Existence of Solutions for a p-Laplacian System with a Nonresonance Condition Between the First and the Second Eigenvalues

Sara Dob, Hakim Lekhal, Messaoud Maouni

ABSTRACT: In this article, we study the existence of positive solutions for the quasilinear elliptic system

$$
\begin{cases}-\Delta_{p} u(x)=f_{1}(x, v(x))+h_{1}(x) & \text { in } \Omega \\ -\Delta_{p} v(x)=f_{2}(x, u(x))+h_{2}(x) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $f_{i}(x, s),(i=1,2)$ locates between the first and the second eigenvalues of the p-Laplacian. To prove the existence of solutions, we use the Leray-Schauder degree.

Key Words: Quasi-elliptic equations, Degree-theoretic methods, Eigenvalues, Sobolev spaces.

Contents

1 Introduction

2 A priori estimate $\quad 3$
3 Proof of the main result $\quad 7$

1. Introduction

Systems of quasilinear elliptic equations present some new and interesting phenomena, which are not present in the study of a single equation. Many publications have appeared concerning quasilinear elliptic systems we refer the readers to ([4], [10]).

In recent years, the eigenvalue problems for p-Laplacian operators have been extensively studied (see $[3],[6],[7],[8])$. The main purpose of this article is to prove the existence of solutions for a quasilinear elliptic system when the second terms on the two equations $f_{i}(x, s),(i=1,2)$ locates between the first and the second eigenvalue of the p-Laplacian. This result can be seen as a generalization of the result obtained by A. Anane and N. Tsouli in [3].

In this paper, we study the existence of positive solution for the nonlinear elliptic system

$$
\begin{cases}-\Delta_{p} u(x)=f_{1}(x, v(x))+h_{1}(x) & \text { in } \Omega \tag{1.1}\\ -\Delta_{p} v(x)=f_{2}(x, u(x))+h_{2}(x) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator with the exponent $p, 1<p<\infty$ and Ω is a smooth bounded region in \mathbb{R}^{n} for $n \geq 1$.
Through this paper, $h_{i} \in W^{-1, p^{\prime}}(\Omega)$ with $i=1,2$ and p^{\prime} the Hölder conjugate of p. As to the nonlinearities $f_{i}(i=1,2)$, we assume that they are Carathéodory functions from $\Omega \times \mathbb{R}$ to \mathbb{R} such that

$$
\begin{align*}
& \max _{|s| \leq R_{i}}\left|f_{i}(x, s)\right| \in L^{p^{\prime}}(\Omega), \quad \forall R_{i}>0, \tag{1.2}\\
& \lambda_{1} \leq l_{i}(x) \leq k_{i}(x)<\lambda_{2} \quad \text { a.e. in } \Omega, \tag{1.3}\\
& \not \equiv \equiv
\end{align*}
$$

[^0]where
$$
l_{i}(x)=\lim _{s \rightarrow \pm \infty} \inf \frac{f_{i}(x, s)}{|s|^{p-2} s}, \quad k_{i}(x)=\lim _{s \rightarrow \pm \infty} \sup \frac{f_{i}(x, s)}{|s|^{p-2} s}
$$
and λ_{1} (resp., λ_{2}) is the first (resp., the second) eigenvalue of the problem
\[

\left\{$$
\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{p-2} u \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega .
\end{array}
$$\right.
\]

First inequality in (1.3) means: "less or equal almost everywhere with strict inequality on a set of positive measure". we also assume that the inequalities in (1.3) holds for $i=1,2$:

$$
\begin{array}{lll}
\forall \varepsilon_{i}>0, & \exists \eta\left(\varepsilon_{i}\right)>0: \lambda_{1}-\varepsilon_{i} \leq \frac{f_{i}(x, s)}{|s|^{p-2 s}}, & \forall|s| \geq \eta\left(\varepsilon_{i}\right), \\
\forall \varepsilon_{i}>0, & \exists \eta\left(\varepsilon_{i}\right)>0: \frac{f_{i}(x, s)}{|s|^{p-2 s}} \leq \lambda_{2}+\varepsilon_{i}, & \forall|s| \geq \eta\left(\varepsilon_{i}\right), \tag{1.4}\\
\text { a.e. in } \Omega,
\end{array}
$$

Recently, A. Anane and N. Tsouli [3] study the existence of solutions for the Dirichlet problem $-\Delta_{p} u=$ $f(x, u)+h(x)$ in $\Omega, u=0$ in $\partial \Omega$, when $f(x, u)$ locates between the first and the second eigenvalues of the p-Laplacian $\left(\Delta_{p}\right)$, using Leray-Schauder topological degree.
Their work is based on the absurd reasoning, they arrived at a contradiction by using different lemmas and the variation characterization of λ_{2}, more precisely the monotonicity of λ_{2}. Our work is based on the same method of proof.

The main result of this paper is the following theorem.

Theorem 1.1. For $i=1,2$, assume that f_{i} satisfies (1.2), (1.3) and (1.4). Then for any $h_{i} \in W^{-1, p^{\prime}}(\Omega)$, (1.1) admits a weak solution (u, v) in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$.

As usual, a weak solution of system (1.1) is any $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ such that

$$
\begin{gathered}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi_{1} d x+\int_{\Omega}|\nabla v|^{p-2} \nabla v \nabla \varphi_{2} d x=\int_{\Omega} f_{1}(x, v) \varphi_{1} d x+\int_{\Omega} f_{2}(x, u) \varphi_{2} d x \\
+\left\langle h_{1}, \varphi_{1}\right\rangle+\left\langle h_{2}, \varphi_{2}\right\rangle,
\end{gathered}
$$

for every $\varphi_{i} \in W^{-1, p^{\prime}}(\Omega),(i=1,2)$, where $\langle.,$.$\rangle denotes the duality product between W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$.

Next, let us define by $\left(T_{t}\right)_{t \in[0,1]}$ the family of operators from $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ to $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ defined by

$$
T_{t}(u, v)=\binom{T_{1 t}(u, v)}{T_{2 t}(u, v)}=\left(\begin{array}{cc}
-\Delta_{p}^{-1} & 0 \tag{1.5}\\
0 & -\Delta_{p}^{-1}
\end{array}\right) \times\binom{(1-t) \alpha_{1}|u|^{p-2} u+t f_{1}(x, v)+t h_{1}}{(1-t) \alpha_{2}|v|^{p-2} v+t f_{2}(x, u)+t h_{2}},
$$

where $\alpha_{i}, i=1,2$ are some fixed numbers with $\lambda_{1}<\alpha_{i}<\lambda_{2}$.
We consider the space $U=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$ endowed with the norm

$$
\begin{equation*}
\|(u, v)\|_{U}=\|u\|_{W_{0}^{1, p}(\Omega)}^{p}+\|v\|_{W_{0}^{1, p}(\Omega)}^{p}, \tag{1.6}
\end{equation*}
$$

$V=L^{p}(\Omega) \times L^{p}(\Omega), Y=L^{p^{\prime}}(\Omega) \times L^{p^{\prime}}(\Omega)$ and $Z=W^{-1, p^{\prime}}(\Omega) \times W^{-1, p^{\prime}}(\Omega)$. In the sequel, $\|\cdot\|_{L^{p}(\Omega)}$ and $\|\cdot\|_{L^{p^{\prime}}(\Omega)}$ will denote the usual norms on $L^{p}(\Omega)$ and $L^{p^{\prime}}(\Omega)$, respectively.

Remark 1.2. Hypotheses (1.2) and (1.4) give us the growth conditions

$$
\begin{equation*}
\left|f_{i}(x, s)\right| \leq a_{i}|s|^{p-1}+b_{i}(x) \quad \forall|s| \in \mathbb{R} \text {, a.e. in } \Omega, \tag{1.7}
\end{equation*}
$$

where $a_{i}>0$ and $b_{i}(.) \in L^{p^{\prime}}(\Omega)$.

Remark 1.3. Equations (1.2) and (1.4) imply

$$
\begin{gather*}
\forall \varepsilon_{i}>0, \quad \exists b_{\varepsilon_{i}} \in L^{p^{\prime}}(\Omega) \text { such that } \\
|s|^{p}\left(\lambda_{1}-\varepsilon_{i}\right)-b_{\varepsilon_{i}}(x) \leq s f_{i}(x, s) \leq|s|^{p}\left(\lambda_{2}+\varepsilon_{i}\right)-b_{\varepsilon_{i}}(x), \tag{1.8}\\
\forall s \in \mathbb{R}, \quad \text { a.e. in } \Omega .
\end{gather*}
$$

Lemma 1.4. T_{t} is continuous and compact.
Proof. We have, $T_{t}: U \rightarrow U$; to prove the Lemma, we have

$$
\begin{equation*}
U \hookrightarrow V \underset{A}{\rightarrow} Y \hookrightarrow Z \underset{S}{\rightarrow} U \tag{1.9}
\end{equation*}
$$

such that the Nemytskii operator

$$
\begin{array}{rll}
A: & V & \rightarrow Y \\
(u, v) & \mapsto\left(f_{1}(x, v), f_{2}(x, u)\right)
\end{array}
$$

and

$$
\begin{aligned}
S: & Z \\
\binom{f_{1}}{f_{2}} & \mapsto U \\
& \mapsto\left(\begin{array}{cc}
-\Delta_{p}^{-1} & 0 \\
0 & -\Delta_{p}^{-1}
\end{array}\right)\binom{f_{1}(x, v)}{f_{2}(x, u)}=\binom{u}{v}
\end{aligned}
$$

are continuous and compact.

2. A priori estimate

To prove theorem (1.1), we first establish the following estimate:

$$
\exists R>0 \text { such that } \forall t \in[0,1], \forall(u, v) \in \partial B(0, R) \text { such that }\left[I-T_{t}\right](u, v) \neq 0
$$

where $B(0, R)$ denotes the ball of center 0 and radius R in U.
For, we assume by contradiction that

$$
\begin{gather*}
\forall n>0, \quad \exists t_{n} \in[0,1], \quad \exists\left(u_{n}, v_{n}\right) \in U \text { with } \\
\left\|\left(u_{n}, v_{n}\right)\right\|_{1, p}=n \text { such that } T_{t_{n}}\left(u_{n}, v_{n}\right)=\left(u_{n}, v_{n}\right) \tag{2.1}
\end{gather*}
$$

Let $w_{n}=\left(w_{1 n}, w_{2 n}\right)=\left(\frac{u_{n}}{n}, \frac{v_{n}}{n}\right)$. We still denoted by $\left(w_{n}\right)$ the subsequence of $\left(w_{n}\right)$ which converges weakly in U, strongly in V and a.e. in Ω to w.
We can also suppose that t_{n} converges to $t \in[0,1]$. That to reach a contradiction, we need the following lemmas.

Lemma 2.1. If the sequence $g_{n}=\left(g_{1 n}, g_{2 n}\right)$ are defined by

$$
\begin{equation*}
g_{i n}=\frac{f_{i}\left(x, n w_{i+(-1)^{i+1} n}\right)}{n^{p-1}}, \quad i=1,2 \tag{2.2}
\end{equation*}
$$

then $g_{\text {in }}$ are bounded in $L^{p^{\prime}}(\Omega)$, and they admit subsequences $g_{i n}$ converging weakly to some g_{i} in $L^{p^{\prime}}(\Omega)$.
Proof. From (1.7), we have

$$
\left|f_{i}(x, s)\right| \leq a_{i}|s|^{p-1}+b_{i}(x)
$$

then

$$
\left|g_{i n}(x)\right| \leq a_{i}\left|w_{i+(-1)^{i+1} n}\right|^{p-1}+\frac{b_{i}(x)}{n^{p-1}}
$$

as $b_{i}(x)$ in $L^{p^{\prime}}(\Omega)$ and $\left|w_{i+(-1)^{i+1} n}\right|^{p-1} \in L^{p^{\prime}}(\Omega)$, so $g_{i n}$ become bounded in $L^{p^{\prime}}(\Omega)$.
Consequently, there exists a subsequence, still denoted by $g_{i n}$ converging weakly to g_{i} in $L^{p^{\prime}}(\Omega)$.

Lemma 2.2. $w_{i} \neq 0, i=1,2$.
Proof. We have that w_{n} verifies

$$
\begin{align*}
\int_{\Omega}\left|\nabla w_{1 n}\right|^{p} d x+\int_{\Omega}\left|\nabla w_{2 n}\right|^{p} d x= & \left(1-t_{n}\right)\left[\alpha_{1} \int_{\Omega}\left|w_{1 n}\right|^{p} d x+\alpha_{2} \int_{\Omega}\left|w_{2 n}\right|^{p} d x\right] \\
& +t_{n}\left[\int_{\Omega} g_{1 n}(x) w_{1 n} d x+\int_{\Omega} g_{2 n}(x) w_{2 n} d x\right. \\
& \left.+\frac{1}{n^{p-1}}<h_{1}, w_{1 n}>+\frac{1}{n^{p-1}}<h_{2}, w_{2 n}>\right] . \tag{2.3}
\end{align*}
$$

We get from lemma (2.1)

$$
\begin{equation*}
1=(1-t)\left[\alpha_{1} \int_{\Omega}\left|w_{1}\right|^{p} d x+\alpha_{2} \int_{\Omega}\left|w_{2}\right|^{p} d x\right]+t\left[\int_{\Omega} g_{1}(x) w_{1} d x+\int_{\Omega} g_{2}(x) w_{2} d x\right] ; \tag{2.4}
\end{equation*}
$$

from the diffrent properties of the weak and strong convergences we get that $w_{i} \neq 0, i=1,2$.
Lemma 2.3. Let $A=\left\{x \in \Omega: w_{i}(x) \neq 0, \quad(i=1,2)\right\}$, then

$$
g_{i}=0 \text { a.e. in } \Omega \backslash A \text { where } i=1,2 .
$$

Proof. The inequality (1.7) gives us for every $i(i=1,2)$

$$
\begin{equation*}
\left|g_{i n}(x)\right| \leq a_{i}\left|w_{i+(-1)^{i+1} n}\right|^{p-1}+\frac{b_{i}(x)}{n^{p-1}} \quad \text { a.e. in } \Omega \backslash A, \tag{2.5}
\end{equation*}
$$

so

$$
\begin{equation*}
\left\|g_{i n}\right\|_{L^{p^{\prime}}(\Omega \backslash A)} \leq a_{i}\left\|w_{i+(-1)^{i+1} n}\right\|_{L^{p}(\Omega \backslash A)}^{\frac{p}{p}}+\frac{1}{n^{p-1}}\left\|b_{i}\right\|_{L^{p^{\prime}}(\Omega \backslash A)} . \tag{2.6}
\end{equation*}
$$

From lemma (2.2), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|g_{i n}\right\|_{L^{p^{\prime}}(\Omega \backslash A)}=0 . \quad(i=1,2) \tag{2.7}
\end{equation*}
$$

Let $D=\left\{x \in \Omega \backslash A: g_{i} \neq 0, \quad(i=1,2)\right\}$. By lemma (2.1) we get, for $\phi_{i}(x)=\operatorname{sign}\left[g_{i}(x)\right] \chi_{D}(x) \in L^{p}(D)$ such that

$$
\chi_{D}(x)= \begin{cases}0 & ; x \notin D, \\ 1 & ; x \in D,\end{cases}
$$

that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{D} g_{i n}(x) \phi_{i}(x) d x=\int_{D} g_{i}(x) \phi_{i}(x) d x=\int_{D}\left|g_{i}(x)\right| d x \tag{2.8}
\end{equation*}
$$

but, we have by (2.7)

$$
\begin{equation*}
\int_{D}\left|g_{i}(x)\right| d x=0, \quad(i=1,2) \tag{2.9}
\end{equation*}
$$

consequently, $\operatorname{meas}(D)=0$ which implies

$$
g_{i}=0 \text { a.e. in } \Omega \backslash A \text { where } i=1,2 .
$$

Lemma 2.4. Let $i=1,2$ and

$$
\tilde{g}_{i}(x)= \begin{cases}\frac{g_{i}(x)}{\mid w(x)_{i+\left.(-1)^{i+1}\right|^{p-2} w(x)_{i+(-1)^{i+1}}}} & \text { on } A, \tag{2.10}\\ \beta_{i} & \text { on } \Omega \backslash A,\end{cases}
$$

where β_{i} are fixed numbers such that $\lambda_{1}<\beta_{i}<\lambda_{2}$, then

$$
\begin{equation*}
\lambda_{1} \leq \tilde{g}_{i}(x)<\lambda_{2} \quad \text { a.e. in } \Omega . \tag{2.11}
\end{equation*}
$$

Proof. For $i=1,2$, firstly we define new subsets us follow

$$
\begin{aligned}
B_{l_{i}} & =\left\{x \in A: w_{i+(-1)^{i+1}}(x) g_{i}(x)<l_{i}(x)\left|w_{i+(-1)^{i+1}}(x)\right|^{p}\right\} \\
B_{k_{i}} & =\left\{x \in A: w_{i+(-1)^{i+1}}(x) g_{i}(x)>k_{i}(x)\left|w_{i+(-1)^{i+1}}(x)\right|^{p}\right\}
\end{aligned}
$$

then we prove that $\operatorname{meas}\left(B_{l_{i}}\right)=\operatorname{meas}\left(B_{k_{i}}\right)=0$.
By remark (1.3), we have that $\forall \varepsilon_{i}>0, \quad \exists b_{\varepsilon_{i}} \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
\left|w_{i+(-1)^{i+1} n}\right|^{p}\left(l_{i}-\varepsilon_{i}\right)-\frac{b_{\varepsilon_{i}}}{n^{p}} \leq w_{i+(-1)^{i+1} n} g_{i n} \leq\left|w_{i+(-1)^{i+1} n}\right|^{p}\left(k_{i}+\varepsilon_{i}\right)+\frac{b_{\varepsilon_{i}}}{n^{p}} \tag{2.12}
\end{equation*}
$$

By integrating in the first inequality and letting $n \rightarrow \infty$, then $\varepsilon \rightarrow 0$, we deduce

$$
\begin{equation*}
\int_{B_{l_{i}}}\left[w_{i+(-1)^{i+1}}(x) g_{i}(x)-\left|w_{i+(-1)^{i+1}}(x)\right|^{p} l_{i}(x)\right] d x \geq 0 \tag{2.13}
\end{equation*}
$$

and from the definition of the subset $B_{l_{i}}$, we get

$$
\begin{equation*}
\int_{B_{l_{i}}}\left[w_{i+(-1)^{i+1}}(x) g_{i}(x)-\left|w_{i+(-1)^{i+1}}(x)\right|^{p} l_{i}(x)\right] d x<0 . \tag{2.14}
\end{equation*}
$$

Whereupon

$$
\begin{equation*}
\int_{B_{l_{i}}}\left[w_{i+(-1)^{i+1}}(x) g_{i}(x)-\left|w_{i+(-1)^{i+1}}(x)\right|^{p} l_{i}(x)\right] d x=0 \tag{2.15}
\end{equation*}
$$

which implies meas $\left(B_{l_{i}}\right)=0$. The second inequality give us meas $\left(B_{k_{i}}\right)=0$. In the second step, from the definition of \tilde{g}_{i}, we obtain

$$
\begin{equation*}
l_{i}(x) \leq \tilde{g}_{i}(x) \leq k_{i}(x) \text { a.e. in } A \tag{2.16}
\end{equation*}
$$

and hypothesis (1.3) allow us to write

$$
\begin{equation*}
\lambda_{1} \leq \tilde{g}_{i}(x)<\lambda_{2} \text { a.e. in } A \tag{2.17}
\end{equation*}
$$

Since $\tilde{g}_{i}=\beta_{i}$ in $\Omega \backslash A$, then

$$
\begin{equation*}
\lambda_{1}<\tilde{g}_{i}<\lambda_{2} \text { in } \Omega \backslash A \tag{2.18}
\end{equation*}
$$

The inequalities (2.17) and (2.18) leads to

$$
\begin{equation*}
\lambda_{1} \leq \tilde{g}_{i}(x)<\lambda_{2} \text { a.e. in } \Omega \tag{2.19}
\end{equation*}
$$

From (2.18), (2.19) and the fact that $\operatorname{mes}(\Omega \backslash A) \neq 0$, we obtain

$$
\lambda_{1} \underset{\substack{\leq \\ \\ \equiv}}{ } \tilde{g}_{i}(x)<\lambda_{2} \quad \text { a.e. in } \Omega .
$$

Lemma 2.5. If $i=1,2$, then w_{i} is a solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} w_{i}=m_{i}\left|w_{i}\right|^{p-2} w_{i} \quad \text { in } \Omega \tag{2.20}\\
w_{i}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $m_{i}(x)=(1-t) \alpha_{i}+t \tilde{g}_{i+(-1)^{i+1}}(x)$.

Proof. We first prove that $w_{i}(i=1,2)$ is a solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} w_{i}=(1-t) \alpha_{i}\left|w_{i}\right|^{p-2} w_{i}+t g_{i+(-1)^{i+1}} \quad \text { in } \Omega \tag{2.21}\\
w_{i}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

From [3], we have that $w_{i n}(i=1,2)$ satisfies

$$
\left\{\begin{array}{l}
-\Delta_{p} w_{i n}=\left(1-t_{n}\right)\left|w_{i n}\right|^{p-2} w_{i n}+t_{n}\left[g_{i+(-1)^{i+1} n}+\frac{1}{n^{p-1}} h_{i}\right] \quad \text { in } \Omega \tag{2.22}\\
w_{i n}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

We know that for $i=1,2,\left(-\Delta_{p}\right)\left(w_{i n}\right)$ are bounded in $W^{-1, p^{\prime}}(\Omega)$, so we can extract from it a subsequence $\left(w_{i n}\right)$ (for simplicity of the notation), and a distribution $L_{i} \in W^{-1, p^{\prime}}$ such that

$$
\left(-\Delta_{p}\right)\left(w_{i n}\right) \underset{\text { weak }}{ } L_{i}
$$

in particular

$$
\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i}>=<L_{i}, w_{i}>
$$

Since

$$
\begin{aligned}
<-\Delta_{p} w_{i n}, w_{i n}-w_{i}>= & \left(1-t_{n}\right) \alpha_{i} \int_{\Omega}\left|w_{i n}\right|^{p-2} w_{i n}\left(w_{i n}-w_{i}\right) d x \\
& +t_{n}\left[\int_{\Omega} g_{i+(-1)^{i+1} n}\left(w_{i n}-w_{i}\right) d x+\frac{1}{n^{p-1}}<h_{i}, w_{i n}-w_{i}>\right]
\end{aligned}
$$

it holds

$$
\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i n}-w_{i}>=0
$$

But, we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i n}-w_{i}> & =\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i n}>-\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i}> \\
& =\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i n}>-<L_{i}, w_{i}> \\
& =0
\end{aligned}
$$

consequently

$$
\lim _{n \rightarrow+\infty}<-\Delta_{p} w_{i n}, w_{i n}>=<L_{i}, w_{i}>
$$

We also know that $\left(-\Delta_{p}\right)$ is an operator of type (M), so we get

$$
L_{i}=-\Delta_{p} w_{i}
$$

Passing to the limit in (2.22) gives (2.21), but by lemma (2.3), we have

$$
(1-t) \alpha_{i}\left|w_{i}\right|^{p-2}+t g_{i+(-1)^{i+1}}=m_{i}\left|w_{i}\right|^{p-2} w_{i} \quad \text { a.e. in } \Omega
$$

which implies that w_{i} is a solution of (2.20) for every i sush that $i=1,2$.
Now, we can prove our estimate.
To reach the contradiction, we set $\lambda_{1}\left(\Omega, m_{i}(x)\right)$ (resp., $\lambda_{2}\left(\Omega, m_{i}(x)\right)$ to be the first (resp., the second) eigenvalue of the problem with weight

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda m_{i}(x)|u|^{p-2} u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

For $i=1,2$, we use lemma (2.4) and the fact that $\lambda_{1}<\alpha_{i}<\lambda_{2}$, to get

$$
\lambda_{1} \underset{\substack{ \\\not \equiv}}{\leq} m_{i}(x)<\lambda_{2} \quad \text { a.e. in } \Omega
$$

now, by the strict monotonicity property of the first eigenvalue [9] and the second eigenvalue [2], we have

$$
\lambda_{1}\left(\Omega, m_{i}\right)<\lambda_{1}\left(\Omega, \lambda_{1}\right)=1
$$

and

$$
1=\lambda_{2}\left(\Omega, \lambda_{2}\right)<\lambda_{2}\left(\Omega, m_{i}\right)
$$

so clearly

$$
\lambda_{1}\left(\Omega, m_{i}\right)<1<\lambda_{2}\left(\Omega, m_{i}\right)
$$

But by lemmas (2.2) and (2.5), for every i (sush that $i=1,2$), 1 is an eigenvalue of $\left(-\Delta_{p}\right)$ for the weights m_{i}, which contradicts the definition of the second eigenvalues $\lambda_{2}\left(\Omega, m_{i}\right)$.
From above we deduce that the estimation holds true.

3. Proof of the main result

Using the homotopy invariance of the degree map, which through the homotopy T_{t} yields

$$
\operatorname{deg}\left(I-T_{0}, B(0, R), 0\right)=\operatorname{deg}\left(I-T_{1}, B(0, R), 0\right)
$$

As T_{0} is odd, so following the theory of Borsuk, we get that $\operatorname{deg}\left(I-T_{0}, B(0, R), 0\right)$ is an odd integer and so nonzero. This implies that there exists $(u, v) \in B(0, R)$ such that $T_{1}(u, v)=(u, v)$. Hence, system (1.1) has a positive solution.

This completes the proof.

References

1. A. Anane and J. P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equations, Vol. 15, No. 8, 1141-1159, (1990).
2. A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Pitman Research Notes in Mathematics Series, Vol. 343, 1-9, (1996).
3. A. Anane and N. Tsouli, On a nonresonance condition between the first and the second eigenvalues for the p-Laplacian, International Journal of Mathematics and Mathematical Sciences (©Hindawi Publishing Corp), Vol. 26, No. 10, 625-634, (2001).
4. D. D. Hai, H. Wang, Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl, Vol. 330, 186-194, (2007).
5. A. Dakkak and M. Moussaoui, On the second eigencurve for the p-laplacian operator with weight, Bol. Soc. Paran. Mat (3s.), Vol. 35, No. 1, 281-289, (2017).
6. H. Lakhal, B. Khodja, Elliptic systems at resonance for jumping non-linearities, Electronic Journal of Differential Equations, Vol. 2016, No. 70, 1-13.
7. Peter Lindqvist, Notes on the p-Laplacian equation (second edition), Editor: Pekka Koskela, Department of Mathematics and Statistics P.O. Box 35 (MaD) FI-40014, University of Jyväskylä Finland, (2017).
8. Xudong Shang, Jihui Zhang, Existence of positive solution for quasilinear elliptic system involving the p-Laplacian, Electronic Journal of Differential Equations, Vol. 2009, No. 71, 1-7.
9. N. Tsouli, Etude de l'ensemble nodal des fonctions propres et de la non-résonance pour l'opérateur p-Laplacien, Ph.D. thesis, Université Mohammed I, Faculté des Sciences, Département de Maths, Oujda, Maroc, (1995).
10. J. Zhang, Existence results for the positive solutions of nonlinear elliptic systems, Appl. Math. Com, Vol. 153, No. 3, 833-842, (2004).

Sara Dob,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
Department of Mathematics,
University 20 august 1955 Skikda,
Algeria.
E-mail address: dobsara@yahoo.com s.dob@univ-skikda.dz
and
Hakim Lekhal,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
Department of Mathematics,
University 20 august 1955 Skikda,
Algeria.
E-mail address: H.lakhal@univ-skikda.dz
and
Messaoud Maouni,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
Department of Mathematics,
University 20 august 1955 Skikda,
Algeria.
E-mail address: m.maouni@univ-skikda.dz

[^0]: 2010 Mathematics Subject Classification: 35K86, 35R35, 49J40.
 Submitted August 04, 2019. Published October 14, 2019

