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On Smallest (generalized) Ideals and Semilattices of (2,2)-regular Non-associative Ordered
Semigroups
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abstract: An ordered AG-groupoid can be referred to as a non-associative ordered semigroup, as the main
difference between an ordered semigroup and an ordered AG-groupoid is the switching of an associative law.
In this paper, we define the smallest left (right) ideals in an ordered AG-groupoid and use them to characterize
a (2, 2)-regular class of a unitary ordered AG-groupoid along with its semilattices and (∈γ ,∈γ ∨qδ)-fuzzy left
(right) ideals. We also give the concept of an ordered AG***-groupoid and investigate its structural properties
by using the generated ideals and (∈γ ,∈γ ∨qδ)-fuzzy left (right) ideals. These concepts will verify the existing
characterizations and will help in achieving more generalized results in future works.
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1. Introduction

An AG-groupoid is a non-associative and a non-commutative algebraic structure lying in a grey area
between a groupoid and a commutative semigroup. Commutative law is given by abc = cba in ternary
operations. By putting brackets on the left of this equation, i.e. (ab)c = (cb)a, in 1972, M. A. Kazim
and M. Naseeruddin introduced a new algebraic structure called a left almost semigroup abbreviated as
an LA-semigroup [6]. This identity is called the left invertive law. P. V. Protic and N. Stevanovic called
the same structure an Abel-Grassmann’s groupoid abbreviated as an AG-groupoid [11].

This structure is closely related to a commutative semigroup because a commutative AG-groupoid is
a semigroup [9]. It was proved in [6] that an AG-groupoid S is medial, that is, ab ·cd = ac ·bd holds for all
a,b,c,d ∈ S. An AG-groupoid may or may not contain a left identity. The left identity of an AG-groupoid
permits the inverses of elements in the structure. If an AG-groupoid contains a left identity, then this
left identity is unique [9]. In an AG-groupoid S with left identity (unitary AG-groupoid), the paramedial
law ab · cd = dc · ba holds for all a,b,c,d ∈ S. By using medial law with left identity, we get a · bc = b · ac
for all a,b,c ∈ S. We should genuinely acknowledge that much of the ground work has been done by M.
A. Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic, N. Stevanovic, M. Khan, W. A.
Dudek and R. S. Gigon. One can be referred to [3,4,7,9,10,11,14] in this regard.

An AG-groupoid (S, ·) together with a partial order ≤ on S that is compatible with an AG-groupoid
operation, meaning that for x, y, z ∈ S, x ≤ y ⇒ zx ≤ zy and xz ≤ yz, is called an ordered AG-groupoid
[17].

Let us define a binary operation ”◦e” (e-sandwich operation) on an ordered AG-groupoid (S, ·,≤)
with left identity e as follows:

a ◦e b = ae · b, ∀ a, b ∈ S.
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Then (S, ◦e,≤) becomes an ordered semigroup [17].

Note that an ordered AG-groupoid is the generalization of an ordered semigroup because if an ordered
AG-groupoid has a right identity then it becomes an ordered semigroup.

2. Preliminaries

The concept of fuzzy sets was first proposed by Zadeh [19] in 1965, which has a wide range of
applications in various fields such as computer engineering, artificial intelligence, control engineering,
operation research, management science, robotics and many more. It gives us a tool to model the
uncertainty present in a phenomena that does not have sharp boundaries. Many papers on fuzzy sets
have been published, showing the importance and their applications to set theory, algebra, real analysis,
measure theory and topology etc.

Murali [8] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural
equivalence on a fuzzy subset. In [12], the idea of quasi-coincidence of a fuzzy point with a fuzzy set is
defined. A new type of fuzzy subgroup, that is (α, β)-fuzzy subgroup, was introduced in an earlier paper
of Bhakat and Das [1] by using the notions of ”belongingness and quasi-coincidence” of fuzzy points
and fuzzy sets. The concepts of an (∈,∈ ∨q)-fuzzy subgroup is a useful generalization of Rosenfeld’s
fuzzy subgroups [13]. It is now natural to investigate similar type of generalizations of existing fuzzy
sub-systems of other algebraic structures. The concept of an (∈,∈ ∨q)-fuzzy sub-near rings of a near
ring introduced by Davvaz in [2]. In [5] Kazanchi and Yamak studied (∈,∈ ∨q)-fuzzy bi-ideals of a
semigroup. In [15] Shabir et. al. characterized regular semigroups by the properties of (∈,∈ ∨q)-fuzzy
ideals, fuzzy bi-ideals and fuzzy quasi-ideals. In [5] Kazanchi and Yamak defined (∈,∈ ∨ q)-fuzzy bi-
ideals in semigroups. Many other researchers used the idea of generalized fuzzy sets and gave several
characterizations results in different branches of algebra. Generalizing the concept of xtqf , Shabir and
Jun [16], defined xtqkf as f(x) + t + k > 1, where k ∈ [0, 1). In [16], semigroups are characterized by
the properties of their (∈,∈ ∨qk)-fuzzy ideals. In the present paper, we introduce and investigate the
notions of (∈γ ,∈γ ∨qδ)-fuzzy left (right) ideals, and study the relationship between these ideals in detail.
As an application of our results we get characterizations of a (2, 2)-regular class of a unitary ordered
AG-groupoid (an ordered AG***-groupoid) in terms of its semilattices, one-sided (two-sided) ideals based
on fuzzy sets and its associated fuzzy points.

Let ∅ 6= A ⊆ S, we denote (A] by (A] := {x ∈ S/x ≤ a for some a ∈ A}. If A = {a}, then we write
({a}]. For ∅ 6= A,B ⊆ S, we denote AB =: {ab/a ∈ A, b ∈ B}.

• A nonempty subset A of an ordered AG-groupoid S is called a left (right) ideal of S if:

(i) SA ⊆ A (AS ⊆ A);

(ii) if a ∈ A and b ∈ S such that b ≤ a, then b ∈ A.

Equivalently: A nonempty subset A of an ordered AG-groupoid S is called a left (right) ideal of S if
(SA] ⊆ A ((AS] ⊆ A).

• By two-sided ideal or simply ideal, we mean a nonempty subset of an ordered AG-groupoid S which
is both left and right ideal of S.

Lemma 2.1. [17] Let S be an ordered AG-groupoid and ∅ 6= A,B ⊆ S. Then the followings hold:

(i) A ⊆ (A] ;

(ii) If A ⊆ B, then (A] ⊆ (B] ;

(iii) (A] (B] ⊆ (AB] ;

(iv) (A] = ((A]] ;

(vi) ((A] (B]] = (AB] ;

(vii) (T ] = T, for every ideal T of S;

(viii) (SS] = S = SS, if S has a left identity.

A fuzzy subset f of a given set S is described as an arbitrary function f : S −→ [0, 1], where [0, 1]
is the usual closed interval of real numbers [19]. For any two fuzzy subsets f and g of S, f ⊆ g means
that, f(x) ≤ g(x), ∀ x ∈ S.
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Let f and g be any fuzzy subsets of an ordered AG-groupoid S, then the product f ◦ g is defined by

(f ◦ g) (a) =

{ ∨

a≤bc

{f(b) ∧ g(c)} , if there exist b, c ∈ S, such that a ≤ bc

0, otherwise.

• Let F(S) denotes the collection of all fuzzy subsets of an ordered AG-groupoid S, then it is easy to
see that (F(S), ◦,⊆) becomes an ordered AG-groupoid.

• The characteristic function XA for a non-empty A of an ordered AG-groupoid S is defined by

XA(x) =

{

1, if x ∈ A,
0, if x /∈ A.

• A fuzzy subset f of an ordered AG-groupoid S of the form

f(y) =

{

r(6= 0), if y ≤ x
0, otherwise

is said to be a fuzzy point with support x and value r and is denoted by xr, where r ∈ (0, 1].
• In what follows let γ, δ ∈ [0, 1] be such that γ < δ. For any B ⊆ A, we define Xδ

γB be the fuzzy

subset of X by Xδ
γB(x) ≥ δ and Xδ

γB(x) ≤ γ, ∀ x ∈ B. Otherwise, clearly Xδ
γB is the characteristic

function of B if γ = 0 and δ = 1.
• For a fuzzy point xr and a fuzzy subset f of an ordered AG-groupoid S, we say that:
(i) xr ∈γ f if f(x) ≥ r > γ.
(ii) xrqδf if f(x) + r > 2δ.
(iii) xr ∈γ ∨qδf if xr ∈γ f or xrqδf.
• Now we introduce a new relation on F(S), denoted as “⊆ ∨q(γ,δ)”, as follows.
For any f, g ∈ F(S), by f ⊆ ∨q(γ,δ)g, we mean that xr ∈γ f =⇒ xr ∈γ ∨qδg, ∀ x ∈ S and r ∈ (γ, 1].

Moreover f and g are said to be (γ, δ)-equal, denoted by f =(γ,δ) g, if f ⊆ ∨q(γ,δ)g and g ⊆ ∨q(γ,δ)f .

Lemma 2.2. [18] Let f, g, h ⊆ F(S) and γ, δ ∈ [0, 1], then

(i) f ⊆ ∨q(γ,δ)g (f ⊇ ∨q(γ,δ)g) ⇔ max{f(x), γ} ≤ min{g(x), δ} (max{f(x), γ} ≥ min{g(x), δ}), ∀ x
∈ S.

(ii) If f ⊆ ∨q(γ,δ)g and g ⊆ ∨q(γ,δ)h, then f ⊆ ∨q(γ,δ)h.

Corollary 2.3. = ∨q(γ,δ) is an equivalence relation on F(S).

• By Lemma 2.2, it is also notified that f = ∨q(γ,δ)g ⇔ max{min{f(x), δ}, γ} = max{min{g(x), δ}, γ},
∀ x ∈ S, where γ, δ ∈ [0, 1].

Lemma 2.4. [18] Let A and B be any subsets of an ordered AG-groupoid S, where r ∈ (γ, 1] and
γ, δ ∈ [0, 1], then:

(1) A ⊆ B ⇔ Xδ
γA ⊆ ∨q(γ,δ)X

δ
γB;

(2) Xδ
γA ∩ Xδ

γB =(γ,δ) X
δ
γ(A∩B);

(3) Xδ
γA ◦ Xδ

γB =(γ,δ) X
δ
γ(AB].

Example 2.5. Let S = {a, b, c} be an ordered AG-groupoid with the following multiplication table and
two different orders below:

· a b c
a a a a
b a a c
c a a a

≤:= {(a, a), (b, b), (c, c), (c, a), (c, b)} (1)
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≤:= {(a, a), (b, b), (c, c), (a, c), (a, b)} (2)

• A fuzzy subset f of an ordered AG-groupoid S is called an (∈γ ,∈γ ∨qδ)-fuzzy left (right) ideal of S
if for all a, b ∈ S and t ∈ (γ, 1], the following conditions hold:

(i) If a ≤ b and bt ∈γ f =⇒ at ∈γ ∨qδf.
(ii) If bt ∈γ f =⇒ (ab)t ∈γ ∨qδf (at ∈γ f =⇒ (ab)t ∈γ ∨qδf).
Let us consider an example 2.5 of an ordered AG-groupoid with order (2). Let γ = 0.4 and δ = 0.5.

Define a fuzzy subset f : S → [0, 1] as follows :

f (x ) =







0.7 for x = a
0.8 for x = b
0.9 for x = c

.

(1) Let us consider all the possible cases for t ∈ (0.4, 1] as follows :
(i) When t ∈ (0.4, 0.7], then xt ∈γ f for all x ∈ S. It is easy to see that xt ∈γ f and y ≤ x =⇒ yt ∈γ f

for all x ∈ S.
(ii) When t ∈ (0.7, 0.8], then at∈̄γf while ct ∈γ f and bt ∈γ f . Now a ≤ c and ct ∈γ f =⇒ f(a) ≥

t > γ. Proceeding in the same way as in above example we get atqδf, and Similar solution for a ≤ b.
(iii) When t ∈ (0.8, 0.9], then ct ∈γ f while at∈̄γf and bt∈̄γf.It is easy to verify that ct ∈γ f and

a ≤ c =⇒ atqδf.
(iv) When t ∈ (0.9, 1], then x̄t ∈γ f for all x ∈ S. Nothing to show in this case.
(2) Again considering all possible cases for t ∈ (0.4, 1]
(i) When t ∈ (0.4, 0.7], then xt ∈γ f for all x ∈ S. It is easy see that (xy)t ∈γ f for all x ∈ S in this

case.
(ii) When t ∈ (0.7, 0.8], then at∈̄γf while ct ∈γ f and bt ∈γ f . Now bt ∈γ f =⇒ (ab)tqδf , (bb)tqδf

and (bc)tqδf. Similarly ct ∈ f =⇒ (ac)tqδf , (bc)t ∈γ
f and (cc)tqδf.

(i ii) When t ∈ (0.8, 0.9], then ct ∈γ f while at∈̄γf and bt∈̄γf . Now ct ∈ f =⇒ (ac)tqδf , (bc)t ∈γ
f

and (cc)tqδf.
(iv) When t ∈ (0.9, 1], then x̄t ∈γ f for all x ∈ S. Again nothing to solve in this case.
Hence f is an (∈γ ,∈γ ∨qδ)-fuzzy left ideal of S.

Theorem 2.6. [18] A fuzzy subset f of an ordered AG-groupoid S is called an (∈γ ,∈γ ∨qδ)-fuzzy left
(right) ideal of S if for all a, b ∈ S and γ, δ ∈ [0, 1], the following conditions hold:

(i) max{f(a), γ} ≥ min{f(b), δ} with a ≤ b.
(ii) max{f(ab), γ} ≥ min{f(b), δ}.

Lemma 2.7. [18] Let f be a fuzzy subset of an ordered AG-groupoid S and γ, δ ∈ [0, 1], then f is an
(∈γ ,∈γ ∨qδ)-fuzzy left (right) ideal of S if and only if f satisfies the following conditions.

(i) x ≤ y ⇒ max{f(x), γ} ≥ min{g(x), δ}, ∀ x, y ∈ S.
(ii) S ◦ f ⊆ ∨q(γ,δ)f (f ◦ S ⊆ ∨q(γ,δ)f).

Lemma 2.8. [18] Let A be a non-empty set of an ordered AG-groupoid S, then A is a left (right) ideal
of S ⇔ Xδ

γA is an (∈γ ,∈γ ∨qδ)-fuzzy left (right) ideal of S, where γ, δ ∈ [0, 1].

Remark 2.9. If S is an ordered AG-groupoid, then S ◦ S = S.

• A fuzzy subset f of an ordered AG-groupoid S is called an (∈γ ,∈γ ∨qδ)-fuzzy semiprime if for all
a ∈ S and γ, δ ∈ [0, 1], if max{f(a), γ} ≥ min{f(a2), δ}.

Lemma 2.10. Let A be any right (left) ideal of an ordered AG-groupoid S. Then A is semiprime if and
only if XA is (∈γ ,∈γ ∨qδ)-fuzzy semiprime.

Proof. It is simple. ✷
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3. On (2, 2)-regular ordered AG-groupoids via (∈γ ,∈γ ∨qδ)-fuzzy one-sided ideals

By a unitary ordered AG-groupoid, we shall mean an ordered AG-groupoid with left identity unless
otherwise satisfied.

3.1. Basic Results

This section contains some examples and basic results which will be essential for up coming section.

Example 3.1. Let us consider an example 2.5 of an ordered AG-groupoid with order (2). Define a fuzzy
subset f : S → [0, 1] as follows.

f (x ) =







0.9 for x = 1
0.6 for x = 2
0.7 for x = 3

.

Then by routine calculation it is easy to observe the following:
(i) f is an (∈0.3,∈0.3 ∨q0.4)-fuzzy two-sided ideal of S.
(ii) f is not an (∈,∈ ∨q0.3)-fuzzy two-sided ideal of S, because f(12) < f(2) ∧ 1−0.3

2 .

Example 3.2. Let S = {w, x, y, z} be an ordered AG-groupoid define in the following multiplication table
and ordered below.

· w x y z
w w w w w
x w w w w
y w w w x
z w w x y

≤:= {(w ,w), (x , x ), (y, y), (z , z ), (w , x )}

Define a fuzzy subset f : S → [0, 1] as follows:

f (x ) =















0.75 for x = w
0.65 for x = x
0.7 for x = y
0.5 for x = z

Then clearly f is an (∈0.3,∈0.3 ∨q0.4)-fuzzy left ideal of S.
Again define a fuzzy subset f : S → [0, 1] as follows:

f (x ) =















0.9 for x = w
0.7 for x = x
0.6 for x = y
0.5 for x = z

Then f is an (∈0.2,∈0.2 ∨q0.5)-fuzzy two-sided ideal of S.

Lemma 3.3. Let R be a right ideal and L be a left ideal of a unitary ordered AG-groupoid S. Then (RL]
is a left ideal of S.

Proof. Let R be a right ideal and L be a left ideal of S. Then by using Lemma 2.1, we get S(RL] =
(SS](RL] ⊆ (SS ·RL] = (SR · SL] ⊆ (SR · (SL]] = (SR ·L] = ((SS]R ·L] ⊆ ((SS)R ·L] = ((RS)S ·L] ⊆
((RS]S · L] ⊆ (RL],which shows that (RL] is a left ideal of S. ✷

Lemma 3.4. Let S be a unitary ordered AG-groupoid. If a = a2 for all a ∈ S, then Ra = (Sa ∪ Sa2] is
the smallest right ideal of S containing a.
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Proof. Assume that a = a2 for all a ∈ S. Then by using Lemma 2.1, we have

(Sa ∪ Sa2]S = (Sa ∪ Sa2](S] ⊆ ((Sa ∪ Sa2)S] = (Sa · S ∪ Sa2 · S]

= (Sa · SS ∪ Sa2 · SS] = (S · aS ∪ S · a2S] = (a · SS ∪ a2 · SS]

= (a2 · SS ∪ a2 · SS] = (SS · a2 ∪ SS · a2] = (Sa ∪ Sa2],

which shows that (Sa ∪ Sa2] is a right ideal of S. It is easy to see that a ∈ (Sa ∪ Sa2]. Let R be
another right ideal of S containing a. Since

(Sa ∪ Sa2] = (SS · a ∪ a · Sa] = (aS · S ∪ a · Sa] ⊆ (RS · S ∪RS] ⊆ R,

Hence (Sa ∪ Sa2] is the smallest right ideal of S containing a. ✷

Lemma 3.5. Let S be a unitary ordered AG-groupoid and a = a2 for all a ∈ S. Then S becomes a
commutative monoid.

Proof. Straightforward. ✷

Corollary 3.6. Ra = (Sa∪Sa2] is the smallest right ideal of an ordered commutative monoid S containing
a.

Lemma 3.7. Let S be a unitary ordered AG-groupoid and a ∈ S. Then La = (Sa] is the smallest left
ideal of S containing a.

Proof. It is simple. ✷

• Recall that an ordered AG
**-groupoid is an ordered AG-groupoid in which a ·bc = b ·ac, ∀ a, b, c ∈ S.

Note that an ordered AG
**-groupoid also satisfies the paramedial law as well.

Now let us introduce the concept of an ordered AG***-groupoid as follows:

• An ordered AG
**-groupoid S is called an ordered AG***-groupoid if S = S2.

Lemma 3.8. Let S be an ordered AG***-groupoid and a ∈ S. Then 〈R〉a2 = (Sa2 ∪a2] (〈L〉a = (Sa∪a])
is the right (left) ideal of S.

Proof. Let a ∈ S, then by using Lemma 2.1, we get

(Sa2 ∪ a2]S = (Sa2 ∪ a2](S] = ((Sa2 ∪ a2)S] = (Sa2 · S ∪ a2S]

= (SS · a2S ∪ SS · aa] = (S · a2S ∪ Sa2]

= (a2 · SS ∪ Sa2] = (Sa2] ⊆ (Sa2 ∪ a2],

which is what we set out to prove. Similarly we can prove that S(Sa ∪ a] ⊆ (Sa ∪ a]. ✷

Lemma 3.9. Let S be a unitary ordered AG-groupoid (an ordered AG***-groupoid) and ∅ 6= E ⊆ S. Then
the following assertions hold:

(i) E forms a semilattice, where E = {x ∈ S : x = x2};
(ii) E is a singleton set, if a = ax · a, ∀ a, x ∈ S.

Proof. It is simple. ✷
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3.2. Characterization Problems

In this section, we generalize the results of an ordered semigroup and get some interesting character-
izations which we usually do not find in other algebraic structures.

• An element a of an ordered AG-groupoid S is called a (2, 2)-regular element of S, if there exists
some x in S such that a ≤ a2x · a2, and S is called (2, 2)-regular ordered AG-groupoid if all elements of
S are (2, 2)-regular.

Let us characterize a (2, 2)-regular element of an ordered AG-groupoid in the presence of a left identity
(an ordered AG***-groupoid) as follows:

Theorem 3.10. Let S be a unitary ordered AG-groupoid (an ordered AG***-groupoid). An element a of
S is (2, 2)-regular if and only if for all a ∈ S, a ≤ ay · az for some y, z ∈ S (a ≤ at · a, at = ta for some
t ∈ S).

Proof. Necessity. Let a ∈ S is (2, 2)-regular, then a ≤ a2x · a2 = a2 · xa2 = aa · a(xa) = aa · ay, where
xa = z ∈ S. Thus a ≤ ay ·az for some y, z ∈ S. It is easy to see that a ≤ a2x ·a2 = aa ·xa2 = (xa2 ·a)a =
ta · a, where xa2 · a = t ∈ S. Thus ta ≤ t(ta · a) = ta · ta = (ta · a)t ≤ at, and a ≤ ta · a ≤ at · a.

Sufficiency. Let a ∈ S such that a ≤ ax·ay for some x, y ∈ S, then a ≤ ax·ay ≤ (ax·ay)x·(ax·ay)y =
(a2 ·xy)x · (a2 ·xy)y = (x ·xy)a2 · (a2 ·xy)y = a2(xy ·x) · (a2 ·xy)y = ((a2 ·xy)y · (xy ·x))a2 = ((y ·xy)a2 ·
(xy · x))a2 = (a2(y2x) · (xy · x))a2 = ((x · xy) · (y2x)a2)a2 = ((x · xy) · a2(xy2))a2 = (a2 · (x · xy)(xy2))a2,

where (x · xy)(xy2) = u ∈ S. The remaining part is simple. Hence S is (2, 2)-regular. ✷

Now let us characterize a (2, 2)-regular class of a unitary ordered AG-groupoid (an ordered AG***-
groupoid) in terms of its semilattice E as follows:

From now onward, R (resp. L) will denote any right (resp. left) ideal of an ordered AG-groupoid S; Ra

(resp. La) will denote any smallest right (resp. smallest left) ideal of S containing a. Any (∈γ ,∈γ ∨qδ)-
fuzzy right (resp. (∈γ ,∈γ ∨qδ)-fuzzy left) ideal of an ordered AG-groupoid S will be denoted by f (resp.
g) unless otherwise specified.

Lemma 3.11. Let f be any (∈γ ,∈γ ∨qδ)-fuzzy right (left) ideal of a (2, 2)-regular unitary ordered AG-
groupoid (an ordered AG***-groupoid). Then the following assertions hold:

(i) f =(γ,δ) f ◦ S (f =(γ,δ) S ◦ f);

(ii) f is (∈γ ,∈γ ∨qδ)-fuzzy semiprime.

Proof. It is simple. ✷

Theorem 3.12. Let f, g be any (∈γ ,∈γ ∨qδ)-fuzzy left ideals of a unitary ordered AG-groupoid S. Then
the following conditions are equivalent:

(i) S is (2, 2)-regular;

(ii) S is (2, 2)-regular commutative monoid;

(iii) (RaLa] ∩ La = ((Ra · RaLa)La · La], (a = a2, ∀ a ∈ S);

(iv) (RL] ∩ L = ((R ·RL)L · L];

(v) f ∩ g =(γ,δ) (f ◦ g) ◦ f ;

(vi) S is (2, 2)-regular and |E |= 1 , (a = ax · a, ∀ a, x ∈ E);

(vii) S is (2, 2)-regular and ∅ 6= E ⊆ S is semilattice.

Proof. (i) =⇒ (vii) : It can be followed from Lemma 3.9 (i).

(vii) =⇒ (vi) : It can be followed from Lemma 3.9 (ii).

(vi) =⇒ (v) : Let f and g be any (∈γ ,∈γ ∨qδ)-fuzzy left ideals of a (2, 2)-regular S. Now for a ∈ S,
there exist some x, y ∈ S such that a ≤ ax · ay = ya · xa ≤ y(ax · ay) · xa = (ax)(y · ay) · xa =
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(ay · y)(xa) · xa = (y2a · xa)(xa). Thus (y2a · xa, xa) ∈ Aa. Therefore

max{((f ◦ g) ◦ f)(a), γ} =max





∨

(y2a·xa,xa)∈Aa

{

(f ◦ g)(y2a · xa) ∧ f(xa)
}

, γ





≥max
[

min
{

(f ◦ g)(y2a · xa), f(xa)
}

, γ
]

=min[max
{

(f ◦ g)(y2a · xa), γ
}

,max{f(xa), γ}]

=min







max

{

∨

(y2a·xa,xa)∈Aa

{

f(y2a · xa) ∧ g(xa), γ
}

}

,

max{f(xa), γ}







≥min
[

max
{

f(y2a · xa) ∧ g(xa), γ
}

,max{f(xa), γ}
]

=min

[

max
{

min{f(y2a · xa), g(xa)}, γ
}

,
max{f(xa), γ}

]

=min

[

max
{

max{f(y2a · xa), γ
}

,max{g(xa), γ}},
max{f(xa), γ}

]

≥min[min{f(a) ∧ g(a), δ},min{f(xa), δ}]

=min{(f ∩ g)(a), δ},

which shows that (f ◦ g) ◦ f ⊇(γ,δ) f ∩ g. By using Lemmas 2.7 and 3.11, it is easy to show that
(f ◦ g) ◦ f ⊆(γ,δ) f ∩ g. Thus f ∩ g =(γ,δ) (f ◦ g) ◦ f .

(v) =⇒ (iv) : Let R and L be any right and left ideals of S respectively. Then by using Lemmas
2.8 and 3.3, X(RL] and XL are the (∈γ ,∈γ ∨qδ)-fuzzy left ideals of S. Now by using Lemma 2.4, we get
X(RL]∩L = X(RL] ∩ XL = (X(RL] ◦ XL) ◦ X(RL] = X((RL]L·(RL]], which give us (RL] ∩ L = ((RL]L · (RL]].
Now by using Lemma 2.1, we get

((RL]L · (RL]] = ((RL)L ·RL] = (L2R ·RL] = (LR ·RL2] = (R(LR · L2)]

= (R(L2 · RL)] = (R(R · L2L)] = (R ·RL3] = (R(R · L2L)]

= (R(L2 · RL)] = ((R ·RL)L · L].

(iv) =⇒ (iii) : It is simple.
(iii) =⇒ (ii) : Since (Sa ∪ Sa2] is the smallest right ideal of S containing a and (Sa] is the smallest

left ideal of S containing a, where a = a2, ∀ a ∈ S. Thus by using given assumption and Lemma 2.1, we
get

a ∈ ((Sa ∪ Sa2](Sa]] ∩ (Sa] = (((Sa ∪ Sa2] · (Sa ∪ Sa2](Sa])(Sa] · (Sa]]

= (((Sa ∪ Sa2) · (Sa ∪ Sa2)(Sa))(Sa) · (Sa)] ⊆ (S(Sa) · (Sa)]

= (S2a · Sa] = (Sa · Sa] = (aS · aS].

Hence by using Lemma 3.9, S is (2, 2)-regular commutative monoid.
(ii) =⇒ (i) : It is obvious. ✷

Theorem 3.13. Let S be a unitary ordered AG-groupoid. Then the following conditions are equivalent:

(i) S is (2, 2)-regular ;
(ii) S is (2, 2)-regular commutative monoid ;
(iii) Ra ∩ La = (Ra(LaRa ·Ra)], (a = a2, ∀ a ∈ S);
(iv) R ∩ L = (R(LR · R)];
(v) f ∩ g =(γ,δ) f

3 ◦ g;
(vi) S is (2, 2)-regular and |E |= 1 , (a = ax · a, ∀ a, x ∈ E);
(vii) S is (2, 2)-regular and ∅ 6= E ⊆ S is semilattice.
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Proof. (i) =⇒ (vii) : It can be followed from Lemma 3.9 (i).

(vii) =⇒ (vi) : It can be followed from Lemma 3.9 (ii).

(vi) =⇒ (v) : Let f and g be any (∈γ ,∈γ ∨qδ)-fuzzy right ideal and (∈γ ,∈γ ∨qδ)-fuzzy left ideal of a
(2, 2)-regular S respectively. From Lemma 2.7, it is easy to show that f3 ◦ g ⊆(γ,δ) f ∩ g. Now for a ∈ S,
there exist some x,y ∈ S such that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = y(ax · ay) · x(ax · ay)

= (ax)(y · ay) · (ax)(x · ay) = (ax)(ay2) · (ax)(a · xy)

= (y2a)(xa) · (ax)(a · xy) = ((ax)(a · xy))(xa) · y2a

= ((ax)(a · xy))(ex · a) · y2a = ((ax)(a · xy))(ax · e) · y2a

= bc · y2a = d · y2a, where d = bc = ((ax)(a · xy))(ax · e).

Thus

max{((f ◦ f) ◦ f)(d), γ} = max





∨

d≤bc

{(f ◦ f)(b) ∧ f(c)}, γ





≥ max[min{(f ◦ f)(b), f(c)}, γ]

= min[max {(f ◦ f)(b), γ} ,max{f(c), γ}]

= min







max

{

∨

b≤(ax)(a·xy)

{f(ax) ∧ f(a · xy), γ}

}

,max{f(c), γ}







≥ min [max {f(ax) ∧ f(a · xy), γ} ,max{f(c), γ}]

= min [max {min{f(ax), f(a · xy)}, γ} ,max{f(c), γ}]

= min

[

max {max{f(ax), γ} ,max{f(a · xy), γ}}
,max{f(ax · e), γ}

]

≥ min[min{f(a) ∧ f(a), δ},min{f(a), δ}]

= min{f(a), δ}.

Therefore

max{(f3 ◦ g)(a), γ} = max

[
∨

a≤d·y2a

{((f ◦ f) ◦ f)(((ax)(a · xy))(ax · e))

∧g(y2a)}, γ

]

≥ min{(f ∩ g)(a), δ},

which shows that f ∩ g ⊆(γ,δ) f
3 ◦ g. Thus f ∩ g =(γ,δ) f

3 ◦ g.

(v) =⇒ (iv): Let R and L be any right and left ideals of S respectively. Then by using Lemma 2.8,
XR and XL are the (∈γ ,∈γ ∨qδ)-fuzzy right ideal and (∈γ ,∈γ ∨qδ)-fuzzy left ideal of S respectively. Now
by using Lemma 2.4, we get

XR∩L = XR ∩ XL = ((XR ◦ XR) ◦ XR) ◦ XL = X(R3] ◦ XL = X((R3]L],

which implies that R ∩ L = ((R3]L]. Now by using Lemma 2.1, we get R ∩ L = ((R3]L] = (R3L] =
(R2R · L] = (LR ·R2] = (R2 · RL] = (R · R2L] = (R(LR ·R)].

(iv) =⇒ (iii) : It is simple.

(iii) =⇒ (ii) : Since (Sa ∪ Sa2] is the smallest right ideal of S containing a and (Sa] is the smallest
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left ideal of S containing a. Thus by using given assumption and Lemma 2.1, we get

a ∈ (Sa ∪ Sa2] ∩ (Sa] = ((Sa ∪ Sa2]((Sa](Sa ∪ Sa2] · (Sa ∪ Sa2])]

= ((Sa ∪ Sa2)((Sa)(Sa ∪ Sa2) · (Sa ∪ Sa2))] ⊆ (S(S(Sa ∪ Sa2) · (Sa ∪ Sa2))]

= (S((S2a ∪ S2a2)(Sa ∪ Sa2))] = ((S2a ∪ S2a2)(S(Sa ∪ Sa2))]

= ((S2a ∪ S2a2)(S2a ∪ S2a2)] = ((Sa ∪ a2S2)(Sa ∪ a2S2)]

= ((Sa ∪ S2a · a)(Sa ∪ S2a · a)] ⊆ ((Sa ∪ Sa)(Sa ∪ Sa)]

= (Sa · Sa] = (aS · aS].

Hence by using Lemma 3.9, S is (2, 2)-regular commutative monoid.
(ii) =⇒ (i) : It is obvious. ✷

Let S be an ordered AG***-groupoid. From now onward, R (resp. L) will denote any right (resp. left)
ideal of S; 〈R〉a2 will denote a right ideal (Sa2 ∪ a2] of S containing a2 and 〈L〉a will denote a left ideal
(Sa ∪ a] of S containing a; f (resp. g) will denote any (∈γ ,∈γ ∨qδ)-fuzzy right (left) ideal of S unless
otherwise specified.

Theorem 3.14. Let S be an ordered AG***-groupoid. Then S is (2, 2)-regular if and only if 〈R〉a2∩〈L〉a =

(〈R〉2a2 〈L〉
2
a] and 〈R〉a2 is semiprime.

Proof. Necessity: Let S be (2, 2)-regular. It is easy to see that (〈R〉2a2 〈L〉
2
a] ⊆ 〈R〉a2 ∩ 〈L〉a . Let a ∈

〈R〉a2 ∩ 〈L〉a . Then there exist some x, y ∈ S such that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = (x · ay)(ax) · (y · ay)(ax)

= (a · xy)(ax) · (ay2)(ax) = (a · xy)(ax) · (xa)(y2a)

∈ (〈R〉a2 S · 〈R〉a2 S)(S 〈L〉a · S 〈L〉a) ⊆ 〈R〉2a2 〈L〉
2
a ,

which shows that 〈R〉a2 ∩ 〈L〉a = (〈R〉2a2 〈L〉
2
a]. It is easy to see that 〈R〉a2 is semiprime.

Sufficiency: Since (Sa2 ∪ a2] and (Sa ∪ a] are the right and left ideals of S containing a2 and a
respectively. Thus by using given assumption and Lemma 2.1, we get

a ∈ (Sa2 ∪ a2] ∩ (Sa ∪ a] = ((Sa2 ∪ a2]2(Sa ∪ a]2]

= ((Sa2 ∪ a2)(Sa2 ∪ a) · (Sa ∪ a)(Sa ∪ a)] ⊆ (S(Sa2 ∪ a) · S(Sa ∪ a)]

= ((S · Sa2 ∪ Sa)(S · Sa ∪ Sa)] = ((a2S · S ∪ Sa)(aS · S ∪ Sa)]

= ((a2S · S ∪ Sa)(aS · S ∪ Sa)] = ((Sa2 ∪ Sa)(Sa ∪ Sa)]

= ((a2S ∪ Sa)(Sa ∪ Sa)] = ((Sa · a ∪ Sa)(Sa ∪ Sa)] ⊆ ((Sa ∪ Sa)(Sa ∪ Sa)]

= (Sa · Sa] = (aS · aS].

This implies that S is (2, 2)-regular. ✷

Corollary 3.15. Let S be an ordered AG***-groupoid. Then S is (2, 2)-regular if and only if 〈R〉a2 ∩

〈L〉a = (〈L〉2a 〈R〉2a2 ] and 〈R〉a2 is semiprime.

Theorem 3.16. Let S be an ordered AG***-groupoid. Then the following conditions are equivalent:

(i) S is (2, 2)-regular ;

(ii) 〈R〉a2 ∩ 〈L〉a = (〈L〉2a 〈R〉2a2 ] and 〈R〉a2 is semiprime;
(iii) R ∩ L = (L2R2] and R semiprime;
(iv) f ∩ g =(γ,δ) (f ◦ g) ◦ (f ◦ g) and f is (∈γ ,∈γ ∨qδ)-fuzzy semiprime;
(v) S is (2, 2)-regular and |E |= 1 , (a = ax · a, ∀ a, x ∈ E);
(vi) S is (2, 2)-regular and ∅ 6= E ⊆ S is semilattice.
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Proof. (i) =⇒ (vi) : It can be followed from Lemma 3.9 (i).
(vi) =⇒ (v) : It can be followed from Lemma 3.9 (ii).
(v) =⇒ (iv) : Let f and g be any (∈γ ,∈γ ∨qδ)-fuzzy right ideal and (∈γ ,∈γ ∨qδ)-fuzzy left ideal of a

(2, 2)-regular S respectively. From Lemma 2.7, it is easy to show that (f ◦ g) ◦ (f ◦ g) ⊆(γ,δ) f ∩ g. Now
for a ∈ S, there exist some x, y ∈ S such that

a ≤ ax · ay ≤ (ax · ay)x · (ax · ay)y = (ax · ay) · ((ax · ay)x)y

= (ax · ay) · (yx)(ax · ay) = (ax · ay) · (ax)(yx · ay)

= (ax · ay) · (ay · yx)(xa) = (ax · ay) · ((yx · y)a)(xa)

= (ax)((yx · y)a) · (ay)(xa) = (ax)(ba) · (ay)(xa), where yx · y = b,

which implies that (ax · ba, ay · xa) ∈ Aa. Thus it is to see that max{((f ◦ g) ◦ (f ◦ g))(a), γ} ≥
min{(f ∩ g)(a), δ}, which shows that (f ◦ g) ◦ (f ◦ g) ⊇(γ,δ) f ∩ g. Hence f ∩ g =(γ,δ) (f ◦ g) ◦ (f ◦ g). Also
by using Lemma 3.11, f is (∈γ ,∈γ ∨qδ)-fuzzy semiprime.

(iv) =⇒ (iii) : Let R and L be any left and right ideals of S . Then by using Lemma 2.8, XR and XL

are the (∈γ ,∈γ ∨qδ)-fuzzy right ideal and (∈γ ,∈γ ∨qδ)-fuzzy left ideal of S respectively. Now by using
Lemma 2.4, we get XR∩L = XR ∩XL = (XR ◦XL) ◦ (XR ◦XL) = (XR ◦XR) ◦ (XL ◦XL) = X(R2] ◦X(L2] =
X(R2L2] = X(L2R2], which implies that R ∩ L = (L2R2]. Also by using Lemma 2.10, R is semiprime.

(iii) =⇒ (ii) : It is simple.
(ii) =⇒ (i) : It can be followed from Corollary 3.15. ✷

Theorem 3.17. Let S be an ordered AG***-groupoid. Then the following conditions are equivalent:

(i) S is (2, 2)-regular ;
(ii) 〈R〉a2 ∩ 〈L〉a = (〈R〉a2 〈L〉a · 〈R〉a2 ] and 〈R〉a2 is semiprime;
(iii) R ∩ L = (RL · R] and R is semiprime;
(iv) f ∩ g =(γ,δ) (f ◦ g) ◦ f and f is (∈γ ,∈γ ∨qδ)-fuzzy semiprime;
(v) S is (2, 2)-regular and |E |= 1 , (a = ax · a, ∀ a, x ∈ E);
(vi) S is (2, 2)-regular and ∅ 6= E ⊆ S is semilattice.

Proof. (i) =⇒ (vi) : It can be followed from Lemma 3.9 (i).
(vi) =⇒ (v) : It can be followed from Lemma 3.9 (ii).
(v) =⇒ (iv) : Let f and g be any (∈γ ,∈γ ∨qδ)-fuzzy left ideals of a (2, 2)-regular S over U . Now for

a ∈ S, there exist some x, y ∈ S such that a ≤ ax·ay ≤ ax·(ax·ay)y = ((ax·ay)y ·x)a = (xy ·(ax·ay))a =
(ax · (xy · ay))a = (ax · (a · (xy)y))a.

Thus (ax·(a·(xy)y), a) ∈ Aa. One can easily see that max{((f◦g)◦f)(a), γ} ≥ min{(f∩g)(a), δ}, which
shows that (f◦g)◦f ⊇(γ,δ) f∩g By using Lemmas 2.7 and 3.11, it is easy to show that (f◦g)◦f ⊆(γ,δ) f∩g.
Hence f ∩ g =(γ,δ) (f ◦ g) ◦ f . Also by using Lemma 3.11, f is (∈γ ,∈γ ∨qδ)-fuzzy semiprime.

(iv) =⇒ (iii) : Let R and L be any left and right ideals of S . Then by Lemma 2.8, XR and XL are the
(∈γ ,∈γ ∨qδ)-fuzzy right ideal and (∈γ ,∈γ ∨qδ)-fuzzy left ideal of S respectively. Now by using Lemmas
2.4, 3.3 and 2.1, we get XR∩L = XR ∩ XL = (XR ◦ XL) ◦ XL = X((RL]·R] = X(RL·R], which shows that
R ∩ L = (RL ·R]. Also by using Lemma 2.10, R is semiprime.

(iii) =⇒ (ii) : It is simple.
(ii) =⇒ (i) : Since (Sa2 ∪ a2] and (Sa ∪ a] are the right and left ideals of S containing a2 and a

respectively. Thus by using given assumption and Lemma 2.1, we get

a ∈ (Sa2 ∪ a2] ∩ (Sa ∪ a] = ((Sa2 ∪ a2](Sa ∪ a] · (Sa2 ∪ a2]]

= ((Sa2 ∪ a2)(Sa ∪ a) · (Sa2 ∪ a2)] ⊆ (S(Sa ∪ a) · (Sa2 ∪ a2)]

= ((S2a ∪ Sa)(Sa2 ∪ a2)] = ((S2a · Sa2) ∪ (S2a · a2) ∪ (Sa · Sa2) ∪ (S2a · a2)]

⊆ ((Sa · a2S) ∪ (Sa · Sa) ∪ (Sa · a2S) ∪ (Sa · Sa)]

⊆ ((Sa · Sa) ∪ (Sa · Sa) ∪ (Sa · Sa) ∪ (Sa · Sa)] = (Sa · Sa] = (aS · aS].

Hence S is (2, 2)-regular. ✷
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4. Conclusions

This paper will give us the extension of the work carried out in [18] in a more generalized way. We
have considered the following problems in detail:

i) Compare(∈γ ,∈γ ∨qδ)-fuzzy left/right ideals of an ordered AG-groupoid and respective examples
are provided.

ii) Introduce the concept of an orderedAG***-groupoid and characterize it by using (∈γ ,∈γ ∨qδ)-fuzzy
left/right ideals.

iii) Study the structural properties of a unitary ordered AG-groupoid and ordered AG***-groupoid in
terms of its semilattices, (2, 2)-regular class and generated commutative monoids.

This paper generalized the theory of an AG-groupoid in the following ways:

i) In an AG-groupoid (without order) by using the (∈γ ,∈γ ∨qδ)-fuzzy ideals.

ii) In an AG-groupoid (with and without order) by using fuzzy ideals instead of (∈γ ,∈γ ∨qδ)-fuzzy
ideals.

Some important issues for future work are:

i) To develop strategies for obtaining more valuable results in related areas.

ii) To apply these notions and results for studying (∈γ ,∈γ ∨qδ)-fuzzy ideals in LA-semihypergroups
and soft LA-semigroups.
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