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On the Sequences of Polynomials and Their Generating Functions

Abdelkader Messahel and Miloud Mihoubi

abstract: We give first of all, an identity having interesting applications on polynomials and some combi-
natorial sequences. Secondly, we refer two interesting formulas on generating functions of polynomials. Our
results are illustrated by some comprehensive examples.
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1. Introduction

Generating functions of specified sequences of polynomials, such as Hermite, Laguerre, Bell, Cheby-
chev, Jacobi polynomials and others, have been studied by a large number of authors, see for example
[3,4,12,13,15]. Different methods and techniques are used to develop some relations, formulas and iden-
tities. Taylor-Maclaurin expansion and Lagrange inversion formula are the principal tools often used for
such studies. In this paper, based on an identity on polynomials established below, we give interesting
formulas for the generating functions of polynomials. Indeed, let m,n be natural numbers, z be a complex
number and let Pm be a polynomial with degree at most m, we prove below that the following identity
holds

Pm (z) =

n+m
∑

k=0

(−1)
n+k

kn
(

n+m+ 1

k + 1

)

Pm (−kz) . (1.1)

We use this identity to establish a formula on generating function for any sequence of polynomials.
Further formula is established from the Melzak formula [6,7] given, for any polynômial f with degree
6 p, by

f (x+ α) = α

(

α+ p

p

) p
∑

j=0

(−1)
j

(

p

j

)

f (x− j)

α+ j
, (1.2)

where x and α are complex numbers.

2. Identities on polynomials

The key of this paper is the following proposition.

Proposition 2.1. Let m be a non-negative integer and let H, G be two power series such that H (0) = 1.
Then

Dn
t=0

(

G (t)

H (t)

)

=

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

Dn
t=0

(

Hk (t)G (t)
)

, (2.1)
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2 A. Messahel and M. Mihoubi

and if G (0) = 1 we also have

Dn
t=0

(

G (t)

H (t)

)

=

n+m
∑

k=0

(−1)k
(

n+m+ 1

k + 1

)

Dn
t=0

(

Hk (t)G−k (t)
)

, (2.2)

where Dn
t=0(f(t)) means the coefficient of tn in the Taylor expansion of f(t).

Proof. Since H (0) = 1, it follows that

G (t)

H (t)
(H (t)− 1)

n+m+1
= tn+m+1M (t)

for some power series M. Then

0 = Dn
t=0

(

G (t)

H (t)
(H (t)− 1)

n+m+1

)

= (−1)
n+m

n+m+1
∑

k=0

(−1)
k−1

(

n+m+ 1

k

)

Dn
t=0

(

Hk−1 (t)G (t)
)

= (−1)
n+m

[

−Dn
t=0

(

G (t)

H (t)

)

+

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

Dn
t=0

(

Hk (t)G (t)
)

]

.

So, the first identity follows. This identity becomes when we set G (t) = 1 :

Dn
t=0

(

1

H (t)

)

=

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

Dn
t=0

(

Hk (t)
)

.

Then, by replacing H by H/G for such power series G with G (0) = 1, the second identity follows. �

Example 2.2. Let
(

L
(α,β)
n (x) ;n ≥ 0

)

be a sequence of polynomials defined by

∑

n≥0

L(α,β)
n (x)

tn

n!
= (1− t)

α
exp

(

x
(

(1− t)
β
− 1
))

,

for more information above these class of polynomials, see [10,11].
For α = −(c + 1)k and β = − 1

k
, k = 1, 2, . . ., c > −1, these polynomials are named Konhauser’s

(biorthogonal) polynomials and can also be viewed as a generalization of Laguerre polynomials, see [4].

For G (t) = (1− t)
α
, H (t) = exp

(

−z
(

(1− t)
β
− 1
))

in the formulas (2.1) and (2.2) we obtain

respectively

L(α,β)
m (z) =

n+m
∑

k=0

(−1)k
(

n+m+ 1

k + 1

)

L(α,β)
m (−kz) ,

L(α,β)
m (z) =

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

L(−kα,β)
m (−kz) .

For G (t) = exp
(

z
(

(1− t)
β
− 1
))

, H (t) = (1− t)
−α

in the formula (2.1) we obtain

L(α,β)
m (z) =

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

L(−kα,β)
m (z) .
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By application of Proposition 2.1 on Appell polynomials, we derive an identity on polynomials on which
is based the rest of this paper. Recall that an Appell sequence is a sequence (fn;n ≥ 0) of polynomials
satisfying d

dx
fn(x) = nfn−1(x) and deg(f0) = 0, see [1].

Proposition 2.3. Let α, β be real numbers and let
(

f
(α)
n (x)

)

be the sequence of Appell polynomials

having exponential generating function

∑

n≥0

f (α)
n (x)

tn

n!
= (F (t))

α
ext, F (0) = 1. (2.3)

Then

f (α+β)
n (x) =

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

f (β−αk)
n (x) , (2.4)

f (α)
n (x) =

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

f (−αk)
n (−kx) . (2.5)

Proof. When we set G (t) = ext (F (t))β and H (t) = (F (t))−α in the formula (2.1) we obtain the identity
(2.4), and, when we set G (t) = ext and H (t) = (F (t))

−α
in the formula (2.2), we obtain the identity

(2.5). �

The identity (2.5) can be generalized as follows.

Proposition 2.4. Let α be a real number and let
(

f
(α)
n (x)

)

be as above and Pm be a polynomial of

degree ≤ m. Then, for any complex number z, we have

f (α)
n (x)Pm (z) =

n+m
∑

k=0

(−1)
k

(

n+m+ 1

k + 1

)

f (−αk)
n (−kx)Pm (−kz) . (2.6)

Proof. Since d
dx
f
(α)
n (x) = nf

(α)
n−1 (x) , then by derivation h times the two sides of the identity (2.5), we

get

f (α)
n (x) =

n+m+h
∑

k=0

(−1)
k
(−k)

h

(

n+m+ h+ 1

k + 1

)

f (−αk)
n (−kx) . (2.7)

Setting Pm (z) =
∑m

j=0 ajz
j. Then, by replacing (m,h) by (m+ h− j, j) in (2.7) we obtain

f (α)
n (x) zj =

n+m+h
∑

k=0

(−1)
k
(−kz)

j

(

n+m+ h+ 1

k + 1

)

f (−αk)
n (−kx) .

Multiply this identity by aj and sum it over j = 0, . . . ,m+ h to get

f (α)
n (x)Pm+h (z) =

n+m+h
∑

k=0

(−1)k
(

n+m+ h+ 1

k + 1

)

f (−αk)
n (−kx)Pm+h (−kz) ,

which is equivalent, when we replace m+ h by m, to the desired identity. �

For Pm (z) = z (z + 1) · · · (z +m− 1) and z = 1 in Proposition 2.4, we obtain

Corollary 2.5.

f (α)
n (x) =

n
∑

k=0

(−1)
k

(

k +m

m

)(

n+m+ 1

k +m+ 1

)

f (−α(k+m))
n (− (k +m)x) . (2.8)
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In particular, for f
(α)
n (x) = xn in Proposition 2.4, we get

Corollary 2.6.

Pm (z) =
n+m
∑

k=0

(−1)n+k kn
(

n+m+ 1

k + 1

)

Pm (−kz) . (2.9)

In particular, for n = 0, we get

Pm (z) =

m
∑

k=0

(−1)
k

(

m+ 1

k + 1

)

Pm (−kz) . (2.10)

Remark 2.7. We note that the identity (2.9) can be derived from more elementary computations.
Indeed, it can be written as

n+m+1
∑

k=0

(−1)
k−1

(1− k)
n

(

n+m+ 1

k

)

Pm ((1− k) z) = 0. (2.11)

By linearity it suffices to prove the formula (2.11) for Pm (z) = zm. Hence, the factor zm is common to
all the terms of the sum so can be omitted. By expanding (1− k)

n
and rearranging the sum, we find

that the formula (2.11) is equivalent to

n+m
∑

i=0

(−1)
i

(

n+m

i

) n+m+1
∑

k=0

(−1)
k

(

n+m+ 1

k

)

kn+m−i = 0. (2.12)

To prove this identity, we use the identities

n+m+1
∑

k=0

(−1)
k

(

n+m+ 1

k

)

(k)s =

(

d

dx

)s

(1− x)
n+m+1

∣

∣

∣

∣

x=1

, s = 0, 1, . . . ,

and the formula

kn+m−i =

n+m−i
∑

s=0

{

n+m− i

s

}

(k)s

to prove that the left hand side of (2.12) is to be

n+m
∑

i=0

(−1)
i

(

n+m

i

) n+m−i
∑

s=0

{

n+m− i

s

} n+m+1
∑

k=0

(−1)
k

(

n+m+ 1

k

)

(k)s

=

n+m
∑

i=0

(−1)
i

(

n+m

i

) n+m−i
∑

s=0

{

n+m− i

s

} (

d

dx

)s

(1− x)
n+m+1

∣

∣

∣

∣

x=1

= 0,

where
{

m
k

}

is the (m, k)-th Stirling number of the second kind.

Example 2.8. By the identity (2.9) we get

L(α,β)
m (z) =

n+m
∑

k=0

(−1)n+k kn
(

n+m+ 1

k + 1

)

L(α,β)
m (−kz) .

In particular, the Lah polynomials Ln (z) = L
(0,−1)
n (z) satisfy

Lm (z) =

m
∑

k=0

L (m, k) zk =

n+m
∑

k=0

(−1)
n+k

kn
(

n+m+ 1

k + 1

)

Lm (−kz) ,

where L (n, k) are the unsigned Lah numbers.
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Example 2.9. The identity (2.10) implies

Pm (z) =
m
∑

i,j=0

(−1)i+j

(

m+ 1

i+ 1

)(

m+ 1

j + 1

)

Pm (ijz) . (2.13)

Then, for r, s be non-negative integers and

Pm (z) =





1

k!

k
∑

j=0

(−1)
k−j

(

k

j

)

(j + z)
m





s

,

we get Pm (r) =
(

{

m+r
k+r

}

r

)s

and by (2.13) we obtain

({

m+ r

k + r

}

r

)s

=

ms
∑

i,j=0

(−1)
i+j

(

ms+ 1

i+ 1

)(

ms+ 1

j + 1

)

(

{

m+ ijr

k + ijr

}

ijr

)s

,

where
{

m
k

}

r
is the (m, k)-th r-Stirling number of the second kind [2], defined by

∑

m≥k

{

m+ r

k + r

}

r

tm

m!
=

1

k!
(et − 1)kert, k, r = 0, 1, 2, . . . .

Example 2.10. Let (Bn,r (z)) be the sequence of the r-Bell polynomials [8] and let

Br (t; z) = ez(e
t−1)+rt :=

∑

n≥0

Bn,r (z)
tn

n!
.

From (2.9), it follows that the sequence (Bn,r (z)) satisfies

Bm,r (z) =
n+m
∑

k=0

(−1)n+k kn
(

n+m+ 1

k + 1

)

Bm,r (−kz) .

Example 2.11. For Pm (z) =
(

−z
m

)r
, the identity (2.9) implies

(

−z

m

)r

=

n+mr
∑

k=0

(−1)
n+k

kn
(

n+mr + 1

k + 1

)(

kz

m

)r

, m ≥ 0, n ≥ 0,

where
(

α
m

)

is defined for any complex number α by

(

α

m

)

=
α(α− 1) · · · (α−m+ 1)

m!
if m ≥ 1 and

(

α

0

)

= 1.

Remark 2.12. By replacing Pm (z) by Pm (y + z), the identity (2.9) becomes

Pm (y + z) =
n+m
∑

k=0

(−1)n+k kn
(

n+m+ 1

k + 1

)

Pm (y − kz) , (2.14)

which can be written by setting x = y + z as

Pm (x) =

n+m
∑

k=0

(−1)
n+k

kn
(

n+m+ 1

k + 1

)

Pm (x− (k + 1) z) . (2.15)
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3. Two formulas for the generating functions of polynomials

We establish in this section a formula for the generating functions of polynomials based on the identity
(2.9) and other formula based on the Melzak formula. Indeed, let (an) be a sequence of real numbers,
(Pn (z)) be a sequence of polynomials and let E (.) and F (.) be their generating functions defined by

E (t) =
∑

n≥0

ant
n, F (t; z) =

∑

n≥0

Pn (z) tn, |t| < µ, µ > 0. (3.1)

The tool used here is the following theorem:

Theorem 3.1. [14, th. 7.50] Suppose that cm,n ∈ C for each (m,n) ∈ N×N and that φ in any one-to-one
mapping of N onto N× N. If any of the three sums

(i)

∞
∑

m=1

(

∞
∑

n=1

|cm,n|

)

,

∞
∑

n=1

(

∞
∑

m=1

|cm,n|

)

,

∞
∑

k=1

∣

∣cφ(k)
∣

∣

is finite, then all of the series

(ii)

∞
∑

n=1

cm,n (m = 1, 2, . . .) ,

(iii)

∞
∑

m=1

cm,n (n = 1, 2, . . .) ,

(iv)

∞
∑

m=1

(

∞
∑

n=1

cm,n

)

,

∞
∑

n=1

(

∞
∑

m=1

cm,n

)

,

∞
∑

k=1

cφ(k)

are absolutely convergent and the three series in (iv) all have the same sum, where C and N are, respec-
tively, the sets of complex and natural numbers.

3.1. First formula for the generating functions of polynomials

Based on the identity (2.9) and Theorem 3.1 we may state the following theorem.

Theorem 3.2. If the series

∑

n≥0





∑

k≥1

∣

∣

∣

∣

∣

an
(−t)

k

k!

(

d

dt

)k

(t (− (k − 1) t)n F (t;− (k − 1) z))

∣

∣

∣

∣

∣





converges on D ⊂ ]−µ, µ[ , then

∑

k≥1

(−t)
k

k!

(

d

dt

)k

(tE (− (k − 1) t)F (t;− (k − 1) z)) = −tE (t)F (t; z) , t ∈ D. (3.2)

Proof. By the identity (2.9) we can write

F (t; z) =
∑

m≥0

Pm (z) tm

=
∑

m≥0

(

n+m
∑

k=0

(−1)
n+k

kn
(

n+m+ 1

k + 1

)

Pm (−kz)

)

tm

= −
∑

k≥0

(−k)
n (−1)

k+1

(k + 1)!

∑

m≥max(k−n,0)

(n+m+ 1)!

(n+m− k)!
Pm (−kz) tm

= −
n
∑

k=0

(−k)n
(−1)

k+1

(k + 1)!

∑

m≥0

(n+m+ 1)!

(n+m− k)!
Pm (−kz) tm

−
∑

k≥n+1

(−k)
n (−1)

k+1

(k + 1)!

∑

m≥k−n

(n+m+ 1)!

(n+m− k)!
Pm (−kz) tm.
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So, we get

tn+1F (t; z) = −

n
∑

k=0

(−k)
n (−t)

k+1

(k + 1)!

(

d

dt

)k+1


tn+1
∑

m≥0

Pm (−kz) tm





−
∑

k≥n+1

(−k)
n (−t)

k+1

(k + 1)!

(

d

dt

)k+1


tn+1
∑

m≥k−n

Pm (−kz) tm





= −

n
∑

k=0

(−k)
n (−t)

k+1

(k + 1)!

(

d

dt

)k+1
(

tn+1F (t;−kz)
)

−
∑

k≥n+1

(−k)n
(−t)k+1

(k + 1)!

(

d

dt

)k+1
(

tn+1F (t;−kz)− Tk (t)
)

,

where Tk (t) = tn+1
k−n−1
∑

m=0
Pm (−kz) tm is a polynomial with degree at most k. So Tk (t) vanishes under

the action of (d/dt)k+1. Hence, we can write

tn+1F (t; z) = −
∑

k≥0

(−k)n
(−t)

k+1

(k + 1)!

(

d

dt

)k+1
(

tn+1F (t;−kz)
)

= −
∑

k≥1

(−1)
n+k

(k − 1)
n tk

k!

(

d

dt

)k
(

tn+1F (t;− (k − 1) z)
)

= −
∑

k≥1

(−t)
k

k!

(

d

dt

)k

(t (− (k − 1) t)
n
F (t;− (k − 1) z)) .

This identity implies

tE (t)F (t; z) =
∑

n≥0

ant
n+1F (t; z)

= −
∑

n≥0

an





∑

k≥1

(−t)
k

k!

(

d

dt

)k

(t (− (k − 1) t)
n
F (t;− (k − 1) z))





= −
∑

k≥1

(−t)
k

k!

(

d

dt

)k



t
∑

n≥0

an (− (k − 1) t)n F (t;− (k − 1) z)





= −
∑

k≥1

(−t)
k

k!

(

d

dt

)k

(tE (− (k − 1) t)F (t;− (k − 1) z)) .

For t be a complex number, by Theorem 3.1, a sufficient condition that the main identity holds is such

that the series
∑

n≥0

(

∑

k≥1

|cn,k|

)

is finite, where

cn,k = (−t)k

k!

(

d
dt

)k
(t (− (k − 1) t)

n
F (t;− (k − 1) z)) an. �

Example 3.3. Some applications of Theorem 3.2 are given as follows:
For E (t) = eαt and F (t; z) = eβt, α 6= 0, we get

∑

k≥1

((β − α (k − 1)) t+ k) (β − α (k − 1))
k−1 (−te−αt)

k

k!
= −t, t 6=

1

α
,
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for E (t) = (1 + t)
m

and F (t; z) = 1, m ∈ N, we get

m
∑

k=0

(

m

k

)(

1−

(

m+ 1

k + 1

)

kt

)

(kt)
k
(1− kt)

m−k−1
= (1 + t)

m
, t ∈ R,

for E (t) = (1 + t)
α
and F (t; z) = 1 we get

∑

k≥0

(

α

k

)(

1−

(

α+ 1

k + 1

)

kt

)

(kt)
k
(1− kt)

α−k−1
= (1 + t)

α
, t ∈ ]−1, 1[ ,

for E (t) = sin t
t

and F (t; z) = 1 we get

∑

k≥1

(k − 1)k−1 sin
(

(k − 1) t− k
π

2

) tk

k!
= − sin t, t ∈

]

−e−1, e−1
[

.

and for E (t) = 1, F (t; z) = ez(e
t−1)+rt, since

(

d
dt

)k
F (t; z) = Bk,r (ze

t) ez(e
t−1)+rt [5, Th. 9], then the

formula (3.2) gives

∑

k≥0

(

Bk,r

(

−kzet
)

+
t

k + 1
Bk+1,r

(

−kzet
)

)

(

−te−z(et−1)
)k

k!
= ez(e

t−1).

3.2. Second formula for the generating functions of polynomials

Based on the Melzak formula and Theorem 3.1 we may state the following theorem.

Theorem 3.4. Let s be positive integer. If the series

∑

n≥0





∑

k≥1

∣

∣

∣

∣

∣

an
(s− 1)!

(−t)k

k! (k + s)

(

d

dt

)k+s
(

tn+sF (t; z − s− k)
)

∣

∣

∣

∣

∣





converges on D ⊂ ]−µ, µ[ , then

∑

k≥0

(−t)
k

k! (k + s)

(

d

dt

)k+s

(tsE (t)F (t; z − s− k)) = E (t)F (t; z) , t ∈ D. (3.3)

In particular, for s = 1, we get

∑

k≥1

(−t)
k

k!

(

d

dt

)k

(tE (t)F (t; z − k)) = −tE (t)F (t; z) , t ∈ D. (3.4)

Proof. From the Melzak formula [6,7]

Pm (z) = α

(

α+ n+m

n+m

)n+m
∑

k=0

(−1)
k

(

n+m

k

)

Pm (z − α− k)

α+ k
, n ≥ 0, m ≥ 0.

We can write for α = s ≥ 1 :

Pm (z) =

n+m
∑

k=0

(−1)
k

(

k + s− 1

s− 1

)(

n+m+ s

k + s

)

Pm (z − k − s) . (3.5)
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Then, by the identity (3.5) and Theorem 3.1 we can write

F (t; z) =
∑

m≥0

Pm (z) tm

=
∑

m≥0

(

n+m
∑

k=0

(−1)
k

(

k + s− 1

s− 1

)(

n+m+ s

k + s

)

Pm (z − k − s)

)

tm

=
1

(s− 1)!

∑

k≥0

(−1)
k

k! (k + s)

∑

m≥max(0,k−n)

(n+m+ s)!

(n+m− k)!
Pm (z − s− k) tm

=
1

(s− 1)!

n−1
∑

k=0

(−1)
k

k! (k + s)

∑

m≥0

(n+m+ s)!

(n+m− k)!
Pm (z − s− k) tm

+
1

(s− 1)!

∑

k≥n

(−1)
k

k! (k + s)

∑

m≥k−n

(n+m+ s)!

(n+m− k)!
Pm (z − s− k) tm.

So, we get

tnF (t; z) =
1

(s− 1)!

n−1
∑

k=0

(−t)k

k! (k + s)

(

d

dt

)k+s

tn+s
∑

m≥0

Pm (z − s− k) tm

+
1

(s− 1)!

∑

k≥n

(−t)k

k! (k + s)

(

d

dt

)k+s

tn+s
∑

m≥0

Pm (z − s− k) tm

−
1

(s− 1)!

∑

k≥n

(−t)
k

k! (k + s)

(

d

dt

)k+s

tn+s

k−n−1
∑

m=0

Pm (z − s− k) tm

=
1

(s− 1)!

∑

k≥0

(−t)k

k! (k + s)

(

d

dt

)k+s
(

tn+sF (t; z − s− k)
)

.

This identity implies

E (t)F (t; z) =
∑

n≥0

ant
n+1F (t; z)

=
∑

n≥0

an





1

(s− 1)!

∑

k≥0

(−t)
k

k! (k + s)

(

d

dt

)k+s
(

tn+sF (t; z − s− k)
)





=
∑

k≥0

(−t)
k

k! (k + s)

(

d

dt

)k+s



ts
∑

n≥0

ant
nF (t; z − s− k)





=
∑

k≥0

(−t)k

k! (k + s)

(

d

dt

)k+s

(tsE (t)F (t; z − s− k)) .

For t be a complex number, by Theorem 3.1, a sufficient condition that the main identity holds is such

that the series
∑

n≥0

(

∑

k≥1

|cn,k|

)

is finite, where

cn,k = an

(s−1)!
(−t)k

k!(k+s)

(

d
dt

)k+s
(tn+sF (t; z − s− k)) . �

Example 3.5. Some applications of Theorem 3.4 are given as follows:
For s = 1, E (t) = eαt and F (t; z) = ezt, α 6= 0, we get

∑

k≥0

(k − (λ− k) t) (k − λ)
k−1 (te−t)

k

k!
= −t, t 6= 1, λ = α+ z,
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and for s = 1, E (t) = 1 and F (t; z) = ez(e
t−1)+rt, we get

∑

k≥0

(

Bk,r

(

−kzet
)

+
t

k + 1
Bk+1,r

(

−kzet
)

)

(

−te−z(et−1)
)k

k!
= ez(e

t−1).

4. Conclusion

The knowledge of such properties on polynomials and on their generating functions can help re-
searchers to establish new identities, congruences and generating functions. In this context, our results
take applications in combinatorics, algebra and analysis. For example, from the link between the binomial
polynomials and the partial Bell polynomials [9, Prop. 1], the identity (1.1) can be exploited to establish
new identities on partial Bell polynomials which include many combinatorial numbers. Also, Theorems
3.2 and 3.4 can also be exploited to develop several generating functions as it is shown above.
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