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abstract: In this paper we will prove that the positive initial-energy solution for coupled nonlinear Klein-
Gordon equations with degenerate damping and source terms grows exponentially.
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1. Introduction

In this work, we consider the coupled nonlinear Klein-Gordon equations:







utt −∆u +m2
1u+

(

|u|k + |v|l
)

|ut|
p−1

ut = f1 (u, v) ,

vtt −∆v +m2
2v +

(

|v|
θ
+ |u|

̺
)

|vt|
q−1

vt = f2 (u, v) ,
(1.1)

where p, q > 1, k, l, θ, ̺ ≥ 0, m1, m2 > 0, (x, t) ∈ Ω× (0, T ) and Ω is a bounded domain with smooth
boundary ∂Ω in Rn (n ≥ 1) , and the two functions f1 (u, v) and f2 (u, v) given by

{

f1 (u, v) = |u+ v|2(r+1) (u+ v) + |u|r u |v|r+2
,

f2 (u, v) = |u+ v|
2(r+1)

(u+ v) + |u|
r+2

|v|
r
v.

(1.2)

The system (1.1) is supplemented with the following initial conditions:

((u (0) , v (0))) = (u0, v0) , ((ut (0) , vt (0))) = (u1, v1) , x ∈ Ω (1.3)

and boundary conditions
u (x) = v (x) = 0, x ∈ ∂Ω. (1.4)

Some special case of the single wave equation with nonlinear damping and nonlinear source terms in the
form

utt −∆u+ a |ut|
p−1

ut = b |u|
q−1

u, (1.5)

with the presence of different mechanisms of dissipation, damping and for more general forms of non-
linearities has been extensively studied and results concerning existence, nonexistence and asymptotic
behavior of solutions have been established by several authors and many results appeared in the literature
over the past decades. See ([1] , [5]− [8] , [10] , [16]). The absence of the terms m2

1u and m2
2u, equations

(1.1) take the form






utt −∆u+
(

|u|
k
+ |v|

l
)

|ut|
p−1

ut = f1 (u, v) ,

vtt −∆v +
(

|v|θ + |u|̺
)

|vt|
q−1

vt = f2 (u, v) .
(1.6)
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2 A. Ouaoua and M. Maouni

In [13] Rammaha and Sakuntasathien focus on the global well-posedness of the system of nonlinear wave
equation (1.6) . In [17] Wu studied blow up of solutions of the system (1.1) for n = 3 and k = l = θ = ̺ = 0.
Agre and Rammaha [3] studied the global existence and the blow up of the solution of problem (1.6) when
k = l = θ = ̺, and also Alves et al [4] , investigated the existence, uniform decay rates and blow up of the
solution. In [11] Erhen Pişkin prove the blow up of solutions of (1.1) in finite time with negative initial
energy and nondegenerate damping terms. In the work [9] , authors considered the following nonlinear
viscoelastic system















utt −∆u+
t
∫

0

g (t− s)∆u (x, s) ds+ |ut|
p−1

ut = f1 (u, v) ,

vtt −∆v +
t
∫

0

h (t− s)∆v (x, s) ds+ |vt|
q−1

vt = f2 (u, v) .

(1.7)

and they prove a global nonexistence for certain solutions with positive initial energy, the main tool proof
is a method used in [15] . In [14] , B. Said-Houari proved that the energy associated to the system (1.8)















|u|j utt −∆u−∆utt +
t
∫

0

g (t− s)∆u (x, s) ds+ |ut|
p−1

ut = f1 (u, v) ,

|v|
j
vtt −∆v −∆vtt +

t
∫

0

h (t− s)∆v (x, s) ds+ |vt|
q−1

vt = f2 (u, v) .

(1.8)

is unbounded and it grows up as an exponential fonction as time goes to infinity, provided that the initail
data are large enough. The key ingredient in his proof is a method used in vitillaro [16] and developed
in [15] for a system of wave equations.

Our paper is organized as follows, In section 2, we present the assumptions and some lemmas needed
for our result. Section 3 is devoted the proof of the main result.

2. Preliminaries

In this section, we shall give some lemmas which will be used throughout this work.

Lemma 2.1. [2] (Sobolev-Poincaré inequality) Let s be a number with 2 ≤ s < +∞ if n ≤ 2 and

2 ≤ s ≤ 2n
n−2 if n > 2. Then there is a constant C depending on Ω and s such that

‖u‖s ≤ C ‖∇u‖2 , u ∈ H1
0 . (2.1)

Lemma 2.2. (Young’s inequality) Let a, b ≥ 0 and 1
p
+ 1

q
= 1 for 0 < p, q < +∞, then one has the

inequatity

ab ≤ δap + c (δ) bq,

where δ > 0 is an constant, and c (δ) is a positive constant depending on δ.

We assume that
{

r > −1 if n = 1, 2
−1 < r ≤ 3−n

n−2 if n ≥ 3.
(2.2)

We can easily verify that
uf1 (u, v) + vf2 (u, v) = 2 (r + 2)F (u, v) (2.3)

where

F (u, v) =
1

2 (r + 2)

[

|u+ v|
2(r+2)

+ 2 |uv|
r+2

]

. (2.4)

Lemma 2.3. [9] There exist two positive constants c1 and c2 such that

c1

(

|u|
2(r+2)

+ |v|
2(r+2)

)

≤ 2 (r + 2)F (u, v) ≤ c2

(

|u|
2(r+2)

+ |v|
2(r+2)

)

, (2.5)

is satisfied.
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Now, we define the following energy function associated with a solution (u, v) of problem (1.1)− (1.4)

E (t) =
1

2

(

‖ut‖
2
2 + ‖vt‖

2
2

)

+
1

2

(

‖∇u‖22 + ‖∇v‖22

)

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 −

∫

Ω

F (u, v) dx. (2.6)

Lemma 2.4. Let (u, v) be a solution (1.1)− (1.4) then E (t) is a nonincreasing function for t > 0 and

E
′

(t) = −

∫

Ω

(

|u|
k
+ |v|

l
)

|ut|
p+1

dx−

∫

Ω

(

|v|
θ
+ |u|

̺
)

|ut|
q+1

dx (2.7)

Proof. By multiplying the first equation of (1.1) by ut and the second equation by vt, integrating over
Ω, using integration py parts and summing up, we get

E (t)− E (0) = −

t
∫

0

∫

Ω

(

|u|
k
+ |v|

l
)

|ut|
p+1

dx −

t
∫

0

∫

Ω

(

|v|
θ
+ |u|

̺
)

|ut|
q+1

dxds (2.8)

�

Next, we state the local existence theorem that can be established combinig arguments of [12, 13] .
We give the definition of a weak solution to problem (1.1)− (1.4).

Definition 2.5. A pair of function (u, v) is said to be a weak solution of (1.1)− (1.4) on [0, T ] if

u, v ∈ C
(

[0, T ] ; H1
0 (Ω) ∩ L2(r+2) (Ω)

)

, ut ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ Lp+1 (Ω× (0, T ))

and

vt ∈ C
(

[0, T ] ; L2 (Ω)
)

∩ Lq+1 (Ω× (0, T )) .

In addition, (u, v) satisfies

∫

Ω

u
′

(t)ϕdx−

∫

Ω

u1 (t)ϕdx+

∫

Ω

∇u∇ϕdx+m2
1

∫

Ω

uϕdx

+

t
∫

0

∫

Ω

(

|u|
k
+ |v|

l
)
∣

∣

∣
u

′

∣

∣

∣

p+1

u
′

ϕdxds =

t
∫

0

∫

Ω

f (u, v)ϕdxds (2.9)

∫

Ω

v
′

(t)φdx−

∫

Ω

v1 (t)φdx+

∫

Ω

∇v∇φdx+m2
2

∫

Ω

vφdx

t

+

∫

0

∫

Ω

(

|v|
θ
+ |u|

̺
) ∣

∣

∣
v

′

∣

∣

∣

q+1

v
′

φdxds =

t
∫

0

∫

Ω

f2 (u, v)ϕdxds (2.10)

for all test function ϕ ∈ H1
0 (Ω) ∩ Lp+1 (Ω) , φ ∈ H1

0 (Ω) ∩ Lq+1 (Ω) and for almost all t ∈ [0, T ] .

Theorem 2.6. (Local existence) Assume that (2.2) holds. Then, for any initial data u0, v0 ∈ H1
0 (Ω) ∩

L2(r+2) (Ω) and u1, v1 ∈ L2 (Ω) . There exists a unique local weak solution (u, v) of problem (1.1)− (1.4)
( in the sense of definition 2.5) defined in [0, T ] for some T > 0, and satisfies the energy identity

E (t) +

t
∫

0

∫

Ω

(

|u|
k
+ |v|

l
)

|ut|
p+1

dxds+

t
∫

0

∫

Ω

(

|v|
θ
+ |u|

̺
)

|vt|
q+1

dxds = E (0) , t ≥ 0. (2.11)



4 A. Ouaoua and M. Maouni

3. Exponential growth

In this section, we are going to prove our main result. We need in the sequel the following Lemmas.

Lemma 3.1. [9] Suppose that (2.2) holds. Then there exists η > 0 such that for any (u, v) ∈ H1
0 (Ω) ×

H1
0 (Ω) the inequality

2 (r + 2)

∫

Ω

F (u, v) ≤ η

(

1

2

(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2

)r+2

(3.1)

holds.

Proof. Direct computation using Minkowski, Hölder’s and Young’s inequality and the embedding theorem
yields the proof of this Lemma. � �

We introduce the following constants:

B = η
1

2(r+2) , α1 = B− r+2
r+1 , E1 =

(

1

2
−

1

2 (r + 2)

)

α2
1, (3.2)

where η is the optimal constant in (3.1) .
The following lemma is very useful to prove our result for positive initial energy E (0) > 0. It is

similar to the one the lemma in [9], first used by Vitillaro [16] .

Lemma 3.2. Suppose that (2.2) holds. Let (u, v) be a solution of (1.1) − (1.4) . Assume further that

E (0) < E1 and
(

1

2

(

‖∇u0‖
2
2 + ‖∇v0‖

2
2

)

+
m2

1

2
‖u0‖

2
2 +

m2
2

2
‖v0‖

2
2

)

1
2

> α1 (3.3)

Then there exists a constant α2 > α1, such that

(

1

2

(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

+
m2

1

2
‖u‖

2
2 +

m2
2

2
‖∇v‖

2
2

)

1
2

> α2, (3.4)

and
(

‖u+ v‖
2(r+2)
2(r+2) + 2 ‖uv‖

r+2
r+2

)
1

2(r+2)

≥ Bα2, ∀t ≥ 0. (3.5)

Theorem 3.3. Suppose that (2.2) holds. Assume further that

2 (r + 2) > max {k + p+ 1, l + p+ 1, θ + q + 1, ̺+ q + 1} (3.6)

Then any solution of problem (1.1)− (1.4) with initail data satisfying

(

1

2

(

‖∇u0‖
2
2 + ‖∇v0‖

2
2

)

+
m2

1

2
‖u0‖

2
2 +

m2
2

2
‖v0‖

2
2

)
1
2

> α1, (3.7)

E (0) < E1, where α1 is defined in (3.2) , grows exponentially.

Proof. Set
H (t) = E1 − E (t) (3.8)

By using (2.6) and (3.8) we get

0 < H (0) ≤ H (t) = E1 −
1

2

(

‖ut‖
2
2 + ‖vt‖

2
2

)

−
1

2

(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

�
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−

(

m2
1

2
‖u‖

2
2 +

m2
2

2
‖v‖

2
2

)

+

∫

Ω

F (u, v) dx

From (3.4) , we obtain

E1 −
1

2

(

‖ut‖
2
2 + ‖vt‖

2
2

)

−
1

2

(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

−

(

m2
1

2
‖u‖

2
2 +

m2
2

2
‖v‖

2
2

)

≤ E1 −
1

2
α2
1 ≤ −

1

2 (r + 2)
α2
1 < 0 (3.9)

Hence, by the above inequality and (2.5) , we have

0 < H (0) ≤ H (t) ≤
c2

2 (r + 2)

(

‖u‖
2(r+2)
2(r+2) + ‖v‖

2(r+2)
2(r+2)

)

(3.10)

We then define the following Lyaponov function

G (t) = H (t) + ǫ

∫

Ω

(uut + vvt) dx (3.11)

for ǫ small to be chosen later.
Our goal is to show that G (t) satisfies a differential inequality of the form

d

dt
G (t) ≥ ζG (t) (3.12)

By taking a derivative of (3.11) and using equations (1.1) , we obtain

G
′

(t) = H
′

(t) + ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

− ǫ
(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

−ǫ
(

m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2

)

+ ǫ

∫

Ω

(uf1 (u, v) + vf2 (u, v)) dx

−ǫ

∫

Ω

(

|u|k + |v|l
)

ut |ut|
p−1

udx− ǫ

∫

Ω

(

|v|θ + |u|̺
)

vt |vt|
q−1

vdx.

(3.13)

From the definition of H (t) , it follows that

−
(

‖∇u‖
2
2 + ‖∇v‖

2
2

)

= −2E1 + 2H (t)− 2

∫

Ω

F (u, v)

+
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2 (3.14)

Inserting (3.14) into (3.13) , lead to

G
′

(t) = H
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

− 2ǫE1 + 2ǫH (t)

+ǫ

(

1−
1

r + 2

)

(

‖u+ v‖
2(r+2)
2(r+2) + 2 ‖uv‖

r+2
r+2

)

− ǫ

∫

Ω

(

|u|
k
+ |v|

l
)

ut |ut|
p−1

udx− ǫ

∫

Ω

(

|v|
θ
+ |u|

̺
)

vt |vt|
q−1

vdx (3.15)
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By taking c3 = 1 − 1
r+2 − 2E1 (Bα2)

−2(r+2)
, one can easily check that c3 > 0, since α2 > B− r+2

r+1 .

Therefore, (3.15) take the form

G
′

(t) ≥ H
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+2ǫH (t) + ǫc3

(

‖u+ v‖
2(r+2)
2(r+2) + 2 ‖uv‖

r+2
r+2

)

− ǫ

∫

Ω

(

|u|
k
+ |v|

l
)

ut |ut|
p−1

udx− ǫ

∫

Ω

(

|v|
θ
+ |u|

̺
)

vt |vt|
q−1

vdx (3.16)

In the order to estimate the last two terms in (3.16) , we make of the following Young’s inequatily

XY ≤
δαXα

α
+

δ−βY β

β
,

X, Y ≥ 0, δ > 0, α, β ∈ R
+ such that 1

α
+ 1

β
= 1. Consequently, we get

ut |ut|
p−1

u ≤
p

p+ 1
δ
− p+1

p

1 |u|
p+1

+
1

p+ 1
δ
p+1
1 |ut|

p+1
,

and therefore
∫

Ω

(

|u|
k
+ |v|

l
)

ut |ut|
p−1

udx ≤
p

p+ 1
δ
−

p+1
p

1

∫

Ω

(

|u|
k
+ |v|

l
)

|u|
p+1

dx

+
1

p+ 1
δ
p+1
1

∫

Ω

(

|u|
k
+ |v|

l
)

|ut|
p+1

dx (3.17)

Similarly, for all δ2 > 0

vt |vt|
q−1

v ≤
q

q + 1
δ
−

q+1
q

2 |v|
q+1

+
1

q + 1
δ
q+1
2 |vt|

q+1
,

then
∫

Ω

(

|v|θ + |u|̺
)

vt |vt|
q−1

vdx ≤
q

q + 1
δ
−

q+1
q

2

∫

Ω

(

|v|θ + |u|̺
)

|v|q+1
dx

+
1

q + 1
δ
q+1
2

∫

Ω

(

|v|
θ
+ |u|

̺
)

|vt|
q+1

dx (3.18)

Inserting (3.17) , (3.18) into (3.16) , we obtain

G
′

(t) ≥ H
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+2ǫH (t) + ǫc3

(

‖u+ v‖
2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2

)

−ǫ
1

p+ 1
δ
p+1
1

∫

Ω

(

|u|k + |v|l
)

|ut|
p+1

dx− ǫ
1

q + 1
δ
q+1
2

∫

Ω

(

|v|θ + |u|̺
)

|vt|
q+1

dx

− ǫ
p

p+ 1
δ
− p+1

p

1

∫

Ω

(

|u|
k
+ |v|

l
)

|u|
p+1

dx− ǫ
q

q + 1
δ
− q+1

q

2

∫

Ω

(

|v|
θ
+ |u|

̺
)

|v|
q+1

dx (3.19)

Using Young’s inequality, we get
∫

Ω

(

|u|
k
+ |v|

l
)

|u|
p+1

dx ≤ ‖u‖
k+p+1
k+p+1 +

∫

Ω

|v|
l
|u|

p+1
dx
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≤ ‖u‖k+p+1
k+p+1 +

l

l+ p+ 1
γ

l+p+1
l

1 ‖v‖l+p+1
l+p+1 +

p+ 1

l + p+ 1
γ
−

l+p+1
p+1

1 ‖u‖l+p+1
l+p+1 (3.20)

and
∫

Ω

(

|v|
θ
+ |u|

̺
)

|v|
q+1

dx ≤ ‖v‖
θ+q+1
θ+q+1 +

∫

Ω

|u|
̺
|v|

q+1
dx

≤ ‖v‖
θ+q+1
θ+q+1 +

̺

̺+ q + 1
γ

̺+q+1
̺

2 ‖u‖
̺+q+1
̺+q+1 +

q + 1

̺+ q + 1
γ
−

̺+q+1
q+1

2 ‖v‖
̺+q+1
̺+q+1 (3.21)

By using (3.20) , (3.21) and lemma 3, (3.19) becames

G
′

(t) ≥ H
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+ ǫ
(

m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2

)

+2ǫH (t) + ǫc4

(

‖u‖
2(r+2)
2(r+2) + ‖v‖

2(r+2)
2(r+2)

)

−ǫ
1

p+ 1
δ
p+1
1

∫

Ω

(

|u|k + |v|l
)

|ut|
p+1

dx− ǫ
1

q + 1
δ
q+1
2

∫

Ω

(

|v|θ + |u|̺
)

|vt|
q+1

dx

−ǫ
p

p+ 1
δ
−

p+1
p

1

[

‖u‖k+p+1
k+p+1 +

l

l + p+ 1
γ

l+p+1
l

1 ‖v‖l+p+1
l+p+1

+
p+ 1

l + p+ 1
γ
−

l+p+1
p+1

1 ‖u‖
l+p+1
l+p+1

]

−ǫ
q

q + 1
δ
−

q+1
q

2

[

‖v‖θ+q+1
θ+q+1 +

̺

̺+ q + 1
γ

̺+q+1
̺

2 ‖u‖̺+q+1
̺+q+1

+
q + 1

̺+ q + 1
γ
−

̺+q+1
q+1

2 ‖v‖
̺+q+1
̺+q+1

]

(3.22)

We define the algebric inequality

zυ ≤ (z + 1) ≤

(

1 +
1

a

)

(z + a) , ∀z ≥ 0, 0 < υ < 1, a > 0. (3.23)

In the sequel noting by c the various constants.
Since (3.6) holds, by the embedding theorem and the previous inequality, we obtain























































‖u‖k+p+1
k+p+1 ≤ c ‖u‖k+p+1

2(r+2) ≤ cd
(

‖u‖
2(r+2)
2(r+2) +H (0)

)

≤ cd
(

‖u‖
2(r+2)
2(r+2) +H (t)

)

‖u‖
l+p+1
l+p+1 ≤ cd

(

‖u‖
2(r+2)
2(r+2) +H (t)

)

‖u‖
̺+q+1
̺+q+1 ≤ cd

(

‖u‖
2(r+2)
2(r+2) +H (t)

)

‖v‖
l+p+1
l+p+1 ≤ cd

(

‖v‖
2(r+2)
2(r+2) +H (t)

)

‖v‖
θ+q+1
θ+q+1 ≤ cd

(

‖v‖
2(r+2)
2(r+2) +H (t)

)

‖v‖
̺+q+1
̺+q+1 ≤ cd

(

‖v‖
2(r+2)
2(r+2) +H (t)

)

(3.24)

where d = 1+ 1
H(0) . Choosing

K1 =
p+ 1

l + p+ 1
γ
−

l+p+1
p+1

1 , K2 =
̺

̺+ q + 1
γ

̺+q+1
̺

2 ,

K3 =
l

l + p+ 1
γ

l+p+1
l

1 , K4 =
q + 1

̺+ q + 1
γ
−

̺+q+1
q+1

2

Substituting (3.24) into (3.22) and using the formula of H
′

(t) , we obtain

G
′

(t) ≥ (1− ǫK)H
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+ ǫ
(

m2
1 ‖u‖

2
2 +m2

2 ‖v‖
2
2

)
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+ǫ

[

c4 −
p

p+ 1
δ
− p+1

p

1 cd (1 +K1 +K2)

]

‖u‖
2(r+2)
2(r+2)

+ǫ

[

c4 −
q

q + 1
δ
−

q+1
q

2 cd (1 +K3 +K4)

]

‖v‖
2(r+2)
2(r+2)

+ ǫ

[

2−
p

p+ 1
δ
−

p+1
p

1 cd (1 +K1 +K2)−
q

q + 1
δ
−

q+1
q

2 cd (1 +K3 +K4)

]

H (t) (3.25)

where K = max
(

1
p+1δ

p+1
1 , 1

q+1δ
q+1
2

)

. At this point, and for large values of δ1 and δ2, and we pick ǫ

small enough, we can find positive constants λ, λ1, λ2 and λ3 such that (3.25) becames

G
′

(t) ≥ λH
′

(t) + 2ǫ
(

‖ut‖
2
2 + ‖vt‖

2
2

)

+ ǫλ1 ‖u‖
2(r+2)
2(r+2) + ǫλ2 ‖v‖

2(r+2)
2(r+2) + ǫλ3H (t) . (3.26)

Therefore
G

′

(t) ≥ M
(

‖ut‖
2
2 + ‖vt‖

2
2 + ‖u‖

2(r+2)
2(r+2) + ‖v‖

2(r+2)
2(r+2) +H (t)

)

. (3.27)

where M = min (2, λ1, λ2, λ3) . Consequently, we have

G (0) = H (0) + ǫ

∫

Ω

(u0u1 + v0v1) dx > 0.

Now, by Hölder’s and Young’s inequalities, we estimate
∫

Ω

(uut + vvt) dx ≤ k1 ‖u‖
2
2 +

1

4k1
‖ut‖

2
2 + k2 ‖v‖

2
2 +

1

4k2
‖vt‖

2
2 , k1, k2 > 0. (3.28)

We can find constant c such that
∫

Ω

(uut + vvt) dx ≤ c
(

‖u‖
2(r+2)
2(r+2) + ‖v‖

2(r+2)
2(r+2) + ‖u‖

2
2 + ‖v‖

2
2 + ‖ut‖

2
2 + ‖vt‖

2
2

)

(3.29)

Again applied (3.23) and the embedding theorem, we get

‖u‖
2
2 ≤ c ‖u‖

2
2(r+2) ≤ c

(

‖u‖
2(r+2)
2(r+2)

)
2

2(r+2)

≤ cd
(

‖u‖
2(r+2)
2(r+2) +H (t)

)

.

Similarly,

‖v‖22 ≤ cd
(

‖v‖
2(r+2)
2(r+2) +H (t)

)

.

Also, noting that

G (t) = H (t) + ǫ

∫

Ω

(uut + vvt) dx ≤ c(H (t) + ‖u‖
2(r+2)
2(r+2) + ‖v‖

2(r+2)
2(r+2)

+ ‖ut‖
2
2 + ‖vt‖

2
2). (3.30)

And combining with (3.27) and (3.30) , we arrive at

d

dt
G (t) ≥ ξG (t) , ξ > 0, ∀t ≥ 0. (3.31)

Integrating of (3.31) between 0 and t gives

G (t) ≥ G (0) eξt, ∀t ≥ 0. (3.32)

This completes the proof. �
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12. E. Pişkin, N. Polat, Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping
and source terms, Turk J Math, 37: 633 – 651 (2013).

13. M. A. Rammaha, S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations
with degenerate damping and source terms, Nonlinear Anal., 72, 2658-2683 (2010).

14. B. Said-Houari, Exponential growth of positive initial-energy solution of a system of nonlinear viscoelastic wave equation
with damping and source terms, Z. Angew. Math. Phys, 62, 115-133 (2011).

15. B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with
damping and source terms, Diff. Integral Eqns., 23 (1–2), 79–92 (2010).

16. E. Vitillaro, Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal.,
149, 155–182 (1999).

17. S. T. Wu, Blow-up of solutions for a system of nonlinear wave equations with nonlinear damping, Electron. J. Differ-
ential Equations, 2009 (105), 1–11 (2009).

Amar Ouaoua,
Department of Mathematics,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
University of 20 August 1955, Skikda,
Algeria.
E-mail address: a.ouaoua@univ-skikda.dz

and

Messaoud Maouni,
Department of Mathematics,
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS)
University of 20 August 1955, Skikda,
Algeria.
E-mail address: m.maouni@univ-skikda.dz


	Introduction
	Preliminaries
	Exponential growth

