

(3s.) **v. 2022 (40)** : 1–8. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.49016

Existence of Solutions for a *p*-Laplacian System with a Nonresonance Condition Between the First and the Second Eigenvalues

Sara Dob, Hakim Lekhal, Messaoud Maouni

ABSTRACT: In this article, we study the existence of positive solutions for the quasilinear elliptic system

$$\begin{cases} -\Delta_p u(x) = f_1(x, v(x)) + h_1(x) & \text{in } \Omega, \\ -\Delta_p v(x) = f_2(x, u(x)) + h_2(x) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega. \end{cases}$$

where $f_i(x, s)$, (i = 1, 2) locates between the first and the second eigenvalues of the *p*-Laplacian. To prove the existence of solutions, we use the Leray-Schauder degree.

Key Words: Quasi-elliptic equations, Degree-theoretic methods, Eigenvalues, Sobolev spaces.

Contents

1 Introduction

2 A priori estimate

3 Proof of the main result

1. Introduction

Systems of quasilinear elliptic equations present some new and interesting phenomena, which are not present in the study of a single equation. Many publications have appeared concerning quasilinear elliptic systems we refer the readers to ([4], [10]).

In recent years, the eigenvalue problems for *p*-Laplacian operators have been extensively studied (see [3], [6], [7], [8]). The main purpose of this article is to prove the existence of solutions for a quasilinear elliptic system when the second terms on the two equations $f_i(x, s)$, (i = 1, 2) locates between the first and the second eigenvalue of the *p*-Laplacian. This result can be seen as a generalization of the result obtained by A. Anane and N. Tsouli in [3].

In this paper, we study the existence of positive solution for the nonlinear elliptic system

$$\begin{cases} -\Delta_p u(x) = f_1(x, v(x)) + h_1(x) & \text{in } \Omega, \\ -\Delta_p v(x) = f_2(x, u(x)) + h_2(x) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $\Delta_p u = div(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian operator with the exponent $p, 1 and <math>\Omega$ is a smooth bounded region in \mathbb{R}^n for $n \ge 1$.

Through this paper, $h_i \in W^{-1,p'}(\Omega)$ with i = 1, 2 and p' the Hölder conjugate of p. As to the nonlinearities f_i (i = 1, 2), we assume that they are Carathéodory functions from $\Omega \times \mathbb{R}$ to \mathbb{R} such that

$$\max_{|s| \le R_i} |f_i(x,s)| \in L^{p'}(\Omega), \quad \forall R_i > 0,$$

$$(1.2)$$

$$\lambda_1 \leq l_i(x) \leq k_i(x) < \lambda_2 \quad \text{a.e. in } \Omega,$$

$$\not\equiv \qquad (1.3)$$

1

3

 $^{2010\} Mathematics\ Subject\ Classification:\ 35K86,\ 35R35,\ 49J40.$

Submitted August 04, 2019. Published October 14, 2019

where

$$l_i(x) = \lim_{s \to \pm \infty} \inf \frac{f_i(x,s)}{|s|^{p-2}s}, \quad k_i(x) = \lim_{s \to \pm \infty} \sup \frac{f_i(x,s)}{|s|^{p-2}s}$$

and λ_1 (resp., λ_2) is the first (resp., the second) eigenvalue of the problem

$$\begin{cases} -\Delta_p u = \lambda |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

First inequality in (1.3) means: "less or equal almost everywhere with strict inequality on a set of positive measure". we also assume that the inequalities in (1.3) holds for i = 1, 2:

$$\begin{aligned} \forall \varepsilon_i > 0, \quad \exists \eta(\varepsilon_i) > 0 : \lambda_1 - \varepsilon_i \le \frac{f_i(x,s)}{|s|^{p-2}s}, \quad \forall |s| \ge \eta(\varepsilon_i), \quad \text{a.e. in } \Omega, \\ \forall \varepsilon_i > 0, \quad \exists \eta(\varepsilon_i) > 0 : \frac{f_i(x,s)}{|s|^{p-2}s} \le \lambda_2 + \varepsilon_i, \quad \forall |s| \ge \eta(\varepsilon_i), \quad \text{a.e. in } \Omega. \end{aligned}$$
(1.4)

Recently, A. Anane and N. Tsouli [3] study the existence of solutions for the Dirichlet problem $-\Delta_p u = f(x, u) + h(x)$ in Ω , u = 0 in $\partial\Omega$, when f(x, u) locates between the first and the second eigenvalues of the *p*-Laplacian (Δ_p), using Leray-Schauder topological degree.

Their work is based on the absurd reasoning, they arrived at a contradiction by using different lemmas and the variation characterization of λ_2 , more precisely the monotonicity of λ_2 . Our work is based on the same method of proof.

The main result of this paper is the following theorem.

Theorem 1.1. For i = 1, 2, assume that f_i satisfies (1.2), (1.3) and (1.4). Then for any $h_i \in W^{-1,p'}(\Omega)$, (1.1) admits a weak solution (u, v) in $W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$.

As usual, a weak solution of system (1.1) is any $(u, v) \in W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi_1 dx + \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla \varphi_2 dx = \int_{\Omega} f_1(x, v) \varphi_1 dx + \int_{\Omega} f_2(x, u) \varphi_2 dx + \langle h_1, \varphi_1 \rangle + \langle h_2, \varphi_2 \rangle,$$

for every $\varphi_i \in W^{-1,p'}(\Omega)$, (i = 1, 2), where $\langle ., . \rangle$ denotes the duality product between $W^{-1,p'}(\Omega)$ and $W_0^{1,p}(\Omega)$.

Next, let us define by $(T_t)_{t \in [0,1]}$ the family of operators from $W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$ to $W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$ defined by

$$T_t(u,v) = \begin{pmatrix} T_{1t}(u,v) \\ T_{2t}(u,v) \end{pmatrix} = \begin{pmatrix} -\Delta_p^{-1} & 0 \\ 0 & -\Delta_p^{-1} \end{pmatrix} \times \begin{pmatrix} (1-t)\alpha_1 |u|^{p-2}u + tf_1(x,v) + th_1 \\ (1-t)\alpha_2 |v|^{p-2}v + tf_2(x,u) + th_2 \end{pmatrix},$$
(1.5)

where α_i , i = 1, 2 are some fixed numbers with $\lambda_1 < \alpha_i < \lambda_2$. We consider the space $U = W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$ endowed with the norm

$$\|(u,v)\|_{U} = \|u\|_{W_{0}^{1,p}(\Omega)}^{p} + \|v\|_{W_{0}^{1,p}(\Omega)}^{p},$$
(1.6)

 $V = L^p(\Omega) \times L^p(\Omega), \ Y = L^{p'}(\Omega) \times L^{p'}(\Omega) \text{ and } Z = W^{-1,p'}(\Omega) \times W^{-1,p'}(\Omega).$ In the sequel, $\|.\|_{L^p(\Omega)}$ and $\|.\|_{L^{p'}(\Omega)}$ will denote the usual norms on $L^p(\Omega)$ and $L^{p'}(\Omega)$, respectively.

Remark 1.2. Hypotheses (1.2) and (1.4) give us the growth conditions

$$|f_i(x,s)| \le a_i |s|^{p-1} + b_i(x) \quad \forall |s| \in \mathbb{R}, \ a.e. \ in \ \Omega,$$
(1.7)

where $a_i > 0$ and $b_i(.) \in L^{p'}(\Omega)$.

Remark 1.3. Equations (1.2) and (1.4) imply

$$\forall \varepsilon_i > 0, \quad \exists b_{\varepsilon_i} \in L^{p'}(\Omega) \text{ such that} |s|^p(\lambda_1 - \varepsilon_i) - b_{\varepsilon_i}(x) \leq sf_i(x, s) \leq |s|^p(\lambda_2 + \varepsilon_i) - b_{\varepsilon_i}(x), \forall s \in \mathbb{R}, \quad a.e. \text{ in } \Omega.$$
 (1.8)

Lemma 1.4. T_t is continuous and compact.

Proof. We have, $T_t: U \to U$; to prove the Lemma, we have

$$U \hookrightarrow V \xrightarrow{A} Y \hookrightarrow Z \xrightarrow{S} U, \tag{1.9}$$

such that the Nemytskii operator

$$\begin{aligned} \mathbf{A}: \quad V &\to Y\\ (u,v) &\mapsto (f_1(x,v), f_2(x,u)), \end{aligned}$$

and

$$S: \quad \begin{array}{ccc} S : & Z & \to U \\ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} & \mapsto \begin{pmatrix} -\Delta_p^{-1} & 0 \\ 0 & -\Delta_p^{-1} \end{pmatrix} \begin{pmatrix} f_1(x,v) \\ f_2(x,u) \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix},$$

are continuous and compact.

2. A priori estimate

To prove theorem (1.1), we first establish the following estimate:

A

$$\exists R > 0$$
 such that $\forall t \in [0,1], \forall (u,v) \in \partial B(0,R)$ such that $[I - T_t](u,v) \neq 0$.

where B(0, R) denotes the ball of center 0 and radius R in U. For, we assume by contradiction that

$$\forall n > 0, \quad \exists t_n \in [0, 1], \quad \exists (u_n, v_n) \in U \text{ with} \\ \| (u_n, v_n) \|_{1,p} = n \text{ such that } T_{t_n}(u_n, v_n) = (u_n, v_n).$$
 (2.1)

Let $w_n = (w_{1n}, w_{2n}) = (\frac{u_n}{n}, \frac{v_n}{n})$. We still denoted by (w_n) the subsequence of (w_n) which converges weakly in U, strongly in V and a.e. in Ω to w.

We can also suppose that t_n converges to $t \in [0, 1]$. That to reach a contradiction, we need the following lemmas.

Lemma 2.1. If the sequence $g_n = (g_{1n}, g_{2n})$ are defined by

$$g_{in} = \frac{f_i(x, nw_{i+(-1)^{i+1}n})}{n^{p-1}}, \quad i = 1, 2,$$
(2.2)

then g_{in} are bounded in $L^{p'}(\Omega)$, and they admit subsequences g_{in} converging weakly to some g_i in $L^{p'}(\Omega)$. *Proof.* From (1.7), we have $|f_i(x,s)| \le a_i |s|^{p-1} + b_i(x),$

$$|J_i(x,s)| \leq$$

$$|g_{in}(x)| \le a_i |w_{i+(-1)^{i+1}n}|^{p-1} + \frac{b_i(x)}{n^{p-1}};$$

as $b_i(x)$ in $L^{p'}(\Omega)$ and $|w_{i+(-1)^{i+1}n}|^{p-1} \in L^{p'}(\Omega)$, so g_{in} become bounded in $L^{p'}(\Omega)$. Consequently, there exists a subsequence, still denoted by g_{in} converging weakly to g_i in $L^{p'}(\Omega)$.

Lemma 2.2. $w_i \neq 0, i = 1, 2.$

Proof. We have that w_n verifies

$$\int_{\Omega} |\nabla w_{1n}|^p dx + \int_{\Omega} |\nabla w_{2n}|^p dx = (1 - t_n) \left[\alpha_1 \int_{\Omega} |w_{1n}|^p dx + \alpha_2 \int_{\Omega} |w_{2n}|^p dx \right] \\ + t_n \left[\int_{\Omega} g_{1n}(x) w_{1n} dx + \int_{\Omega} g_{2n}(x) w_{2n} dx + \frac{1}{n^{p-1}} < h_1, w_{1n} > + \frac{1}{n^{p-1}} < h_2, w_{2n} > \right].$$
(2.3)

We get from lemma (2.1)

$$1 = (1-t) \left[\alpha_1 \int_{\Omega} |w_1|^p dx + \alpha_2 \int_{\Omega} |w_2|^p dx \right] + t \left[\int_{\Omega} g_1(x) w_1 dx + \int_{\Omega} g_2(x) w_2 dx \right];$$
(2.4)

from the diffrent properties of the weak and strong convergences we get that $w_i \neq 0, i = 1, 2$.

Lemma 2.3. Let $A = \{x \in \Omega : w_i(x) \neq 0, (i = 1, 2)\}$, then

 $g_i = 0$ a.e. in $\Omega \setminus A$ where i = 1, 2.

Proof. The inequality (1.7) gives us for every i (i = 1, 2)

$$|g_{in}(x)| \le a_i |w_{i+(-1)^{i+1}n}|^{p-1} + \frac{b_i(x)}{n^{p-1}} \quad \text{a.e. in } \Omega \setminus A,$$
(2.5)

 \mathbf{SO}

$$\|g_{in}\|_{L^{p'}(\Omega\setminus A)} \le a_i \|w_{i+(-1)^{i+1}n}\|_{L^p(\Omega\setminus A)}^{\frac{p}{p'}} + \frac{1}{n^{p-1}}\|b_i\|_{L^{p'}(\Omega\setminus A)}.$$
(2.6)

From lemma (2.2), we have

$$\lim_{n \to +\infty} \|g_{in}\|_{L^{p'}(\Omega \setminus A)} = 0. \quad (i = 1, 2)$$
(2.7)

Let $D = \{x \in \Omega \setminus A : g_i \neq 0, (i = 1, 2)\}$. By lemma (2.1) we get, for $\phi_i(x) = sign[g_i(x)]\chi_D(x) \in L^p(D)$ such that

$$\chi_D(x) = \begin{cases} 0 & ; x \notin D, \\ 1 & ; x \in D, \end{cases}$$

that

$$\lim_{n \to +\infty} \int_D g_{in}(x)\phi_i(x)dx = \int_D g_i(x)\phi_i(x)dx = \int_D |g_i(x)|dx,$$
(2.8)

but, we have by (2.7)

$$\int_{D} |g_i(x)| dx = 0, \quad (i = 1, 2)$$
(2.9)

consequently, meas(D) = 0 which implies

$$g_i = 0$$
 a.e. in $\Omega \setminus A$ where $i = 1, 2$.

Lemma 2.4. Let
$$i = 1, 2$$
 and

$$\tilde{g}_{i}(x) = \begin{cases} \frac{g_{i}(x)}{|w(x)_{i+(-1)^{i+1}}|^{p-2}w(x)_{i+(-1)^{i+1}}} & on \ A, \\ \beta_{i} & on \ \Omega \setminus A, \end{cases}$$
(2.10)

where β_i are fixed numbers such that $\lambda_1 < \beta_i < \lambda_2$, then

$$\begin{array}{rcl} \lambda_1 & \leq & \tilde{g}_i(x) < \lambda_2 & a.e. \ in \ \Omega. \\ & \neq \end{array} \tag{2.11}$$

Proof. For i = 1, 2, firstly we define new subsets us follow

$$B_{l_i} = \{ x \in A : w_{i+(-1)^{i+1}}(x)g_i(x) < l_i(x) | w_{i+(-1)^{i+1}}(x)|^p \},\$$

$$B_{k_i} = \{ x \in A : w_{i+(-1)^{i+1}}(x)g_i(x) > k_i(x) | w_{i+(-1)^{i+1}}(x)|^p \},\$$

then we prove that $meas(B_{l_i}) = meas(B_{k_i}) = 0$. By remark (1.3), we have that $\forall \varepsilon_i > 0$, $\exists b_{\varepsilon_i} \in L^{p'}(\Omega)$ such that

$$|w_{i+(-1)^{i+1}n}|^p (l_i - \varepsilon_i) - \frac{b_{\varepsilon_i}}{n^p} \le w_{i+(-1)^{i+1}n} g_{in} \le |w_{i+(-1)^{i+1}n}|^p (k_i + \varepsilon_i) + \frac{b_{\varepsilon_i}}{n^p}.$$
 (2.12)

By integrating in the first inequality and letting $n \to \infty$, then $\varepsilon \to 0$, we deduce

$$\int_{B_{l_i}} [w_{i+(-1)^{i+1}}(x)g_i(x) - |w_{i+(-1)^{i+1}}(x)|^p l_i(x)]dx \ge 0,$$
(2.13)

and from the definition of the subset B_{l_i} , we get

$$\int_{B_{l_i}} [w_{i+(-1)^{i+1}}(x)g_i(x) - |w_{i+(-1)^{i+1}}(x)|^p l_i(x)]dx < 0.$$
(2.14)

Whereupon

$$\int_{B_{l_i}} [w_{i+(-1)^{i+1}}(x)g_i(x) - |w_{i+(-1)^{i+1}}(x)|^p l_i(x)]dx = 0,$$
(2.15)

which implies $meas(B_{l_i}) = 0$. The second inequality give us $meas(B_{k_i}) = 0$. In the second step, from the definition of \tilde{g}_i , we obtain

$$l_i(x) \le \tilde{g}_i(x) \le k_i(x) \text{ a.e. in } A, \tag{2.16}$$

and hypothesis (1.3) allow us to write

$$\lambda_1 \le \tilde{g}_i(x) < \lambda_2 \text{ a.e. in } A. \tag{2.17}$$

Since $\tilde{g}_i = \beta_i$ in $\Omega \setminus A$, then

$$\lambda_1 < \tilde{g}_i < \lambda_2 \text{ in } \Omega \setminus A. \tag{2.18}$$

The inequalities (2.17) and (2.18) leads to

$$\lambda_1 \le \tilde{g}_i(x) < \lambda_2 \text{ a.e. in } \Omega. \tag{2.19}$$

From (2.18), (2.19) and the fact that $mes(\Omega \setminus A) \neq 0$, we obtain

$$\begin{array}{rcl} \lambda_1 & \leq & \tilde{g}_i(x) < \lambda_2 & \text{a.e. in } \Omega. \\ & \neq & \end{array}$$

Lemma 2.5. If i = 1, 2, then w_i is a solution of

$$\begin{cases} -\Delta_p w_i = m_i |w_i|^{p-2} w_i & \text{in } \Omega, \\ w_i = 0 & \text{on } \partial\Omega, \end{cases}$$
(2.20)

where $m_i(x) = (1-t)\alpha_i + t\tilde{g}_{i+(-1)^{i+1}}(x)$.

Proof. We first prove that w_i (i = 1, 2) is a solution of

$$\begin{cases} -\Delta_p w_i = (1-t)\alpha_i |w_i|^{p-2} w_i + t g_{i+(-1)^{i+1}} & \text{in } \Omega, \\ w_i = 0 & \text{on } \partial\Omega. \end{cases}$$
(2.21)

From [3], we have that w_{in} (i = 1, 2) satisfies

$$\begin{cases} -\Delta_p w_{in} = (1 - t_n) |w_{in}|^{p-2} w_{in} + t_n \left[g_{i+(-1)^{i+1}n} + \frac{1}{n^{p-1}} h_i \right] & \text{in } \Omega, \\ w_{in} = 0 & \text{on } \partial\Omega. \end{cases}$$
(2.22)

We know that for $i = 1, 2, (-\Delta_p)(w_{in})$ are bounded in $W^{-1,p'}(\Omega)$, so we can extract from it a subsequence (w_{in}) (for simplicity of the notation), and a distribution $L_i \in W^{-1,p'}$ such that

$$(-\Delta_p)(w_{in}) \xrightarrow[weak]{} L_i,$$

in particular

$$\lim_{n \to +\infty} < -\Delta_p w_{in}, w_i > = < L_i, w_i > .$$

Since

$$< -\Delta_p w_{in}, w_{in} - w_i > = (1 - t_n) \alpha_i \int_{\Omega} |w_{in}|^{p-2} w_{in} (w_{in} - w_i) dx + t_n \Big[\int_{\Omega} g_{i+(-1)^{i+1}n} (w_{in} - w_i) dx + \frac{1}{n^{p-1}} < h_i, w_{in} - w_i > \Big],$$

it holds

$$\lim_{n \to +\infty} < -\Delta_p w_{in}, w_{in} - w_i >= 0.$$

But, we have

$$\lim_{n \to +\infty} \langle -\Delta_p w_{in}, w_{in} - w_i \rangle = \lim_{n \to +\infty} \langle -\Delta_p w_{in}, w_{in} \rangle - \lim_{n \to +\infty} \langle -\Delta_p w_{in}, w_i \rangle$$
$$= \lim_{n \to +\infty} \langle -\Delta_p w_{in}, w_{in} \rangle - \langle L_i, w_i \rangle$$
$$= 0,$$

consequently

$$\lim_{n \to +\infty} < -\Delta_p w_{in}, w_{in} > = < L_i, w_i >$$

We also know that $(-\Delta_p)$ is an operator of type (M), so we get

$$L_i = -\Delta_p w_i.$$

Passing to the limit in (2.22) gives (2.21), but by lemma (2.3), we have

$$(1-t)\alpha_i |w_i|^{p-2} + tg_{i+(-1)^{i+1}} = m_i |w_i|^{p-2} w_i$$
 a.e. in Ω ,

which implies that w_i is a solution of (2.20) for every *i* such that i = 1, 2.

Now, we can prove our estimate.

To reach the contradiction, we set $\lambda_1(\Omega, m_i(x))$ (resp., $\lambda_2(\Omega, m_i(x))$ to be the first (resp., the second) eigenvalue of the problem with weight

$$\begin{cases} -\Delta_p u = \lambda m_i(x) |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

For i = 1, 2, we use lemma (2.4) and the fact that $\lambda_1 < \alpha_i < \lambda_2$, to get

$$\begin{array}{rcl} \lambda_1 & \leq & m_i(x) < \lambda_2 & \text{a.e. in } \Omega; \\ & \neq & \end{array}$$

now, by the strict monotonicity property of the first eigenvalue [9] and the second eigenvalue [2], we have

$$\lambda_1(\Omega, m_i) < \lambda_1(\Omega, \lambda_1) = 1,$$

and

$$1 = \lambda_2(\Omega, \lambda_2) < \lambda_2(\Omega, m_i),$$

so clearly

$$\lambda_1(\Omega, m_i) < 1 < \lambda_2(\Omega, m_i).$$

But by lemmas (2.2) and (2.5), for every *i* (such that i = 1, 2), 1 is an eigenvalue of $(-\Delta_p)$ for the weights m_i , which contradicts the definition of the second eigenvalues $\lambda_2(\Omega, m_i)$. From above we deduce that the estimation holds true.

3. Proof of the main result

Using the homotopy invariance of the degree map, which through the homotopy T_t yields

$$deg(I - T_0, B(0, R), 0) = deg(I - T_1, B(0, R), 0).$$

As T_0 is odd, so following the theory of Borsuk, we get that $deg(I - T_0, B(0, R), 0)$ is an odd integer and so nonzero. This implies that there exists $(u, v) \in B(0, R)$ such that $T_1(u, v) = (u, v)$. Hence, system (1.1) has a positive solution.

This completes the proof.

References

- A. Anane and J. P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equations, Vol. 15, No. 8, 1141-1159, (1990).
- A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Pitman Research Notes in Mathematics Series, Vol. 343, 1-9, (1996).
- A. Anane and N. Tsouli, On a nonresonance condition between the first and the second eigenvalues for the p-Laplacian, International Journal of Mathematics and Mathematical Sciences (©Hindawi Publishing Corp), Vol. 26, No. 10, 625-634, (2001).
- 4. D. D. Hai, H. Wang, Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl, Vol. 330, 186-194, (2007).
- A. Dakkak and M. Moussaoui, On the second eigencurve for the p-laplacian operator with weight, Bol. Soc. Paran. Mat (3s.), Vol. 35, No. 1, 281-289, (2017).
- H. Lakhal, B. Khodja, *Elliptic systems at resonance for jumping non-linearities*, Electronic Journal of Differential Equations, Vol. 2016, No. 70, 1-13.
- Peter Lindqvist, Notes on the p-Laplacian equation (second edition), Editor: Pekka Koskela, Department of Mathematics and Statistics P.O. Box 35 (MaD) FI-40014, University of Jyväskylä Finland, (2017).
- 8. Xudong Shang, Jihui Zhang, Existence of positive solution for quasilinear elliptic system involving the p-Laplacian, Electronic Journal of Differential Equations, Vol. 2009, No. 71, 1-7.
- 9. N. Tsouli, Etude de l'ensemble nodal des fonctions propres et de la non-résonance pour l'opérateur p-Laplacien, Ph.D. thesis, Université Mohammed I, Faculté des Sciences, Département de Maths, Oujda, Maroc, (1995).
- J. Zhang, Existence results for the positive solutions of nonlinear elliptic systems, Appl. Math. Com, Vol. 153, No. 3, 833-842, (2004).

S. Dob, H. Lekhal, M. Maouni

Sara Dob, Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS) Department of Mathematics, University 20 august 1955 Skikda, Algeria. E-mail address: dobsara@yahoo.com s.dob@univ-skikda.dz

and

Hakim Lekhal, Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS) Department of Mathematics, University 20 august 1955 Skikda, Algeria. E-mail address: H.lakhalQuniv-skikda.dz

and

Messaoud Maouni, Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS) Department of Mathematics, University 20 august 1955 Skikda, Algeria. E-mail address: m.maouni@univ-skikda.dz