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abstract: This paper concerns the investigation of an eigenvalue problem for a nonlinear fractional dif-
ferential equation. Using the properties of the Green function, Banach contraction principle, Leray-Schauder
nonlinear alternative and Guo-Krasnosel’skii fixed point theorem on cones, the eigenvalue intervals of the non-
linear fractional differential equation are considered. Some sufficient conditions for the existence of at least
one positive solution is established. Some examples are presented to illustrate the main results.

Key Words: Fractional Caputo derivative, Banach contraction principle, Leray-Schauder nonlinear
alternative, Guo–Krasnosel’skii fixed point theorem on cones.

Contents

1 Introduction 1

2 Basic result 2

3 Existence and uniqueness results 4

4 Existence of a positive solution of problem 2 6

5 Examples 8

1. Introduction

Nonlinear fractional order differential equations have received grat interest in the recent years. Many
results ranging from the existence and uniqueness of solutions to the analytic and numerical methods
have appeared in the literature, we refer the reader to a series of papers [1, 8, 10] and the references cited
therein.

The search for the existence of positive solutions and multiple positive solutions to nonlinear fractional
boundary value problems has expanded greatly over the past decade; for some recent examples see [2,
4, 5, 7, 14, 15]. In all of these works and the references cited therein, different techniques and methods
have been employed to deal with the solvability of such boundary value problems; for example, the use of
fixed point index theory, the classic cone-compressions and expansions fixed point theorems, the method
of upper and lower solutions, and Leggett-Williams theorem and its extensions.

On the other hand, eigenvalue problems of nonlinear fractional differential equations have been con-
cerned by some authors; see [3, 13, 17].

In this work, we consider the nonlinear boundary value problem (P)

cDp

0+

(

cDq

0+u(t)
)

= λf (t, u (t)) , 0 < t < 1, (1.1)

u(0) = 0, u′(0) = au′(1),
Dq

0+u(1) = Dq

0+u(ξ),

Dq

0+u(0) = Dq+2
0+ u(0) = 0

(1.2)

where f : [0, 1]×R → R is given function, denotes cDp

0+ the Caputo fractional derivative, 1 < q < 2, 2 <
p < 3, 0 < a, ξ < 1.

2010 Mathematics Subject Classification: Primary 05C38, 15A15; Secondary 34B15, 05C38.

Submitted January 06, 2019. Published August 07, 2019

1
Typeset by B

S
P
M

style.
c© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.46105


2 S. Bensebaa

Using the Banach fixed point theorem, the nonlinear alternative of Leray Schauder type and Guo-
krasnosel’skii fixed point theorem on cone, we investigate the eigenvalue interval for the existence and
uniqueness of positive solutions. No contributions exist, as far as we know, concerning the existence of
solutions of higher fractional differential equation (1.1) jointly with boundary condition in (1.2).

The rest of this paper is organized as follows. First, we recall some notations, definitions and lemmas
to be used later. In section 3, we present and prove our main results wich consist of uniqueness and
existence theorems. Finally, we give some examples to illustrate our work.

2. Basic result

First of all, we recall some necessary definitions.

Definition 2.1. [12] If g ∈ L1 ([a, b]) and α > 0, then the Riemann -Liouville fractional integral is
defined by

Iαa+g(t) =
1

Γ(α)

t
∫

a

g(s)

(t− s)1−α
ds.

Definition 2.2. [12] Let α ≥ 0, n = [α] + 1. If g ∈ ACn ([a, b]) then the Caputo fractional derivative of
order α of g is defined by

cDα
a+g(t) =

1

Γ(n− α)

t
∫

a

g(n)(s)

(t− s)α−n+1
ds.

Lemma 2.3. [12] For α > 0, g(t) ∈ C ([a, b]), the homogenous fractional differential equation cDα
a+g(t) =

0 has a solution
g(t) = c1 + c2t+ c3t

2 + ...+ cnt
n−1,

where ci ∈ R, i = 0, 1, 2, ..., n, and n = [α] + 1.

The following lemmas gives some properties of Riemann -Liouville fractional integrals and Caputo
fractional derivative.

Lemma 2.4. [12] Let p, q ≥ 0, f ∈ L1 ([a, b]) . Then

Ip0+I
q

0+f(t) = Ip+q

0+ f(t) = Iq0+I
p

0+f(t)

and
cDq

a+I
q

0+f(t) = f(t), for all t ∈ [a, b] .

Let β > α > 0, f ∈ L1 ([a, b]) . Then for all t ∈ [a, b] we have

cDα
a+I

β

0+f(t) = Iβ−α

0+ f(t).

The following lemma is fundamental in the proof of the existence Theorems.

Lemma 2.5. [12](Leray-Schauder nonlinear alternative). Let F be a Banach space and Ω be a bounded
open subset of F , 0 ∈ Ω and let T : Ω −→ F be a completely continuous operator. Then, either there
exists x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed point x∗ ∈ Ω.

Theorem 2.6. [6](Guo-Krasnosel’skii fixed point Theorem on cone). Let E be a Banach space, and let
K ⊂ E be a cone. Assume Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩ (Ω2/Ω1) → K

be a completely continuous operator such that

‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω2, or

‖Au‖ ≥ ‖u‖ , u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖ , u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2/Ω1).
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We start by solving an auxiliary problem and we give its Green function.

Lemma 2.7. For 1 < q < 2 and y ∈ C ([0, 1]) , the boundary value problem (P0)

{

cDq

0+u(t) = y(t), 0 < t < 1,
u(0) = 0, u′(0) = au′(1);

has the solution of the form

u(t) =

∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =

{

1
Γ(q) (t− s)q−1 + at

(1−a)Γ(q−1) (1 − s)q−1, 0 ≤ s ≤ t,
at

(1−a)Γ(q−1) (1− s)q−1, t ≤ s ≤ 1.
(2.1)

Proof. We have
u(t) = Iq0+y(t) + C +Bt,

from the conditions u(0) = 0, we obtain C = 0, and the condition u′(0) = au′(1) leads to

B =
a

(1− a) Γ(q − 1)

∫ 1

0

(1 − s)q−1y(s)ds,

so u(t) can be written as

u(t) = Iq0+y(t) +
at

(1− a) Γ(q − 1)

∫ 1

0

(1 − s)q−1y(s)ds

=

∫ 1

0

G(t, s)y(s)ds

where G is defined by (2.1). �

Lemma 2.8. For 2 < p < 3 and y ∈ C ([0, 1]) , the solution of problem (P1)















cDp

0+
cDq

0+u(t) = λy (t) , 0 < t < 1,
u(0) = 0, u′(0) = au′(1),
Dq

0+u(1) = Dq

0+u(ξ),

Dq

0+u(0) = Dq+2
0+ u(0) = 0,

(2.2)

is given by

u(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

H(s, r)y (r) drds,

where

H(t, s) =























− t(1−s)p−1

1−ξ
+ t(ξ−s)p−1

1−ξ
+ (t− s)p−1, 0 ≤ s ≤ min(t, ξ),

− t(1−s)p−1

1−ξ
+ (t− s)p−1, ξ ≤ s ≤ t,

− t(1−s)p−1

1−ξ
+ t(ξ−s)p−1

1−ξ
, t ≤ s ≤ ξ,

− t(1−s)p−1

1−ξ
, max(t, ξ) ≤ s ≤ 1.

Proof. Applying the operator Ip on both sides of the differential equation in (2.2) , we obtain

cDq

0+u(t) = λIp0+y(t) + a1 + a2t+ a3t
2. (2.3)

The boundary conditions cDq

0+u(0) =
cDq+2

0+ u(0) = 0 lead to a1 = a3 = 0 and the boundary condition
cDq

0+u(1) =
cDq

0+u(ξ) yields
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a2 =
λ

(1− ξ)
Ip0+y(ξ)−

λ

(1− ξ)
Ip0+y(1).

Consequently, (2.3) takes the form

cDq

0+u(t) = λ

(

Ip0+y(t) +
t

(1− ξ)
Ip0+y(ξ)−

t

(1− ξ)
Ip0+y(1)

)

,

which can be written as

cDq

0+u(t) =
λ

Γ(p)

∫ 1

0

H(t, s)y (s) ds.

The boundary value problem (P1) reduces to the following problem

{

cDq

0+u(t) =
λ

Γ(p)

∫ 1

0 H(t, s)y (s) ds, 0 < t < 1,

u(0) = 0, u′(0) = au′(1),

which in view of lemma 7 yields the required result

u(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

H(s, r)y (r) drds.

Finally, the integral solution of probem (P) is:

u(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

H(s, r)f (r, u (r)) drds.

�

Lemma 2.9. For all s, t ∈ [0, 1] , the Green fonction H(t, s) and G(t, s) are continuous and satisfy
i) H(t, s) ≤ 0,

ii) t(ζ − ζp−1) (1−s)p−1

(1−ξ) ≤ −H(t, s) ≤ (1−s)p−1

(1−ξ) ,

iii) 0 ≤ at
(1−a)Γ(q−1) (1 − s)q−1 ≤ G(t, s) ≤ 1

Γ(q) +
a

(1−a)Γ(q−1) = A.

3. Existence and uniqueness results

Let the Banach space E = C([0, 1],R) be endowed with the Chebyshev norm

‖u‖ = max
t∈[0,1]

|u(t)| .

Define the integral operator T : E → E by

Tu(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

H(s, r)f (r, u (r)) drds.

Theorem 3.1. Let f ∈ C([a, b]× R), then u ∈ E is a solution of the fractional boundary value problem
(P) if and only if Tu(t) = u(t), for any t ∈ [0, 1].

To show that the integral solution u(t) is effectively a solution of problem (P), we can follow the same
steps as in the paper of Kilbas and Marzan [11].

In this section, we prove the existence and uniqueness of solutions in the Banach space E.

Theorem 3.2. Assume that there exist a nonnegative function g ∈ L1 ([0, 1],R+) such that for all x

|f(t, x)| − f(t, y) ≤ g(t) |x− y| .

Then, there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗ the FBV P (P ) has a unique solution
u in E.
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Proof. We transform the fractional boundary value Problem (P ) to a fixed point problem. By Lemma
10 the problem (P ) has a solution if and only if the operator T has a fixed point in E. Now we prove
that T is a contraction. Let u, v ∈ E, we have

Tu(t)− Tv(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

H(s, r) (f (r, u (r))− f(r, v(r)) drds;

with the help of (3.1) we obtain

|Tu(t)− Tv(t) | ≤
λ

Γ(p)

∫ 1

0

G (t, s)

∫ 1

0

|H(s, r)| g(r) |u(r) − v(r)| drds

≤
λ

Γ(p)
A ‖u− v‖

∫ 1

0

∫ 1

0

(1− r)p−1

1− ξ
g(r)drds

≤
λA

Γ(p)(1− ξ)
‖u− v‖

∫ 1

0

(1− r)p−1g(r)dr

≤
λA ‖g‖L1

Γ(p)(1− ξ)
‖u− v‖ , as (1− r)p−1 ≤ 1.

Choose λ∗ = Γ(p)(1−ξ)
2A‖g‖

L1
; then, when 0 < λ ≤ λ∗, we have

‖Tu− Tv‖ ≤
1

2
‖u− v‖ .

So, T is a contraction, hence it has a unique f̂ıxed point which is the unique solution of the FBV P
(P ). �

Now, we give an other existence result for the fractional boundary value problem (P ).

Theorem 3.3. Assume that f(t, 0) 6= 0 and there exist nonnegative functions h ∈ L1([0, 1],R+),Ψ ∈
C(R+,R

∗
+) nondecreasing on R+ and δ > 0, such that

|f(t, x)| ≤ h(t)Ψ (|x|) . (3.1)

Then, there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (P) has at least one
nontrivial solution u∗ ∈ E.

Here, we are going to use the Theorem of Leray-Schauder.

Proof. First, let us prove that T is completely continuous. It is easy to see that T is continuous since f ,
G and H are continuous.

(i)Let {u ∈ E, ‖u‖ ≤ δ} ,for u ∈ Bδ, we get

|Tu(t)| ≤
λ

Γ(p)

∫ 1

0

|G(t, s)|

∫ 1

0

|H(s, r)f (r, u (r))| drds. (3.2)

Since Ψ is nondecreasing then

|Tu(t)| ≤
λAΨ(δ)

Γ(p)(1− ξ)

∫ 1

0

(1− r)p−1h (r) dr

≤
λAΨ(δ)

Γ(p)(1− ξ)

∫ 1

0

h (r) dr,

thus

‖Tu‖ ≤
λAΨ(δ)

Γ(p)(1− ξ)
‖h‖L1 < +∞,
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hence T (Bδ) is uniformly bounded.
(ii) T (Bδ) is equicontinuous.
Since G(t, s) is continuous on [0, 1]× [0, 1], it is uniformly continuous on [0, 1]× [0, 1]. Thus, for fixed

s ∈ [0, 1] and for any ε > 0, there exists a constant ρ > 0, such that for any t1, t2 ∈ [0, 1] , |t1 − t2| < ρ,we
have

|G(t1, s)−G(t2, s)| ≤
Γ(p)(1 − ξ)

λΨ(δ) ‖h‖L1

ε;

since

|Tu(t1)− Tu(t2)| ≤
λ

Γ(p)

∫ 1

0

|G(t1, s)−G(t2, s)|

∫ 1

0

|H(s, r)| |f (r, u (r))| drds

≤
ǫ(1− ξ)

Ψ (δ) ‖h‖L1

∫ 1

0

|H(s, r)| h (r) Ψ (|u (r)|) dr,

we obtain

|Tu(t1)− Tu(t2)| ≤ ε.

Consequently, T (Br) is equicontinuous; by means of the Arzela-Ascoli Theorem, we conclude that T is
completely continuous.

Now we apply the Leray-Schauder nonlinear alternative to prove that T has at least a nontrivial
solution in E.

Setting Ω = {u ∈ E : ‖u‖ < δ} , then for u ∈ ∂Ω, such that u = µTu,
0 < µ < 1, we have with the help of (4.1)

|u(t)| = µ |Tu(t)| ≤ |Tu(t)| ≤
λAΨ(δ)

Γ(p)(1− ξ)
‖h‖L1 .

Choose λ∗ = δΓ(p)(1−ξ)
2AΨ(δ)‖h‖

L1
. Then, for 0 < λ ≤ λ∗, we have

‖u‖ ≤
λAΨ(δ)

Γ(p)(1− ξ)
‖h‖L1 < δ.

We conclude that T has a fixed point u∗ ∈ Ω and then the FBVP (P) has a nontrivial solution u∗ in E.
�

4. Existence of a positive solution of problem 2

In this section, we apply theorem 6 to establish an eigenvalue interval for the existence of a positive
solutions for the problem (P2)

cDp

0+
cDq

0+u(t) + λf (t, u (t)) = 0, 0 < t < 1,
u(0) = 0, u′(0) = au′(1),
cDq

0+u(1) =
c Dq

0+u(ξ),
cDq

0+u(0) =
c Dq+2

0+ u(0) = 0.

For convenience, we set:

A0 = lim
u→0+

f(u)

u
, A∞ = lim

u→∞

f(u)

u
.

Let us define the cone P ⊂ E by

P =

{

u ∈ E, u(t) ≥ 0, 0 ≤ t ≤ 1, min
τ≤t≤1

u(t) ≥
aτ(ξ − ξp−1)

Aq (q + 1) (1− a) Γ(q − 1)
‖u‖

}
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Lemma 4.1. If f ∈ C([0, 1],R+), then, the solution of problem (P2) satisfies

min
t∈[τ,1]

u(t) ≥
aτ (ξ − ξp−1)

Aq (q + 1) (1− a) Γ(q − 1)
‖u‖ .

Proof. By Lemma 7, u can be expressed by

u(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

−H(s, r)f (r, u (r)) drds

≤
λ

Γ(p)

∫ 1

0

A

∫ 1

0

(1− r)p−1f (r, u (r)) drds

then

‖u‖ ≤
λA

Γ(p)(1 − ξ)

∫ 1

0

(1− r)p−1f (r, u (r)) dr.

Also, we have

u(t) ≥
λa

(

ξ − ξp−1
)

q (q + 1)Γ(p)Γ(q − 1)(1− ξ) (1− a)
t

∫ 1

0

(1− r)p−1f (r, u(r)) dr

≥
at(ξ − ξp−1)

Aq (q + 1) (1− a) Γ(q − 1)
‖u‖ ,

therefore

min
τ≤t≤1

u(t) ≥
aτ (ξ − ξp−1)

Aq (q + 1) (1− a) Γ(q − 1)
‖u‖ .

�

Theorem 4.2. Let f (t, u (t)) = ϕ (t) f (u (t)) with f ∈ C(R+,R+), ϕ ∈ C([0, 1],R+),
∫ 1

0
s(1− s)q−1ϕ(s)ds 6= 0 and τ ∈ [0, 1] . Then for each

λ ∈

]

Γ(p) (Aq (q + 1)Γ(q − 1) (1− a) (1− ξ))
2

a2τA∞(ζ − ζp−1)2
∫ 1

τ
(1− r)p−1ϕ (r) dr

,
Γ(p)(1 − ξ)

AA0

∫ 1

0 (1− r)p−1ϕ(r)dr

[

, (4.1)

the problem (P2) has at least one positive solution.

Proof. We apply Guo-Krasnosel’skii fixed point Theorem on cone.
Let u be in P, in view of nonnegativeness and continuity of functions G(t, s),−H (t, s) and f , we

conclude that Tu ≥ 0, t ∈ [0, 1], continuous and T (P ) ⊂ P.
i)It is clear that T (Br) is uniformly bounded and equicontinuous, by means of the Arzela-Ascoli

Theorem we conclude that T is completely continuous.
From (4.1) there exists ε > 0 such that

Γ(p) (Aq (q + 1)Γ(q − 1) (1− a) (1− ξ))
2

a2τ2 (A∞ − ε) (ζ − ζp−1)2
∫ 1

τ
(1− r)p−1ϕ (r) dr

≤ λ ≤
Γ(p)(1 − ξ)

A (A0 + ε)
∫ 1

0 (1 − r)p−1ϕ(r)dr
.

By the definition of A0, there exists δ1 > 0, such that for any u, 0 ≤ u ≤ δ1, we have

f(u) ≤ (A0 + ε)u.

Set Ω1 = {u ∈ E : ‖u‖ < δ1} . let u ∈ P ∩ ∂Ω1, then we have

Tu(t) =
λ

Γ(p)

∫ 1

0

G(t, s)

∫ 1

0

−H(s, r)ϕ (r) f (u (r)) drds

≤
λA (A0 + ε)

Γ(p)(1 − ξ)

∫ 1

0

(1− r)p−1ϕ (r) u (r) dr

≤
λA (A0 + ε)

Γ(p)(1 − ξ)
‖u‖

∫ 1

0

(1 − r)p−1ϕ (r) dr

≤ ‖u‖ .
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On the other hand, by the definition of A∞, there exists δ2 > 0, such that

f(u) ≥ (A∞ − ε)u, for any u ∈ [δ2,+∞[ .

Setting R = max
{

2δ1,
Aq(q+1)Γ(q−1)(1−a)(1−ξ)

aτ(ζ−ζp−1)
δ2

}

and Ω2 = {u ∈ E : ‖u‖ < R} , then Ω1 ⊂ Ω2 and

for u ∈ P ∩ ∂Ω2 we have

‖Tu(t)‖ ≥ Tu(τ)

≥
λ

Γ(p)

∫ 1

0

aτs(1− s)q−1

Γ(q − 1) (1− a)

∫ 1

0

(ζ − ζp−1)
(1− r)p−1

(1 − ξ)
ϕ (r) f (u (r)) drds

≥
λaτ (ζ − ζp−1)

Γ(p)Γ(q − 1) (1− a) (1 − ξ)

∫ 1

0

s(1− s)q−1

∫ 1

0

(1− r)p−1ϕ (r) f (u (r)) drds

≥
λa2τ2(ζ − ζp−1)2 (A∞ − ε)

Γ(p) (Aq (q + 1)Γ(q − 1) (1− a) (1− ξ))
2 ‖u‖

∫ 1

τ

(1− r)p−1ϕ (r) dr

≥ ‖u‖ .

According to Theorem 6 T has a fixed point in P ∩ (Ω2/Ω1), that means that the problem (P2) has
at least one positive solution in P ∩ (Ω2/Ω1). �

5. Examples

We illustrate our work with three examples.

Example 5.1. For the fractional boundary value problem























cD
8
3

0+
cD

3
2

0+u(t) = λ
(

t3

4 x+ sin t
)

, 0 < t < 1,

u(0) = 0, u′(0) = 1
3u

′(1)),

D
3
2

0+u(1) = D
3
2

0+u(
1
2 ),

D
3
2

0+u(0) = D
7
2

0+u(0) = 0,

we have

f(t, x) = t3

4 x+ sin t, 2 < p = 8
3 < 3, 1 < q = 3

2 < 2, a = 1
3 < 1 and ξ = 1

2 .

Then

|f(t, x)− f(t, y)| ≤ g(t) |x− y| , ∀x ∈ R, t ∈ [0, 1],

where

g(t) =
t3

4
.

Simple calculus give:

‖g‖L1 = 0, 0625, A = 1
Γ(q) +

a
(1−a)Γ(q−1) = 2.0146, λ∗ = Γ(p)(1−ξ)

2A‖g‖
L1

= 7.4142.

Hence from Theorem 11 we conclude that for any 0 < λ ≤ 7.4142, the problem (P) has a unique
solution in E.

Example 5.2. The following fractional boundary value problem























cD
5
2

0+
cD

4
3

0+u(t) = λ
(

1
1+t

)

exp( u
2 )

1+exp( u
3 )
, 0 < t < 1,

u(0) = 0, u′(0) = 1
3u

′(1)),

D
4
3

0+u(1) = D
4
3

0+u(
1
2 ),

D
4
3

0+u(0) = D
4
3

0+u(0) = 0,
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has at least one nontrivial solution u∗ in E. Indeed, we have

|f(t, x)| =

(

1

1 + t

)

exp
(

x
2

)

1 + exp
(

x
3

)

≤
1

1 + t
exp

(

|x|

6

)

≤ h(t)ψ (|x|) ,

where h(t) = 1
1+t

and ψ(x) = exp x
6 .

For δ = 0.9, some computions lead to

‖h‖L1 = ln 2, ψ (0.9) = 1. 161 8,

hence

λ∗ =
δΓ(p)(1− ξ)

2AΨ(δ) ‖h‖L1

= 2. 715 3.

Theorem 12 implies that for each 0 < λ ≤ 2. 715 3, the problem (P) has at least one nontrivial solution
u∗ in E.

Example 5.3. Consider the fractional boundary value problem



















cD
8
3

0+
cD

3
2

0+u(t) + λf (t, u (t)) = 0, 0 < t < 1,
u(0) = 0, u′(0) = 1

3u
′(1)),

D
3
2

0+u(1) = D
3
2

0+u(
1
2 ),

D
3
2

0+u(0) = D
7
2

0+u(0) = 0.

In this example take

f (t, u (t)) =

(

(1− t)u2 + u

(u+ 7)

)

= (1− t)

(

u2 + u

(u+ 7)

)

.

Obviously, we have

A0 = lim
u→0+

f(u)

u
=

1

7
,

A∞ = lim
u→∞

f(u)

u
= 1.

Since a = 1
3 , ξ =

1
2 , p =

8
3 and q = 3

2 , through a computation, we can get

A = 2.0146,

∫ 1

0

(1− r)p−1ϕ(r)dr =

∫ 1

0

(1 − r)pdr =
3

11
.

Then
Γ(p)(1 − ξ)

AA0

∫ 1

0 (1− r)p−1ϕ(r)dr
= 9.5844.

Choose τ = 0.9 ; we have

Γ(p) (Aq (q + 1)Γ(q − 1) (1− a) (1 − ξ))
2

a2τ2A∞(ζ − ζp−1)2
∫ 1

τ
(1− r)p−1ϕ (r) dr

= 1643.8

Theorem 13 implies that, for λ ∈ ]9.5844, 1643.8[, problem (P2) has at least one positive solution.
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