¢ X — (Y B)(¢ Dr)n(X) + (X B)(¢ Drin(Y)

= B{o(Vy Dr) + B (Yr)EIn(X) + B{op(VxDr) + B (Xr)&n(Y)

+ 28%(¢ Dr)g(¢Y, X) — B((¢ Vy X)r)é + B((6 VxY)r)E.

The above equation gives us
S(X,Dr) = —XU(6f1+2f3) — X(6f1+2f3)(c—71)+ (6f1 +2f3)Xr

) —
— §U6f2+2f3)n(X) —E&(6f2 + 2f3)(c —r)n(X)
— (e1B)(ear)n(X) + (e2B)(exr)n(X) — 28° X

I+ +

(3.10)

(3.11)

(3.12)
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Here {e;}, i = 1,2,3 is an orthonormal ¢-basis with e = &.
Putting X = ¢ in (3.12) we get

S Dr) = =2[U(6f2+2f3)) + (£(6f2 + 2f3))(c — )] — (e18)(ear)
+  (e2B)(ear). (3.13)
Putting X = ¢ and Y = Dr in (2.7), we get
S, Dr) =0.
Suppose that 3f2 4+ f3 = constant. Then from (3.13), we have
Y
eir  esr

Since e3r = 0 and ez = 0, from above we get

e e kierf+ kyeaf + kzesf
eir  esr kieir + koeor + ksesr’

where ky.ko, k3 are C*°-functions on M.
If X = kie1 + koea + kses is an arbitrary vector field, we get

XB=0Xr,

e
where o = 1—ﬁ is a C'*°-function. From above we get, grad 5 = ogradr.
eLr
Hence grad § and grad r are linearly dependent. Hence we can state the following;:

Theorem 3.1. If a three dimensional generalized Sasakian space form M(f1, f2, f3) with quasi-
Sasakian metric admits Yamabe soliton, then grad S and gradr are linearly dependent, provided fs+ 3 fo
s constant.

From (3.13), we see that

S(§; Dr) = =2[(U(6f2 +2f3)) + (§(6.f2 + 2f3))(c — )] — g(DB, ¢Dr).
If 3f2 + f3 = constant, the above equation gives g(Df, ¢ Dr) = 0. This helps us to state the following:

Theorem 3.2. If a three dimensional generalized Sasakian space form M(f1, f2, f3) with quasi-
Sasakian metric admits Yamabe soliton, then the vector fields grad 8 and ¢(gradr) are orthogonal to each
other, provided fs + 3 f2 is constant.

4. Yamabe solitons on generalized Sasakian space forms with Kenmotsu metric
As &r = 0, the equation (2.16) gives g(VxDr, &) = —aXr.
As the previous section, we have
VxDr = [U(6f2+2f3) + (6f2 +2f3)(c — )] {X — n(X)&} — a(X7)§
— a(Dr)n(X). (4.1)

Differentiating the above equation covariantly along Y, we obtain

VvV xDr
= [Y(U(6f2+2f3)) + (Y(6f2+2f3))(c — 1) — (6f2 + 2f3)Yr] {X — n(X)&}
+ [U(6f24+2f3) + (6f2 +2f3)(c — 1) {Vy X —n(Vy X){ — ag(¢X, ¢Y )¢
- an(X)Y + an(X)n(Y)&} — (Ya)(Xr)§ — a (Y (X)) €
- AX){Y = n(Y)E} = (Ya)(Dr)n(X) — a(Vy Dr)n(X)
— a(Dr){n(VyX) + ag(¢X, ¢Y)}. (4.2)
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Interchanging X and Y in the above equation, we see that

o+

VxVyDr

[X(U(6f2+2f3)) + (X (6f2 +2f3))(c — 1) — (6f2 + 2f3) X[ {Y — n(Y)E}
[U(6f2+2f3) + (6f2+2f3)(c = )| {VxY = n(VxY){ — ag(¢Y, X)¢
an(Y)X + an(Y)n(X)E} — (Xa)(Yr)§ —a (X(Y7)) €

a*(Yr){X —n(X)&} — (Xa)(Dr)n(Y) — a(VxDr)n(Y)

a(Dr){n(VxY) + ag(¢Y, ¢X)}.

From (4.1), it follows that

V[Y,X] Dr

= [U(6fa+2f3) + (6f2+2f3)(c—7){VyX = VxY —n(VyX)§
+ n(VxY)& — a([Y, X]r)é — a(Dr)n(Vy X)
+ (Dr)n(VxY).

«

from (4.2), (4.3) and (4.4), we have

+ o+ 0+

R(
Y
[X

Y, X)Dr

(U(6f2+2f3)) + (Y(6f2+2f3))(c — 1) — (6f2 + 2f3) Y] {X —n(X)E}
(U(6f2+2f3)) + (X (6f2+2f3))(c—7) = (6f2 +2f3) Xr]{Y —n(Y){}
(6f2+2f3) + (6f2+ 2f3)(c — )| {—an(X)Y + an(Y) X}

(XY —n(Y)E} + (Y r){X —n(X)E} — (Ya)(Dr)n(X)

(Xa)(Drin(Y) — (Ya)(X7)€ + (Xa)(Y7)€ — a(Vy Dr)n(X)

a(VxDrn(Y).

U

From the above equation

S(X, Dr)

—XU(6f1 +2f3) — X(6f1+2f3)(c—7)

(6f1 +2f3)Xr — (EU(6f2 + 2f3))n(X)

E(6f2 + 2f3)(c — r)n(X) — g(Da, Dr)n(X) — 202 Xr
4a[U(6f2 +2f3) + (6f2 + 2f3)(c — )] n(X).

o+

Putting X = ¢ in the above equation and using £r = 0 we obtain

S Dr) = =2[U(6f2+2f3)) + (£(6f2+2f3))(c — )] — g(Da, Dr)

Suppose that f3 =

— Aa[U(6f2 +2f3) + (6f2 +2f3)(c —7)].

—3f2. Then S(&, Dr) = —g(Da, Dr).

Hence in view of (2.7), g(Dc, Dr) = 0. Thus, we are in a position to state the following;:

(4.5)
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Theorem 4.1. If a three dimensional generalized Sasakian space form M(f1, fa, f3) with Kenmotsu
metric admits Yamabe soliton, then the wvector fields grada and gradr are orthogonal to each other,
provided fs = —3fs.

5. Examples

Example 5.1. We consider the three dimensional manifold M = {(z,y,z) € R? : (z,y, 2) # (0,0,0)},
where (,y, z) are the standard co-ordinates of R?.
Define the almost contact structure (¢,&,n) on M by

¢(E1) = _EQa ¢(E2) = Ela ¢(E3) = 07 6 = E3a n= dz + ydxa

0 0 0
here By = — —y—, FEys=—, FE3=—.
e R R oy’ P 0z
Let g be the Riemannian metric defined by
1, i=y
EiaE’ =
g( i) {07 i 4 .

Here 7,5 =1,2,3.
It is easy to verify that, (¢,&,n,g) defines an almost contact metric structure on M.
The Riemannian connection V is given by the Koszul formula which is

29(VXY7 Z) = Xg(Y, Z)+YQ(Z7X) - ZQ(X’Y) —l—g([X,Y],Z)
g([Y, Z]vX) —l—g([Z,X],Y).

By the above formula

Ve, B1=0,  VpB =3B, Ve Es=—3F
VEZElz_%EB, VE2E2:07 VE2E3:%E1
VESEl = _%EQ’ VESEQ = %Ela VE3E3 - O

Here (Vx¢)Y = —1(g9(X,Y)¢ —n(Y)X) for all X,Y € x(M) . Hence the structure is quasi-Sasakian.
The components of the curvature tensor R(X,Y)Z are

3 1
R(Ey, Es)E, = ZEQ’ R(E\, E3)E; = _ZEB’ R(Ey, E3)E; =0
3 1
R(E, E3)Ey = —ZEl, R(Ey,E3)E; = 0, R(E3, E3)Ey = _ZEB
1 1
R(Eq, E2)E3 =0, R(Ey, E3)Ey = L B, R(Ey, E3)Es = 1B,

From the above components of curvature tensor, we obtain
1 1 1
S(ElaEl):_Ea S(EQaEQ):_Ea S(E37E3):§
and S(El,EQ)ZS(EQ,Eg):S(Eg,El)ZO.

The scalar curvature given by r = —%

We see that the components Riemannian curvature calculated here satisfy

—4f -3
12

RX.Y)Z = [{g(V.2)X - g(X.2)V} + ( ) (9(X, 62)6Y

- 9V02)6X +200X.01)02) + (£ - 1 ) CONE)Y

— n(Y)n(2)X +g(X, Z)n(Y)E — g(Y, Z)n(X)ES,
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where f is any C*°-function on M.
Hence M is a generalized Sasakian space form with the functions
—4f —12 1
fl_fan_vaé_f_Z'

It is seen that (£¢g)(X,Y) = (c—7)g(X,Y) =0for all X,Y € x(M) and ¢ = —3, the constructed metric
is Yamabe soliton.

Example 5.2. Consider M? = {(z,y,2) € R3 : (z,y, 2) # (0,0,0)} with standard Cartesian coordi-
nates (x,7, z). Define the almost contact structure (¢, &, 1) on M? by
¢(€1) = —€2, ¢(62) = €1, ¢(63) - Oa 5 = €3, n= dZ,
0 0 0
where e; = —, ey =—, e3=—.

Ox oy’ 0z
Let the metric g be defined by

gler,e2) = g(ea,e3) = gles,e1) =0, gler,e1) = glea,e2) = exp(2z), g(es,e3) = 1.

We see that (¢, &, 7, g) defines an almost contact metric structure on M3.
Let V be the Levi-Civita connection with respect to the Riemannian metric g. By Koszul formula, we
have

Ve, €1 = —exp(22)es, Ve, €2 =0, Ve, €3 =e€1.
Ve,e1 =0, Ve,e2 = —exp(2z)es, Ve, €3 = €a.
V6361 = €1, Veseg = €9, V63€3 =0.

We see that (Vx¢)Y = g(¢X,Y)é —n(Y )X, for all X,Y € x(M?). Hence the structure is Kenmotsu.

The non-vanishing components of the curvature tensor are

R(e1,ez)er = exp(2z)es, R(e1,ez)es = exp(2z)er
R(e1,ez)er = exp(2z)es, R(ei1,e3)es = —eq

R(ea, e3)es = exp(22)es, R(ea, e3)es = —es.
The non-vanishing components of the Ricci tensor are

S(e1,e1) = S(ea,ea) = —2exp(22), S(es,e3) = —2.
The scalar curvature is given by, r = —6.
We see that

ROCYV)Z = HoV,2)X - 9%, 2)V) + L2 (x 02067 - g(v,02)0%

+ 29(X,9Y)oZ} + (f + D{n(X)n(2)Y —n(Y)n(Z2)X
+ 9(X, Z)n(Y)§ — g(Y, Z)n(X)E},
where f is any C*°-function on M?3. So, M? is a generalized Sasakian space form with functions

—f-1
3

h=Fff=

Also f3 = —3fs. We choose U = y% — x(%

We have (£yg)(X,Y) = (¢ —r)g(X,y) = 0 for all X,Y € x(M?) and ¢ = —6. So, the constructed
metric is Yamabe soliton.

af3:f+1
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