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On Left and Right West-Stampfli Decomposition

Abdelaziz Tajmouati, Abdeslam El Bakkali and Safae Alaoui Chrifi

abstract: In this paper we define and investigate the decomposition of a Hilbert space operator T in the
form T = K +Q where K is a compact and the approximate points spectrum (or the surjectivity spectrum)
of Q is identical to the set of all accumulation point of the approximate point spectrum ( or the surjectivity
spectrum) of T . Also, we provide the relation between operators having these decomposition and left (or
right) Stampfli operators.
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1. Introduction and Preliminaries

In keeping with current usage B(X) (resp, B(H)) denotes the algebra of all bounded linear operator
on an infinite dimensional complex Banach (resp, Hilbert) space and K(X) the closed ideal of compact
operator in B(X). For T ∈ B(X) the spectrum of T is denoted by σ(T ), the dimension of the null
space N(T ) is denoted by α(T ) and the dimension of the quotient space X/R(T ) is denoted by β(T ).
An operator T ∈ B(X) is bounded below, if T is injective and has closed range. It is known that
in the case of Hilbert space, bounded below operators are left invertible. While, surjective operators
are right invertible. The approximate point spectrum of T ∈ B(X) is defined by σa(T ) = {λ ∈ C :
λI − T is not bounded below} and the surjectivity spectrum is defined by σs(T ) = {λ ∈ C : λI −
T is not surjective}.

Φ+(X) = {T ∈ B(X) : R(T ) is closed and α(T ) < ∞} is the set of upper semi-Fredholm operators
and Φ−(X) = {T ∈ B(X) : R(T ) is closed and β(T ) < ∞} is the set of lower semi-Fredholm operators.
The set of semi-Fredholm operators and the set of Fredholm operators are given respectively by Φ±(X) =
Φ+(X) ∪ Φ−(X) and Φ(X) = Φ+(X) ∩Φ−(X).
The upper semi-Fredholm spectrum, the lower semi-Fredholm spectrum, the semi-Fredholm spectrum,
are defined by:

σuf (T ) = {λ ∈ C : λI − T /∈ Φ+(X)},

σlf (T ) = {λ ∈ C : λI − T /∈ Φ−(X)},

σsf (T ) = {λ ∈ C : λI − T /∈ Φ±(X)}.

It is known that σuf (T ) = σa(π(T )) and σlf (T ) = σs(π(T )), where π is the quotient map from B(H)
onto the Calkin algebra B(H)/K(H).
In the sequel we write ρa(T ) = C\σa(T ), ρs(T ) = C\σs(T ), Φ+(T ) = {λ ∈ C : λI − T ∈ Φ+(X)},
Φ−(T ) = {λ ∈ C : λI − T ∈ Φ−(X)} and Φ±(T ) = Φ+(T ) ∪ Φ−(T ).

If T ∈ Φ±(X), the index of T is denoted by ind(T ) = α(T )− β(T ). It is a common knowledge that
for any T ∈ Φ±(X) and K ∈ K(X) we get T +K ∈ Φ±(X) and ind(T +K) = ind(T ).
The upper semi-Weyl region, the lower semi-Weyl region and the Weyl region are defined as:

Φ+
0 (T ) = {λ ∈ C : λI − T ∈ Φ+(X) : ind(λI − T ) ≤ 0},
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Φ−
0 (T ) = {λ ∈ C : λI − T ∈ Φ−(X) : ind(λI − T ) ≥ 0},

Φ0(T ) = {λ ∈ C : λI − T ∈ Φ(X) : ind(λI − T ) = 0}.

Φ+
0 (T ), Φ

−
0 (T ) and Φ0(T ) are open and invariant under compact perturbation. Let T ∈ B(X), we recall

the upper semi-Weyl spectrum, the lower semi-Weyl spectrum as well as the Weyl spectrum as follows:

σuw(T ) = σa(T )\Φ
+
0 (T ) =

⋂

K∈K(X)

σa(T +K),

σlw(T ) = σs(T )\Φ
−
0 (T ) =

⋂

K∈K(X)

σs(T +K),

σw(T ) = σ(T )\Φ0(T ) =
⋂

K∈K(X)

σ(T +K).

If λI − T is semi-Fredholm, the minimal index of λI − T is defined by:

min ind(λI − T ) = min{α(λI − T ), β(λI − T )}.

From [9, Corollary 1.14], the function λ 7−→ min{α(λI − T ), β(λI − T )} is constant on every component
of C\σsf (T ) (except for a denumerable subset without limit points in C\σsf (T )). It is clear that if
(λI − T ) ∈ Φ±(X) such that min ind(λI − T ) = 0 then λI − T is bounded below or surjective.
Recall from [11], the upper sub-spectrum and the lower sub-spectrum for T ∈ B(X)

σus(T ) = σuf (T ) ∪ {λ ∈ Φ+(T ) : min ind(λI − T ) 6= 0},

σls(T ) = σlf (T ) ∪ {λ ∈ Φ−(T ) : min ind(λI − T ) 6= 0}.

The ascent of T ∈ B(X) is defined by asc(T ) = inf{n ∈ N : N(T n) = N(T n+1)} and the descent
is defined by des(T ) = inf{n ∈ N : R(T n) = R(T n+1)}. If such n does not exist, then asc(T ) = ∞
respectively des(T ) = ∞.

We recall that λ ∈ σa(T ) is a left pole of T of finite rank if λI − T ∈ Φ+(H) and asc(λI − T ) < ∞.
While, λ ∈ σs(T ) is a right pole of T of finite rank if λI − T ∈ Φ−(H) and des(λI − T ) < ∞. It is
straightforward that, λ is a left pole of T of finite rank if and only if λ is a right pole of T ∗ of finite rank,
where λ is the conjugate of λ ∈ C and T ∗ is the Hilbert adjoint of T .

It is worth noticing that according to [6], the set of all left poles and right poles of finite rank are
given respectively by:

Π0
l (T ) = {λ ∈ σa(T )\σuw(T ) : λ is an isolated point in σa(T )},

Π0
r(T ) = {λ ∈ σs(T )\σlw(T ) : λ is an isolated point in σs(T )}.

Clearly, Π0
l (T ) = Π0

r(T
∗) and Π0

r(T ) = Π0
l (T

∗). So Π0(T ) = Π0
l (T ) ∩ Π0

r(T ) is the set of Riesz points for
T , it is well known that λ ∈ Π0(T ) if and only if λ is isolated in σ(T ) and (λI − T ) ∈ Φ(X).

We define the upper semi-Browder spectrum, lower semi-Browder spectrum and the Browder spectrum
by

σub(T ) = σa(T )\Π
0
l (T ),

σlb(T ) = σs(T )\Π
0
r(T ),

σb(T ) = σ(T )\Π0(T ).

Before beginning our discussion we start by gathering together some results, which are all known.
Recall that an operator T is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP) if for every open neighborhood U ⊆ C of λ0, the only analytic function f : U → X which satisfies
the equation

(λI − T )f(λ) = 0 for all λ ∈ U
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is the function f = 0. T is said to have the SVEP if T has the SVEP at every λ ∈ C.
If λI − T ∈ Φ±(H) then

T has the SVEP at λ ⇔ asc(λI − T ) < ∞,

T ∗ has the SVEP at λ ⇔ des(λI − T ) < ∞.

For a compact subset K of C, we write acc(K), iso(K), int(K) and ∂K to denote the set of accumulation
points, the set of isolated points, the set of interior points and the boundary of K.

It is easily checked (cf [15, Theorem 9.8.4]) that

∂σ(T ) ⊆ σsf (T ) ∪ Π0(T ). (1.1)

Following [ [9], [10], [11], [12]], an operator T ∈ B(X) is called Stampfli if

σb(T ) = accσ(T )

i.e. every isolated point of the spectrum is a pole of finite rank. Recall that T has the West-Stampfli
decomposition if T = K +Q where K is compact and σ(Q) = accσ(T ). Moreover, we say that T obeys
Stampfli’s theorem if there exists a compact operator K such that σ(T +K) = σw(T ).

The concept of Stampfli operators was first introduced by Stampfli who proved that every Stampfli
operator T on a Hilbert spaceH has the West-Stampfli decomposition this follows from Stampfli’s Lemma
6 in [12]. In [10] authors have studied a generalization of West-Stampfli decomposition by constructing a
Banach space operator. In [11] M. Ó Searcóid characterized Stampfli operators by means of the minimal
index.

Among other results, recall from [11, Proposition 3.47] and [13, Theorem 4.4] that for a Hilbert space
operators T and ε > 0 there always exists a compact operator K ∈ K(H), ‖K‖ < ε for which T +K is
Stampfli, in this case in this case Π0(T +K) = Π0(T ). As a result every Hilbert space operator obeys
Stampfli’s theorem (see for instance [12], Theorem 4).

In this paper we further generalized the concept of West-Stampfli decomposition by introducing the left
(resp, right) West-Stampfli decomposition by replacing the condition σ(Q) = accσ(T ) with the condition
σa(Q) = accσa(T ) (resp, σs(Q) = accσs(T )).

Definition 1.1. We call T = K +Q a left West-Stampfli decomposition if K is compact and σa(Q) =
accσa(T ). Simultanously, we call T = K +Q a right West-Stampfli decomposition if K is compact and
σs(Q) = accσs(T ).

We also extend the class of Stampfli operators to the class of left (resp, right) Stampfli operators as
follows:

Definition 1.2. An operator T ∈ B(X) is called left Stampfli if

σub(T ) = accσa(T ).

Or equivalently, isoσa(T ) = Π0
l (T ).

An operator T ∈ B(X) is called right Stampfli if

σlb(T ) = accσs(T ).

Or equivalently, isoσs(T ) = Π0
r(T ).

Often what we call here left (resp, right) Stampfli operator is commonly known as finitely left (resp,
right) Polaroid.

An approximate point version of Stampfli’s theorem is given by the so-called a-Stampfli’s theorem.

Definition 1.3. T ∈ B(X) is said to satisfy a-Stampfli’s theorem if there exists a compact operator K
such that σa(T +K) = σuw(T ).

This paper is organized as follows, the second section of this paper begins by characterizing left and
right Stampfli operators by means of the minimal index. We prove that Hilbert space operators having
left (resp, right) West-Stampfli decomposition are left (resp, right) Stampfli operators. We also study the
correlation between left or right West-Stampfli decomposition and West-Stampfli decomposition. In the
third section we prescribe some conditions for which a left (resp, right) Stampfli operator T on a Hilbert
space H has the left (resp, right) West-Stampfli decomposition.
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2. left and right West-Stampfli decomposition

In order to characterize the left and right Stampfli operators with respect to the minimal index, we
start this section by the following two lemmas.

Lemma 2.1. If T ∈ B(X) then Φ±(T ) ∩ σ(T ) ⊆ isoσ(T ).

Proof. Let λ ∈ Φ±(T ) ∩ σ(T ) then λ ∈ Φ±(T ) and either λ ∈ ∂σ(T ) or λ ∈ intσ(T ). If λ ∈ ∂σ(T ) then
by (1.1), λ ∈ isoσ(T ). If λ ∈ intσ(T ) then λ ∈ accσ(T ) hence λ ∈ acc∂σ(T ), from (1.1) it then follows
that λ ∈ σsf (T ) which is a contradiction. So we deduce that λ ∈ isoσ(T ). �

From [1, Theorem 1.22] and [1, Corollory 4.13] we have the following lemma.

Lemma 2.2. If T ∈ B(X) is either left or right Stampfli then T is Stampfli.

Proposition 2.1. Let T ∈ B(X)

(i) If T is Stampfli then {λ ∈ Φ±(T ) : min ind (λI − T ) 6= 0} = Π0(T ).

(ii) If T is left Stampfli then {λ ∈ Φ+(T ) : min ind (λI − T ) 6= 0} = Π0
l (T ).

(iii) If T is right Stampfli then {λ ∈ Φ−(T ) : min ind (λI − T ) 6= 0} = Π0
r(T ).

Proof. (i) suppose that T is Stampfli then isoσ(T ) = Π0(T ). It is clear that

{λ ∈ Φ±(T ) : min ind (λI − T ) 6= 0} ⊆ Φ±(T ) ∩ σ(T ).

then by lemma 2.1, {λ ∈ Φ±(T ) : min ind (λI − T ) 6= 0} ⊆ isoσ(T ) = Π0(T ). Conversely, if λ ∈ Π0(T )
then λ ∈ Φ±(T ) and α(λI − T ) = −β(λI − T ) 6= 0 (because λI − T is Weyl and λ ∈ σ(T )), hence
λ ∈ {λ ∈ Φ±(T ) : min ind (λI − T ) 6= 0}.
(ii) suppose that T is left Stampfli, then by lemma 2.2 T is Stampfli thus

{λ ∈ Φ±(T ) : min ind (λI − T ) 6= 0} = Π0(T ).

On the other hand

{λ ∈ Φ+(T ) : min ind(λI − T ) 6= 0} ⊆ {λ ∈ Φ±(T ) : min ind(λI − T ) 6= 0} = Π0(T ),

⊆ Π0
l (T ).

Conversely, if λ ∈ Π0
l (T ) then λ ∈ Φ+(T ) and α(λI−T ) ≤ β(λI−T ), because λI−T is upper semi-Weyl.

Then min ind(λI − T ) = α(λI − T ) 6= 0 since λ ∈ σa(T ).
(iii) The case of right Stampfli may be proved in a similar way. �

Remark 2.2. As a consequence of the proposition 2.1, we have σls(T ) = σus(T ∗) for every right stampfli
operator T ∈ B(H).

The concept of left and right Stampfli operators are dual each other ( [1, Theorem 4.8]).

Corollary 2.3. T ∈ B(H) is left Stampfli (resp, right Stampfli) if and only if T ∗ is right Stampfli (resp,
left Stampfli).

Lemma 2.3. Let T ∈ B(H).

(i) If T has the left West-Stampfli decomposition then T is left Stampfli.

(ii) If T has the right West-Stampfli decomposition then T is right Stampfli.
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Proof. (i) Let T = K +Q with K is compact and σa(Q) = accσa(T ), then for every isolated point λ of
σa(T ), λ /∈ σa(Q) i.e. λI−Q is bounded below. We have λI−T = λI−Q−K, since π(λI−T ) = π(λI−Q)
is left invertible, then λI − T ∈ Φ+(H). On the other hand T has the SVEP at λ, which implying that
asc(λI − T ) < ∞, it follows that λ is a left pole of T of finite rank.
(ii) Suppose now that T = K + Q with K compact and σs(Q) = accσs(T ), then for every isolated
point λ of σs(T ), λ /∈ σs(Q) i.e. λI −Q is onto. Since π(λI − T ) = π(λI − Q) is right invertible, then
λI − T ∈ Φ−(H), so with a standard duality we have; σs(T ) does not cluster the point λ if and only if
σa(T

∗) does not cluster the point λ if and only if T ∗ has the SVEP at λ if and only des(λI − T ) < ∞.
Consequently, λ is a right pole of T of finite rank . �

Corollary 2.4. If either T ∈ B(H) has left or right West-Stampfli decomposition then T has West-
Stampfli decomposition.

Proof. Let T ∈ B(H). Indeed there are implications

T has a left West-Stampfli decomposition ⇒ T is a left Stampfli operator,

⇒ T is a Stampfli operator,

⇒ T has a West-Stampfli decomposition.

Where the first implication can be ascertained by lemma 2.3, the second follows from lemma 2.2, the
third is by lemma 6 in [12].

Also, if T has a right West-Stampfli decomposition then T is a right Stampfli operator, equivalently
T ∗ is a left Stampfli operator. By the first part and since σ(T ) = σ(T ∗), T has a West-Stampfli decom-
position. �

The following example is fitting with the above corollary, it shows that the reverse can not be occur.

Example 1. Let U : l2(N) → l2(N) be the unilateral shift and Q : l2(N) → l2(N) is the weighted
unilateral shift defined by:

Q(x1, x2, ...) = (0, x1,
1

2
x2,

1

3
x3,...), (x1, x2, ...) ∈ l2(N)

Q is a compact quasi-nilpotent operator and 0 is not an accumulation point of the spectrum of Q.
If we let T = U ⊕Q ∈ B(l2(N)⊕ l2(N)) then it is clear that

σ(T ) = σ(U) ∪ σ(Q) = D,

where D = {λ ∈ C : |λ| ≤ 1}, as result isoσ(T ) = ∅. Thus, T is a Stampfli operator. Let K ∈
B(l2(N)⊕ l2(N)) be the compact operatorK = 0⊕−Q then (U⊕0)−K is a West-Stampfli decomposition
of T . Indeed,

σ(T +K) = σ(U) = D = accσ(T ).

On the other hand, σa(T ) = σa(U) ∪ σa(Q) = ∂D ∪ {0} and 0 is not an accumulation point of the
approximate spectrum of Q.
For en = (0, ..., 0, 1, 0, ...) where 1 is the n-th term, en+1 ∈ Ker Qn+1 while en+1 /∈ Ker Qn, so asc(Q) =
∞, and asc(T)=max{asc(U),asc(Q)} = ∞.
0 ∈ isoσa(T ) but 0 is not a left pole of T . Consequently, T is not a left Stampfli operator.

Suppose now that T has the left West-Stampfli decomposition then by lemma 2.3 T is left Stampfli
which leads to a contradiction.

In addition, T ∗ has not the right West-Stampfli decomposition even if T ∗ has the West-Stampfli
decomposition.

Corollary 2.5. If T ∈ B(H) has both left and right West-Stampfli decomposition then T has the West-
Stampfli decomposition.
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Proof. Suppose that T ∈ B(H) has both left and right West-Stampfli decomposition then Lemma 2.3
entails that T is both left and right Stampfli. By [2, Theorem 2.6] it follows that T is Stampfli which
implies by [12, Lemma 6] that T has West-Stampfli decomposition. �

It makes sens to find condition for which the reverse of lemme 2.3 is also true.

3. a-Stampfli’s theorem

To prove the main results of this section, some preparation is needed. In fact, we have the following
definition.

Definition 3.1. An operator T ∈ B(H) is said to have the left compact correction if there exists a
compact operator K ∈ K(H) such that σus(T +K) = σuf (T ).

For a Hilbert space operator T , authors in [7] claim that necessary and sufficient condition for T +K
to be left Stampfli (resp, right Stampfli) for every compact operator K, is that σuw(T ) (resp, σlw(T )) is
connected. The connectedness of σuw(T ) implies that either isoσuw(T ) = ∅ or σuw(T ) = {0}.

Lemma 3.1 ( [7], Theorem 6.4). Let T ∈ B(H) then, the following equivalences hold:

(i) isoσuw(T ) = ∅ if and only if T +K is left Stampfli for every compact operator K.

(ii) isoσlw(T ) = ∅ if and only if T +K is right Stampfli for every compact operator K.

The following results are based on the foregoing lemma, they generalize corollary 4.5 and corollary
4.6 in [11].

Theorem 3.2. Suppose that every left Stampfli operator on H has the left West-Stampfli decomposition.
Then a-Stampfli’s theorem holds for every operator having a connected upper-semi Weyl spectrum.

Proof. Let T ∈ B(H) such that isoσuw(T ) = ∅ and let K1 ∈ K(H). From lemma 3.1, T + K1 is left
Stampfli, it follows that T + K1 has the left West-stampfli decomposition i.e. there exists a compact
operator K2 such that

σa(T +K1 +K2) = accσa(T +K1) = σa(T +K1)\Π
0
l (T +K1).

For K = K1 +K2 we must show that

σuw(T ) = σa(T +K),

that is,

σa(T +K) ∩ Φ+
0 (T +K) = σa(T +K) ∩ Φ+

0 (T +K1) = ∅.

For the sake of contradiction assume that σa(T + K) ∩ Φ+
0 (T + K1) 6= ∅, so there is λ ∈ σa(T +K) ∩

Φ+
0 (T +K1) = (σa(T +K1)\Π0

l (T +K1)) ∩ Φ+
0 (T +K1). Since T +K1 is a left Stampfli operator then

λ ∈ σa(T+K1)\Π0
l (T+K1) implies that λ ∈ σa(T+K1) and λ /∈ {λ ∈ Φ+(T ) : min ind (T+K−λI) 6= 0},

in other word T +K1 − λI ∈ Φ+(H) and min ind(T +K1 − λI) = 0.
Besides that λ ∈ Φ+

0 (T + K1), thus ind(T + K1 − λ) < 0, so T + K1 − λ is bounded below. Hence
λ /∈ σa(T +K1) and λ ∈ σa(T +K1) which is a contradiction. �

Theorem 3.3. Suppose that every left Stampfli operator on H has the left West-Stampfli decomposition.
Then every operator with connected upper semi-Weyl spectrum has a left compact correction.

Proof. Let T ∈ B(H) such that isoσuw(T ) = ∅ then according to theorem 3.2 there exists K ∈ K(H)
such that σa(T +K) = σuw(T ). We want to show that

σus(T +K) = σuf (T )
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i.e. {λ ∈ Φ+(T +K) : min ind(T +K − λI) 6= 0} = ∅, since isoσuw(T ) = ∅ then from lemma 3.1 T +K
is a left Stampfli operator which implying that,

Π0
l (T +K) = {λ ∈ Φ+(T +K) : min ind(T +K − λI) 6= 0}.

By contradiction assume that there exists λ ∈ Π0
l (T +K) it follows that λ ∈ Φ+

0 (T +K). Furthermore
Π0

l (T+K) ⊂ σa(T+K), then also λ ∈ σa(T+K), that leads to a contradiction of σa(T+K)∩Φ+
0 (T+K) =

∅. �

Contrary to [9, Proposition 3.47] and [11, Theorem 4.4], there is no relation between Π0
l (T ) and

Π0
l (T + K) where K is a compact operator even if σuw(T ) is connected as it is shown in the following

example. So the reverse of Theorem 3.2 is not true in general.

Example 2. Let U : l2(N) → l2(N) be the unilateral shift and let Q : l2(N) → l2(N) be the compact
operator defined by

Q(x1, x2, x3, ...) = (−
x1

2
, 0, 0, ...), (x1, x2, x3, ...) ∈ l2(N)

set T = U ⊕ I and K = 0 ⊕Q. T and K are operators defined on l2(N) ⊕ l2(N). Then isoσuw(T ) = ∅,
and

isoσa(T ) = Π0
l (T ) = ∅ 6= {

1

2
} = isoσa(T +K) = Π0

l (T +K).

Proposition 3.4. Suppose that T ∈ B(H) is a left Stampfli operator such that isoσuw(T ) = ∅ and
Π0

l (T ) = Π0
l (T +K) for every compact operator K. If T has the left compact correction then T has the

left West-Stampfli decomposition.

Proof. Let T ∈ B(H) be a left Stampfli operator, hypothetically there exists a compact operator K
such that σus(T + K) = σuf (T ) i.e. there exists a compact operator K such that {λ ∈ Φ+(T + K) :
min ind(T +K − λ) 6= 0} = ∅.
Since isoσuw(T ) = ∅ then T +K is a left Stampfli operator. In this case

Π0
l (T +K) = Π0

l (T ) = {λ ∈ Φ+(T +K) : min ind(T +K − λ) 6= 0} = ∅.

On the other hand

ρa(T ) ⊂ Φ+(T )\Π
0
l (T ) = Φ+(T )\Π

0
l (T +K) = ρus(T +K) ⊂ ρa(T +K).

Thus σa(T +K) ⊂ σa(T ) = σa(T )\Π
0
l (T ).

�
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