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Existence of Multiple Solutions for a Nonhomogeneous p-Laplacian Elliptic Equation with
Critical Sobolev-Hardy Exponent
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abstract: This paper concerns the existence of multiple nontrivial solutions for nonhomogeneous p-
Laplacain elliptic problems involving the critical Hardy-Sobolev exponent. The method used here is based on
Ekeland variational principale on Nehari manifold.
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1. Introduction and main results

In this paper, we consider the following nonhomogeneous elliptic problem

(Pµ,s)







−△pu− µ
|u|

p−2

|x|p
u =

|u|
p∗(s)−2

|x|s
u+ f(x) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 3) containing 0 in its interior, △pu denotes the

p-Laplace operator defined as div
(

|∇u|
p−2

∇u
)

with 1 < p < N, −∞ < µ < µ, µ := [(N − p) /p]
p
,

0 ≤ s < p, p∗ (s) = p (N − s) / (N − p) is the critical Sobolev-Hardy exponent, note that p∗ (0) = p∗ =
pN/ (N − p) is the critical Sobolev exponent and f is a given measurable function different than 0.
The problem is related to the following Sobolev-Hardy inequality [4]:

(

∫

Ω

|u|
p∗(s)

|x|
s dx

)1/p∗(s)

≤ Cs

(∫

Ω

|∇u|
p
dx

)1/p

for all u ∈ C∞
0 (Ω) , (1.1)

for some positive constant Cs. If s = p in (1), then p∗ (s) = p, Cs = 1/µ and we have the following Hardy
inequality [7] :

∫

Ω

|u|p

|x|
p dx ≤

1

µ

∫

Ω

|∇u|p dx, for all u ∈ C∞
0 (Ω) .

We shall work with the space W 1,p
µ :=W 1,p

µ (Ω) for −∞ < µ < µ endowed with the norm

‖u‖
p
µ :=

∫

Ω

(

|∇u|
p
− µ

|u|
p

|x|
p

)

dx,

which is equivalent to the norm ‖.‖p.
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Elliptic problems involving the Hardy inequality or Hardy–Sobolev inequality has been studied by
some authors either in bounded domain or in the whole space R

N , see [1, 2, 6, 8-12] and the references
therein. Furthermore, by the Pohozaev identity, the problem (Pµ,s) has no nontrivial solution in the case
f ≡ 0 and Ω is a star-shaped domain.

When the problem (Pµ,s) has no singular term (s = µ = 0), Tarantello in [13] proved the existence
of two nontrivial solutions for p = 2 and f ∈ H−1

(

the dual of H1
0

)

such that

∫

Ω

fu dx <
4

N − 2

[

N − 2

N + 2

∫

Ω

|∇u|
2
dx

](N+2)/4

.

A natural interesting question is whether the results concerning the solutions of (P0,0) with p = 2 remain
true for the problem (Pµ,s). As in [13], we study in this paper the problem (Pµ,s) and give some positive
answers. To the best of our knowledge, the results are new in the case when p 6= 2 and s 6= 0.

In the sequel, we denote the norms of Lp∗(s)
(

Ω, |x|−s
)

and W ∗
µ

(

the dual of W 1,p
µ

)

by ‖u‖p∗(s)
and

‖u‖− respectively, B (x0, r) denotes a ball in Ω of radius r centred at x0.
Furthermore, set

Λf =: inf
u∈W 1,p

µ







p∗ (s)− p

p− 1

[

(p− 1) ‖u‖
p
µ

(p∗ (s)− 1) ‖u‖
p
p∗(s)

]

p∗(s)−1
p∗(s)−p

−

∫

Ω
fu dx

‖u‖p∗(s)







Here are the main results of this paper.

Theorem 1.1. Let 1 < p < N, −∞ < µ < µ, 0 ≤ s < p and f 6≡ 0 satisfying Λf > 0. Then, (Pµ,s) has
at least one positive solution which is a ground state solution.

Theorem 1.2. Suppose 2 ≤ p < N, f (x) ≥ a0 > 0 in a small neighborhood of 0 and satisfies Λf > 0.
Then, problem (P0,s) has at least two different solutions.

This paper is organized as follows. In Section 2, we give some preliminary results. The proof of our
main results is contained in Section 3.

2. Preliminary results

In this section, we give some preliminary results which will be used later.

We define for 0 ≤ µ < µ

Sµ,s := inf
u∈W 1,p

µ \{0}

‖u‖pµ

‖u‖
p∗(s)
p∗(s)

and

S0,s := inf
u∈W 1,p

µ \{0}

‖u‖p0

‖u‖
p∗(s)
p∗(s)

From [9], Sµ,s is independent of any Ω ⊂ R
N in the sense that Sµ,s (Ω) = Sµ,s

(

R
N
)

= Sµ,s. In addition,
the constant Sµ,s is achieved by a family of functions

Vε(x) := ε(p−N)/pũ
p,µ

(x

ε

)

, ε > 0,

where ũ
p,µ

(x) = ũ
p,µ

(|x|) is the unique radial solution for the problem







−∆pu− µ
|u|

p−1
u

|x|
p =

|u|
p∗(s)−2

|x|
s u in R

N\ {0}

u −→ 0 as |x| −→ ∞.
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In the other hand, from [8] S0,s is independent of any Ω ⊂ R
N and it is achieved by a family of functions

Uε(x) :=

[

ε (N − s)

(

N − p

p− 1

)p−1
]

N−p

p(p−s)
(

ε+ |x|
p−s

p−1

)

p−N

p−s

, ε > 0,

Moreover the functions Uε solve the equation







−∆pu =
|u|p∗(s)−2

|x|s
u in R

N\ {0}

u −→ 0 as |x| −→ ∞.

Remark 2.1. The accurate form of the solutions Vε for the first limiting problem is not clear, different
from the second one Uε, which leads to some clear differences between the proofs of Theorem 1 and
Theorem 2. For 0 ≤ µ < µ we can prove the existence of one solution, but in the case µ = 0 we use the
accurate form of Uε to prove the existence of two solutions.

Now, we shall give some estimates for the extremal functions Uε which we will use later. Set δ > 0
small enough such that B (0, δ) ⊂ Ω, ϕ ∈ C∞

0 (Ω) such that for

0 ≤ ϕ (x) ≤ 1, ϕ (x) =

{

0 if |x| ≥ 2δ
1 if |x| ≤ δ

; and |∇ϕ (x)| ≤ C.

Put uε = ϕ (x)Uε(x).
By [8] we have the following estimates.

Lemma 2.1. Assume 2 ≤ p < N , 0 ≤ s < p and ε > 0 small enough. By taking

vε =
uε

‖uε‖p∗(s)

so that ‖uε‖
p∗(s)
p∗(s)

= 1, we have the following estimates:

(1) ‖vε‖
p
0 = S0,s +O

(

ε
N−p
p−s

)

,

(2)
∫

Ω |∇vε|
α
dx = O

(

ε
α(N−p)
p(p−s)

)

for α = 1, .., p− 1,

(3)
∫

Ω

v
p∗(s)−1
ε

|x|
s dx = O

(

ε
(p−1)(N−p)

p(p−s)

)

,

(4)
∫

Ω

vε
|x|

s dx = O
(

ε
N−p

p(p−s)

)

.

Now, we define the Euler-Lagrange functional associated to the problem (Pµ,s) by:

I (u) =
1

p
‖u‖pµ −

1

p∗ (s)
‖u‖

p∗(s)
p∗(s)

−

∫

Ω

fu dx, for all u ∈W 1,p
µ ,

we have I ∈ C1
(

W 1,p
µ , R

)

. A critical point u of I satisfies

∫

Ω

(

|∇u|
p−2

∇u∇v − µ
|u|p−2

|x|
p uv −

|u|p∗(s)−2

|x|
s uv − fv

)

dx = 0

for all v ∈ W 1,p
µ , and correspond to weak solution of problem (Pµ,s).
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We consider the Nehari manifold

N =
{

u ∈W 1,p
µ \ {0} , 〈I ′ (u) , u〉 = 0

}

.

Thus, u ∈ N if and only if

〈I ′ (u) , u〉 = ‖u‖
p
µ − ‖u‖

p∗(s)
p∗(s)

−

∫

Ω

fu dx = 0.

Denote

J (u) = 〈I ′ (u) , u〉

Then
〈J ′ (u) , u〉 = (p− 1) ‖u‖

p
µ − (p∗ (s)− 1) ‖u‖

p∗(s)
p∗(s)

.

Obviously, N can be divided into the following three parts:

N+ = {u ∈ N : 〈J ′ (u) , u〉 > 0} ,
N− = {u ∈ N : 〈J ′ (u) , u〉 < 0} ,
N0 = {u ∈ N : 〈J ′ (u) , u〉 = 0} .

Denote

tmax
u :=

[

‖u‖pµ (p− 1) /(p∗ (s)− 1) ‖u‖
p∗(s)
p∗(s)

]
1

p∗(s)−p

.

Lemma 2.2. Assume that Λf > 0, then N
0 = ∅ and N

± 6= ∅.

Proof. Suppose that N0 6= ∅. For u ∈ N
0, we have

(p− 1) ‖u‖
p
µ = (p∗ (s)− 1) ‖u‖

p∗(s)
p∗(s)

,

(p− 1)

∫

Ω

fu dx = (p∗ (s)− p) ‖u‖
p∗(s)
p∗(s)

,

and

(p∗ (s)− 1)

∫

Ω

fu dx = (p∗ (s)− p) ‖u‖
p
µ .

Using the definition of Sµ we get

‖u‖
p∗(s)
p∗(s)

=
p− 1

p∗ (s)− 1
‖u‖pµ

≥

[

(p− 1)

(p∗ (s)− 1)
Sµ

]p∗(s)/(p∗(s)−p)

.

Thus u 6= 0 and
‖u‖

p
µ

‖u‖
p∗(s)
p∗(s)

=
p∗ (s)− 1

p− 1
.

Therefore,

0 =
p∗ (s)− p

p∗ (s)− 1
‖u‖

p
µ −

∫

Ω

fu dx

= ‖u‖p∗(s)

[

p∗ (s)− p

p∗ (s)− 1

‖u‖
p
µ

‖u‖p∗(s)

−

∫

Ω fu dx

‖u‖p∗(s)

]

= ‖u‖p∗(s)





p∗ (s)− p

p− 1

[

p− 1

p∗ (s)− 1

‖u‖
p
µ

‖u‖
p
p∗(s)

]

p∗(s)−1
p∗(s)−p

−

∫

Ω fu dx

‖u‖p∗(s)





≥

[

(p− 1)

(p∗ (s)− 1)
Sµ

]
1

p∗(s)−p

Λf > 0,
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which is impossible.
Now, we prove that N± 6= ∅. Define

ϕu (t) =
tp

p
‖u‖

p
µ −

tp∗(s)

p∗ (s)
‖u‖

p∗(s)
p∗(s)

− t

∫

Ω

fu dx,

ϕ̄u (t) = tp−1 ‖u‖pµ − tp∗(s)−1 ‖u‖
p∗(s)
p∗(s)

for u ∈ W 1,p
µ \ {0} , then

ϕ′
u (t) = ϕ̄u (t)−

∫

Ω

fu dx.

Easy computations show that ϕ̄u is concave and achieves its maximum at tmax
u . Moreover,

ϕ̄u(t
max
u ) = (p∗ (s)− p)

(

‖u‖
p
µ

p∗ (s)− 1

)

p∗(s)−1
p∗(s)−p





p− 1

‖u‖
p∗(s)
p∗(s)





p−1
p∗(s)−p

.

Then, there exist constants t−u0
and t+u0

such that

0 < t−u0
< tmax

u < t+u0
, t−u0

u0 ∈ N
+ and t+u0

u0 ∈ N
−.

Thus we can get easily N± 6= ∅. �

By the previous lemma we conclude that N = N
+ ∪N−, and we can define

m+ := inf
u∈N+

I (u) and m− := inf
u∈N−

I (u) .

Lemma 2.3. Suppose that Λf > 0, then we have:
i) The functional I is coercive and bounded from below on N.
ii) There exist m+

0 < 0 such that

inf
u∈N

I (u) ≤ inf
u∈N+

I (u) ≤ m+
0 < 0.

Proof. i) Let u ∈ N, by Hölder and Young inequalities we have

I (u) =
1

p
‖u‖

p
µ −

1

p∗ (s)
‖u‖

p∗(s)
p∗(s)

−

∫

Ω

fu dx

≥
1

p
‖u‖

p
µ −

1

p∗ (s)
‖u‖

p∗(s)
p∗(s)

+ ‖u‖
p∗(s)
p∗(s)

− ‖u‖
p
µ

≥ −

(

p− 1

p

)

‖u‖
p
µ +

(

p∗ (s)− 1

p∗ (s)

)

S−p∗(s)/p
µ ‖u‖

p∗(s)
µ .

Let X = ‖u‖
p
µ and

h (X) = −

(

p− 1

p

)

Xp +

(

p∗ (s)− 1

p∗ (s)

)

S−p∗(s)/p
µ Xp∗(s).

Direct calculations show that h is convex and achieves its minimum at

X0 =

[

p− 1

p∗ (s)− 1
Sp∗(s)/p
µ

]
1

p∗(s)−p

,

so

I (u) ≥ −
(p− 1) (p∗ (s)− p)

p p∗ (s)

[

p− 1

p∗ (s)− 1
Sp∗(s)/p
µ

]
p

p∗(s)−p

.
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Then conclusion holds.
ii) Let u0 ∈W 1,p

µ be the unique solution of the following problem







−△pu− µ
|u|

p−2
u

|x|
p = f in Ω,

u = 0 on ∂Ω.

Then, as f 6≡ 0 we have If (u0) = ‖u0‖
p
µ > 0 and ‖u0‖

p
µ = ‖f‖

p
− . Moreover from the proof of Lemma 2.2,

there exists t−u0
> 0 such that t−u0

u0 ∈ N+. This implies that

m+ ≤ I
(

t−u0
u0
)

=
(1− p)

(

t−u0

)p

p
‖u0‖

p
µ +

1− p∗ (s)

p∗ (s)

(

t−u0

)p∗(s)
‖u‖

p∗(s)
p∗(s)

≤
(1− p)

(

t−u0

)p

p
‖u0‖

p
µ

≤
1− p

p

(

t−u0

)p
‖f‖p− .

Thus m+ ≤ m+
0 < 0 where

m+
0 =

1− p

p

(

t−u0

)p
‖f‖

p
− .

�

Lemma 2.4. Suppose that f satisfies Λf > 0, then for each u ∈ N, there exist ε > 0 and a differentiable
function ζ : B(0, ε) ⊂W 1,p

µ −→ R
+ such that ζ(0) = 1, ζ(v)(u − v) ∈ N for ‖v‖ < ǫ and

(

ζ ′ (0) , v
)

=

∫

Ω

[

p

(

|∇u|
p−2

∇u∇v − µ
|u|

p−2

|x|
p uv

)

− p∗ (s)
|u|

p∗(s)−2

|x|
s uv − fv

]

dx

(p− 1) ‖u‖
p
µ − (p∗ (s)− 1) ‖u‖

p∗(s)
p∗(s)

Proof. Define ψ : R×W 1,p
µ −→ R such that

ψ(ζ, v) = ζ ‖u− v‖
p
µ − ζp∗(s)−1 ‖u− v‖

p∗(s)
p∗(s)

−

∫

Ω

f (u− v) dx.

As u ∈ N and N0 = ∅, we have

ψ(1, 0) = 0,
∂ϕ

∂ζ
(1, 0) = (p− 1) ‖u‖

p
µ − (p∗ (s)− 1) ‖u‖

p∗(s)
p∗(s)

6= 0.

Then by the implicit function Theorem, we get our result. �

3. Proof of our main results

3.1. Proof of Theorem 1.1 (Existence of the first solution when 0 ≤ µ < µ)

We prove that I can achieve a local minimum on N+ when 0 ≤ µ < µ.
It follows from Lemma 2.3 that I is coercive on N+. Using the Ekeland variational principle [5], we

can get a minimizing sequence (un) ⊂ N such that

I (un) ≤ m+ +
1

n
and I (u) ≥ I (un)−

1

n
‖u− un‖µ for all u ∈ N.
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By Lemma 2.3, we know that (un) is bounded in W 1,p
µ . As a consequence, there exist a subsequence (still

denoted by (un)) and u1 in W 1,p
µ such that u1 6≡ 0 and

un ⇀ u1 in W 1,p
µ ,

un ⇀ u1 in Lp∗(s)

(

Ω, |x|
−s
)

,

un → u1 a.e.in Ω.

Now we claim that u1 is a positive solution for the Problem (Pµ,s) and u1 ∈ N+. In order, to prove the
claim, we divide the arguments below into five steps.

Step 1. I ′ (un) → 0 in W ∗
µ .

Fix n such that ‖I ′ (un)‖− 6= 0. Then by Lemma 2.4 there exists ε > 0 and a function ζn : B(0, ε) −→
R such that wn = ζn (vn) (un − vn) ∈ N+ with

vn = δ
I ′ (un)

‖I ′ (un)‖−
and 0 < δ < ε.

Let An = ‖wn − un‖µ . By the Taylor expansion of I, we obtain

−
1

n
An ≤ I (wn)− I (un)

≤ 〈I ′ (un) , wn − un〉+ o (An)

= (ζn (vn)− 1) 〈I ′ (un) , un〉 − δζn (vn)

〈

I ′ (un) ,
I ′ (un)

‖I ′ (un)‖−

〉

+ o (An) .

Then

ζn (vn) ‖I
′ (un)‖− ≤

ζn (vn)− 1

δ
〈I ′ (un) , un〉+

An

nδ
+
o(An)

δ
. (3.1)

We have

lim
δ→0

ζn (vn) = 1, lim
δ→0

|ζn (vn)− 1|

δ
= lim

δ→0

|ζn (vn)− ζn (0)|

δ
≤
∥

∥ζ′n (0)
∥

∥

−
,

and

lim
δ→0

An

nδ
= lim

δ→0

1

nδ
‖(ζn (vn)− 1)un − ζn (vn) vn‖µ

≤
1

n

(

∥

∥ζ ′n (0)
∥

∥

−
‖un‖µ + 1

)

.

Taking δ → 0 in (2) and since (un) is a bounded sequence we get

‖I ′ (un)‖µ ≤
C3

n

(

∥

∥ζ′n (0)
∥

∥

−
+ 1
)

,

for a suitable constant C3 > 0. Now, we must show that
∥

∥ζ′n (0)
∥

∥

−
is uniformly bounded in n. From the

boundedness of (un) we have by Lemma 2.4

〈

ζ ′n (0) , v
〉

≤
C4 ‖v‖µ

∣

∣

∣(p− 1) ‖un‖
p
µ − (p∗ (s)− 1) ‖un‖

p∗(s)
p∗(s)

∣

∣

∣

,

for all v ∈ W 1,p
µ and some constant C4 > 0. We only need to show that for any sequence (un) ⊂ N

+

∣

∣

∣(p− 1) ‖un‖
p
µ − (p∗ (s)− 1) ‖un‖

p∗(s)
p∗(s)

∣

∣

∣ > C5,

for some constant C5 > 0. Assume by contradiction that there exists (un) ⊂ N+ such that

lim
n→∞

[

(p− 1) ‖un‖
p
µ − (p∗ (s)− 1) ‖un‖

p∗(s)
p∗(s)

]

= 0.
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As ‖un‖µ ≥ C1 > 0, then

‖un‖
−p
µ ‖un‖

p∗(s)
p∗(s)

=
p− 1

p∗ (s)− 1
+ on (1)

and

(p− 1)

∫

Ω

fun dx = (p∗ (s)− p) ‖un‖
p∗(s)
p∗(s)

+ on (1) ,

where on (1) → 0 as n→ ∞. But this is impossible since, as in the proof of Lemma 2.2 we have

on (1) = (p− 1) ‖un‖
p
µ − (p∗ (s)− p) ‖un‖

p∗(s)
p∗(s)

= (p∗ (s)− p) ‖un‖
p∗(s)
p∗(s)

− (p− 1)

∫

Ω

fun dx

= ‖u‖p∗(s)





p∗ (s)− p

p− 1

[

p− 1

p∗ (s)− 1

‖u‖
p
µ

‖u‖
p
p∗(s)

]

p∗(s)−1
p∗(s)−p

−

∫

Ω fu dx

‖u‖p∗(s)





≥

[

(p− 1)

(p∗ (s)− 1)
Sµ

]
1

p∗(s)−p

Λf > 0.

At this point we conclude that I ′ (un) → 0 in W ∗
µ .

Step 2. un → u1 in W 1,p
µ .

Suppose otherwise, so ‖u1‖µ < lim
n→∞

‖un‖µ , which implies that

m+ ≤ I (u1)

= ‖u1‖
p
µ −

p∗ (s)− 1

p∗ (s)− 2

∫

Ω

fu1 dx

< lim
n→→∞

(

‖un‖
p
µ −

p∗ (s)− 1

p∗ (s)− 2

∫

Ω

fun dx

)

= m+.

This is a contradiction, which led to conclude that un → u1 in W 1,p
µ and I (u1) = m+.

Step 3. u1 ∈ N
+, and u1 is a nontrivial solution of (Pµ,s).

Suppose that u1 ∈ N
−, then by Lemma 2.2, we can find positive numbers t−u1

and t+u1
such that

0 < t−u1
< tmax

u1
< t+u1

= 1, t−u1
uu1 ∈ N+, t+u1

u1 ∈ N− and

m+ ≤ I
(

t−u1
u1
)

< I
(

t+u1
u1
)

= I (u1) = m+,

which is a contradiction. Hence u1 ∈ N+ and

m+ = inf
u∈N+

I (u) = inf
u∈N

I (u) .

By the Lagrange multiplier rule, there exists λ ∈ R such that

ϕ′
u1

(1) = I ′ (u1) = λϕ′′
u1

(1) ,

which implies that

0 = 〈I ′ (u1) , u1〉 = λ 〈J ′ (u1) , u1〉 ,

Note that 〈J ′ (u1) , u1〉 6= 0, then λ = 0 and we conclude that I ′ (u1) = 0. Therefore, u1 is a ground state
solution of problem (Pµ,s).
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3.2. Proof of Theorem 1.2 (Existence of the second solution when µ = 0)

In the following, we prove that problem (Pµ,s) has a second solution u2.

Lemma 3.1. Let 1 < p < N, µ = 0, 0 ≤ s < p and f 6≡ 0 satisfies Λf > 0. Then I (u) verifies the

Palais-Smale condition at level c for all c < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s .

Proof. Assume (un) is a sequence in W 1,p
0 satisfying as n→ ∞

I (un) → c <
p− s

p (N − s)
(S0,s)

N−s
p−s and I ′ (un) → 0 in W ∗

0 . (3.2)

By Lemma 2.3, we know that (un) is bounded in W 1,p
0 . Then, there exist a subsequence (still denoted

by (un)) and u2 in W 1,p
0 such that u2 6≡ 0 and

un ⇀ u2 in W 1,p
0 ,

un ⇀ u2 in Lp∗(s)

(

Ω, |x|
−s
)

,

un → u2 a.e.in Ω.

Denote vn = un − u2, then

vn ⇀ 0 in W 1,p
0 ,

vn ⇀ 0 in Lp∗(s)

(

Ω, |x|−s
)

,

vn → 0 a.e.in Ω.

By the Brezis - Lieb Lemma [3] we have

‖un‖
p
0 = ‖vn‖

p
µ + ‖u2‖

p
µ + ◦n (1) ,

and
‖un‖

p∗(s)
p∗(s)

= ‖vn‖
p∗(s)
p∗(s)

+ ‖u2‖
p∗(s)
p∗(s)

+ ◦n (1) .

Then, from (3) we deduce that

c+ ◦n (1) = I (u2) +
1

p
‖vn‖

p
0 −

1

p∗(s)
‖vn‖

p∗(s)
p∗(s)

and
‖vn‖

p
0 − ‖vn‖

p∗(s)
p∗(s)

= ◦n (1) .

Using the fact that vn ⇀ 0 in W 1,p
0 , we can assume that

‖vn‖
p
0 → l and ‖vn‖

p∗(s)
p∗(s)

→ l ≥ 0.

So, by the Sobolev-Hardy inequality, we get l ≥ S0,sl
p/p∗(s).

Now, assume that l 6= 0, then

l ≥ (S0,s)
p∗(s)/(p∗(s)−p)

and we obtain

c = I (u2) +

(

1

p
−

1

p∗(s)

)

l ≥ I (u2) +
p− s

p (N − s)
(S0,s)

N−s
p−s .

As I (u2) ≥ m+, we get a contradiction. So again un → u in W 1,p
0 strongly. �

In order, to prove Theorem 1.2, we need the following key lemma.
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Lemma 3.2. Suppose 2 ≤ p < N, µ = 0, f (x) ≥ a0 > 0 in a small neighborhood of 0 and satisfies
Λf > 0. Then

m− < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s .

Proof. Set

M1 = {0} ∪
{

u ∈ W 1,p
0 : ‖u‖0 < t+

u‖u‖−1
0

}

and M2 =
{

u ∈ W 1,p
0 : ‖u‖0 > t+

u‖u‖−1
0

}

.

We have W 1,p
0 \N− = M1 ∪M2, N

+ ⊂ M1, u1 ∈ M1 and u1 + Tvε ∈ M2 for some real T > 0. Let

Γ =
{

h : [0, 1] →W 1,p
0 continuous, h(0) = u1, h(1) = u1 + Tvε

}

,

and

h̃(t) = u1 + tT vε with t ∈ [0, 1] .

It is obvious that h̃ belongs to Γ and the range of any h ∈ Γ intersects N−. Then

m− ≤ inf
h∈Γ

max
t∈[0,1]

I(h(t)).

Now, we show that

sup
t≥0

I(u1 + tvε) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s .

To this purpose we define g (t) := I (u1 + tvε) , then

g (0) = I (u1) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s ,

and by the continuity of g there exists t0 > 0 small enough such that

g (t) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s

for all t ∈ (0, t0) . On the other hand, it is easy to see that g (t) → −∞ as t→ +∞, that is, there exists
t1 > 0 large enough such that

g (t) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s

for all t ≥ t1. So we only need to show that

sup
t0≤t≤t1

g (t) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s .

Let ε be sufficiently small satisfying f (x) ≥ a0 > 0 in B (0, ε). Then, we get from Lemma 2.1

sup
t0≤t≤t1

I (tvε) ≤ sup
t≥0

(

1

p
‖tvε‖

p
0 −

1

p∗ (s)
‖tvε‖

p∗(s)
p∗(s)

)

− t0

∫

Ω

fvεdx

≤ sup
t≥0

(

1

p
‖tvε‖

p
0 −

1

p∗ (s)
‖tvε‖

p∗(s)
p∗(s)

)

− t0a0

∫

Ω

vεdx

≤
p− s

p (N − s)
(S0,s)

N−s
p−s +O

(

ε
N−p
p−s

)

−O(ε
N−p

p2 ).
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For the second one, we can assume that the first solution u1 is smooth and ∇u1 ∈ L∞ (Ω). Thus we have

sup
t0≤t≤t1

g (t) = sup
t0≤t≤t1

I (u1 + tvε)

≤ I (u1) + sup
t≥0

I (tvε) + C1

∫

Ω

(

|∇u1|
p−1

|∇vε|+ |∇vε|
p−1

|∇u1|
)

dx+

∫

Ω

(

|u1|
p∗(s)−1

vε + |vε|
p∗(s)−1

u1

)

dx

≤ m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s +O

(

ε
N−p

p−s

)

−O(ε
N−p

p2 ) +O
(

ε
N−p

p(p−s)

)

+

O
(

ε
(N−p)(p−1)

p(p−s)

)

From

N − p

p− s
>

N − p

p (p− s)
>
N − p

p2
for all s > 0,

we have

O
(

ε
N−p

p−s

)

−O(ε
N−p

p2 ) +O
(

ε
N−p

p(p−s)

)

+O
(

ε
(N−p)(p−1)

p(p−s)

)

= O
(

ε
(N−p)(p−1)

p(p−s)

)

−O(ε
N−p

p2 ).

Since
(N − p) (p− 1)

p (p− s)
−
N − p

p2
=

N − p

p2 (p− s)
[p (p− 2) + s] > 0,

then

sup
t0≤t≤t1

I (u1 + tvε) < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s

for ε small enough.
The proof is now complete. �

Now, we prove that I can achieve a local minimum on N−.

By using Lemma 2.3, there exists a minimizing sequence (un) ⊂ N− such that

I (un) → m− and I ′ (un) → 0 in W−1
0 .

From Lemma 3.2 we have m− < m+ +
p− s

p (N − s)
(S0,s)

N−s
p−s , therefore, by Lemma 3.1 we get un → u2

in W 1,p
0 . This means that u2 ∈ N

− and I (u2) = m−.
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