Existence of Multiple Solutions for a Nonhomogeneous p-Laplacian Elliptic Equation with Critical Sobolev-Hardy Exponent

Atika Matallah and Sara Litimein and Sofiane Messirdi

ABSTRACT: This paper concerns the existence of multiple nontrivial solutions for nonhomogeneous pLaplacain elliptic problems involving the critical Hardy-Sobolev exponent. The method used here is based on Ekeland variational principale on Nehari manifold.
Key Words: Variational methods, Critical Hardy-Sobolev exponent, Nehari manifold, p-Laplacain equations.

Contents

1 Introduction and main results
2 Preliminary results
3 Proof of our main results 6
3.1 Proof of Theorem 1.1 (Existence of the first solution when $0 \leq \mu<\bar{\mu}$) 6
3.2 Proof of Theorem 1.2 (Existence of the second solution when $\mu=0$) 9

1. Introduction and main results

In this paper, we consider the following nonhomogeneous elliptic problem

$$
\left(\mathcal{P}_{\mu, s}\right) \begin{cases}-\triangle_{p} u-\mu \frac{|u|^{p-2}}{|x|^{p}} u=\frac{|u|^{p_{*}(s)-2}}{|x|^{s}} u+f(x) \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 3)$ containing 0 in its interior, $\triangle_{p} u$ denotes the p-Laplace operator defined as $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ with $1<p<N,-\infty<\mu<\bar{\mu}, \bar{\mu}:=[(N-p) / p]^{p}$, $0 \leq s<p, p_{*}(s)=p(N-s) /(N-p)$ is the critical Sobolev-Hardy exponent, note that $p_{*}(0)=p_{*}=$ $p N /(N-p)$ is the critical Sobolev exponent and f is a given measurable function different than 0 . The problem is related to the following Sobolev-Hardy inequality [4]:

$$
\begin{equation*}
\left(\int_{\Omega} \frac{|u|^{p_{*}(s)}}{|x|^{s}} d x\right)^{1 / p_{*}(s)} \leq C_{s}\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p} \text { for all } u \in C_{0}^{\infty}(\Omega), \tag{1.1}
\end{equation*}
$$

for some positive constant C_{s}. If $s=p$ in (1), then $p_{*}(s)=p, C_{s}=1 / \bar{\mu}$ and we have the following Hardy inequality [7]:

$$
\int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x \leq \frac{1}{\bar{\mu}} \int_{\Omega}|\nabla u|^{p} d x, \text { for all } u \in C_{0}^{\infty}(\Omega) .
$$

We shall work with the space $W_{\mu}^{1, p}:=W_{\mu}^{1, p}(\Omega)$ for $-\infty<\mu<\bar{\mu}$ endowed with the norm

$$
\|u\|_{\mu}^{p}:=\int_{\Omega}\left(|\nabla u|^{p}-\mu \frac{|u|^{p}}{|x|^{p}}\right) d x,
$$

which is equivalent to the norm $\|\cdot\|_{p}$.

[^0]Elliptic problems involving the Hardy inequality or Hardy-Sobolev inequality has been studied by some authors either in bounded domain or in the whole space \mathbb{R}^{N}, see $[1,2,6,8-12]$ and the references therein. Furthermore, by the Pohozaev identity, the problem $\left(\mathcal{P}_{\mu, s}\right)$ has no nontrivial solution in the case $f \equiv 0$ and Ω is a star-shaped domain.

When the problem $\left(\mathcal{P}_{\mu, s}\right)$ has no singular term $(s=\mu=0)$, Tarantello in [13] proved the existence of two nontrivial solutions for $p=2$ and $f \in H^{-1}$ (the dual of H_{0}^{1}) such that

$$
\int_{\Omega} f u d x<\frac{4}{N-2}\left[\frac{N-2}{N+2} \int_{\Omega}|\nabla u|^{2} d x\right]^{(N+2) / 4}
$$

A natural interesting question is whether the results concerning the solutions of ($\mathcal{P}_{0,0}$) with $p=2$ remain true for the problem $\left(\mathcal{P}_{\mu, s}\right)$. As in [13], we study in this paper the problem $\left(\mathcal{P}_{\mu, s}\right)$ and give some positive answers. To the best of our knowledge, the results are new in the case when $p \neq 2$ and $s \neq 0$.

In the sequel, we denote the norms of $L^{p_{*}(s)}\left(\Omega,|x|^{-s}\right)$ and W_{μ}^{*} (the dual of $W_{\mu}^{1, p}$) by $\|u\|_{p_{*}(s)}$ and $\|u\|_{-}$respectively, $B\left(x_{0}, r\right)$ denotes a ball in Ω of radius r centred at x_{0}.
Furthermore, set

$$
\Lambda_{f}=: \inf _{u \in W_{\mu}^{1, p}}\left\{\frac{p_{*}(s)-p}{p-1}\left[\frac{(p-1)\|u\|_{\mu}^{p}}{\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p}}\right]^{\frac{p_{*}(s)-1}{p_{*}(s)-p}}-\frac{\int_{\Omega} f u d x}{\|u\|_{p_{*}(s)}}\right\}
$$

Here are the main results of this paper.
Theorem 1.1. Let $1<p<N,-\infty<\mu<\bar{\mu}, 0 \leq s<p$ and $f \not \equiv 0$ satisfying $\Lambda_{f}>0$. Then, $\left(\mathcal{P}_{\mu, s}\right)$ has at least one positive solution which is a ground state solution.

Theorem 1.2. Suppose $2 \leq p<N, f(x) \geq a_{0}>0$ in a small neighborhood of 0 and satisfies $\Lambda_{f}>0$. Then, problem $\left(\mathcal{P}_{0, s}\right)$ has at least two different solutions.

This paper is organized as follows. In Section 2, we give some preliminary results. The proof of our main results is contained in Section 3.

2. Preliminary results

In this section, we give some preliminary results which will be used later.
We define for $0 \leq \mu<\bar{\mu}$

$$
S_{\mu, s}:=\inf _{u \in W_{\mu}^{1, p} \backslash\{0\}} \frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}(s)}^{p_{*}(s)}}
$$

and

$$
S_{0, s}:=\inf _{u \in W_{\mu}^{1, p} \backslash\{0\}} \frac{\|u\|_{0}^{p}}{\|u\|_{p_{*}(s)}^{p_{*}(s)}}
$$

From [9], $S_{\mu, s}$ is independent of any $\Omega \subset \mathbb{R}^{N}$ in the sense that $S_{\mu, s}(\Omega)=S_{\mu, s}\left(\mathbb{R}^{N}\right)=S_{\mu, s}$. In addition, the constant $S_{\mu, s}$ is achieved by a family of functions

$$
V_{\varepsilon}(x):=\varepsilon^{(p-N) / p} \tilde{u}_{p, \mu}\left(\frac{x}{\varepsilon}\right), \varepsilon>0
$$

where $\tilde{u}_{p, \mu}(x)=\tilde{u}_{p, \mu}(|x|)$ is the unique radial solution for the problem

$$
\begin{cases}-\Delta_{p} u-\mu \frac{|u|^{p-1} u}{|x|^{p}}=\frac{|u|^{p_{*}(s)-2}}{|x|^{s}} u & \text { in } \mathbb{R}^{N} \backslash\{0\} \\ u \longrightarrow 0 & \text { as }|x| \longrightarrow \infty\end{cases}
$$

In the other hand, from $[8] S_{0, s}$ is independent of any $\Omega \subset \mathbb{R}^{N}$ and it is achieved by a family of functions

$$
U_{\varepsilon}(x):=\left[\varepsilon(N-s)\left(\frac{N-p}{p-1}\right)^{p-1}\right]^{\frac{N-p}{p(p-s)}}\left(\varepsilon+|x|^{\frac{p-s}{p-1}}\right)^{\frac{p-N}{p-s}}, \varepsilon>0
$$

Moreover the functions U_{ε} solve the equation

$$
\begin{cases}-\Delta_{p} u=\frac{|u|^{p_{*}(s)-2}}{|x|^{s}} u & \text { in } \mathbb{R}^{N} \backslash\{0\} \\ u \longrightarrow 0 & \text { as }|x| \longrightarrow \infty\end{cases}
$$

Remark 2.1. The accurate form of the solutions V_{ε} for the first limiting problem is not clear, different from the second one U_{ε}, which leads to some clear differences between the proofs of Theorem 1 and Theorem 2. For $0 \leq \mu<\bar{\mu}$ we can prove the existence of one solution, but in the case $\mu=0$ we use the accurate form of U_{ε} to prove the existence of two solutions.

Now, we shall give some estimates for the extremal functions U_{ε} which we will use later. Set $\delta>0$ small enough such that $B(0, \delta) \subset \Omega, \varphi \in C_{0}^{\infty}(\Omega)$ such that for

$$
0 \leq \varphi(x) \leq 1, \varphi(x)=\left\{\begin{array}{ll}
0 & \text { if }|x| \geq 2 \delta \\
1 & \text { if }|x| \leq \delta
\end{array} \quad ; \text { and }|\nabla \varphi(x)| \leq C\right.
$$

Put $u_{\varepsilon}=\varphi(x) U_{\varepsilon}(x)$.
By [8] we have the following estimates.
Lemma 2.1. Assume $2 \leq p<N, 0 \leq s<p$ and $\varepsilon>0$ small enough. By taking

$$
v_{\varepsilon}=\frac{u_{\varepsilon}}{\left\|u_{\varepsilon}\right\|_{p_{*}(s)}}
$$

so that $\left\|u_{\varepsilon}\right\|_{p_{*}(s)}^{p_{*}(s)}=1$, we have the following estimates:
(1) $\left\|v_{\varepsilon}\right\|_{0}^{p}=S_{0, s}+O\left(\varepsilon^{\frac{N-p}{p-s}}\right)$,
(2) $\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{\alpha} d x=O\left(\varepsilon^{\frac{\alpha(N-p)}{p(p-s)}}\right)$ for $\alpha=1, . ., p-1$,
(3) $\int_{\Omega} \frac{v_{\varepsilon}^{p_{*}(s)-1}}{|x|^{s}} d x=O\left(\varepsilon^{\frac{(p-1)(N-p)}{p(p-s)}}\right)$,

$$
\begin{equation*}
\int_{\Omega} \frac{v_{\varepsilon}}{|x|^{s}} d x=O\left(\varepsilon^{\frac{N-p}{p(p-s)}}\right) \tag{4}
\end{equation*}
$$

Now, we define the Euler-Lagrange functional associated to the problem $\left(\mathcal{P}_{\mu, s}\right)$ by:

$$
I(u)=\frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}(s)}\|u\|_{p_{*}(s)}^{p_{*}(s)}-\int_{\Omega} f u d x, \quad \text { for all } u \in W_{\mu}^{1, p}
$$

we have $I \in C^{1}\left(W_{\mu}^{1, p}, \mathbb{R}\right)$. A critical point u of I satisfies

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \nabla v-\mu \frac{|u|^{p-2}}{|x|^{p}} u v-\frac{|u|^{p_{*}(s)-2}}{|x|^{s}} u v-f v\right) d x=0
$$

for all $v \in W_{\mu}^{1, p}$, and correspond to weak solution of problem $\left(\mathcal{P}_{\mu, s}\right)$.

We consider the Nehari manifold

$$
\mathcal{N}=\left\{u \in W_{\mu}^{1, p} \backslash\{0\},\left\langle I^{\prime}(u), u\right\rangle=0\right\}
$$

Thus, $u \in \mathcal{N}$ if and only if

$$
\left\langle I^{\prime}(u), u\right\rangle=\|u\|_{\mu}^{p}-\|u\|_{p_{*}(s)}^{p_{*}(s)}-\int_{\Omega} f u d x=0
$$

Denote

$$
J(u)=\left\langle I^{\prime}(u), u\right\rangle
$$

Then

$$
\left\langle J^{\prime}(u), u\right\rangle=(p-1)\|u\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p_{*}(s)} .
$$

Obviously, \mathcal{N} can be divided into the following three parts:

$$
\begin{aligned}
& \mathcal{N}^{+}=\left\{u \in \mathcal{N}:\left\langle J^{\prime}(u), u\right\rangle>0\right\} \\
& \mathcal{N}^{-}=\left\{u \in \mathcal{N}:\left\langle J^{\prime}(u), u\right\rangle<0\right\} \\
& \mathcal{N}^{0}=\left\{u \in \mathcal{N}:\left\langle J^{\prime}(u), u\right\rangle=0\right\}
\end{aligned}
$$

Denote

$$
t_{u}^{\max }:=\left[\|u\|_{\mu}^{p}(p-1) /\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p_{*}(s)}\right]^{\frac{1}{p_{*}(s)-p}}
$$

Lemma 2.2. Assume that $\Lambda_{f}>0$, then $\mathcal{N}^{0}=\varnothing$ and $\mathcal{N}^{ \pm} \neq \varnothing$.
Proof. Suppose that $\mathcal{N}^{0} \neq \varnothing$. For $u \in \mathcal{N}^{0}$, we have

$$
\begin{aligned}
(p-1)\|u\|_{\mu}^{p} & =\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p_{*}(s)}, \\
(p-1) \int_{\Omega} f u d x & =\left(p_{*}(s)-p\right)\|u\|_{p_{*}(s)}^{p_{*}(s)}
\end{aligned}
$$

and

$$
\left(p_{*}(s)-1\right) \int_{\Omega} f u d x=\left(p_{*}(s)-p\right)\|u\|_{\mu}^{p}
$$

Using the definition of S_{μ} we get

$$
\begin{aligned}
\|u\|_{p_{*}(s)}^{p_{*}(s)} & =\frac{p-1}{p_{*}(s)-1}\|u\|_{\mu}^{p} \\
& \geq\left[\frac{(p-1)}{\left(p_{*}(s)-1\right)} S_{\mu}\right]^{p_{*}(s) /\left(p_{*}(s)-p\right)}
\end{aligned}
$$

Thus $u \neq 0$ and

$$
\frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}(s)}^{p_{*}(s)}}=\frac{p_{*}(s)-1}{p-1}
$$

Therefore,

$$
\begin{aligned}
0 & =\frac{p_{*}(s)-p}{p_{*}(s)-1}\|u\|_{\mu}^{p}-\int_{\Omega} f u d x \\
& =\|u\|_{p_{*}(s)}\left[\frac{p_{*}(s)-p}{p_{*}(s)-1} \frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}(s)}}-\frac{\int_{\Omega} f u d x}{\|u\|_{p_{*}(s)}}\right] \\
& =\|u\|_{p_{*}(s)}\left[\frac{p_{*}(s)-p}{p-1}\left[\frac{p-1}{p_{*}(s)-1} \frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}(s)}^{p}}\right]^{\frac{p_{*}(s)-1}{p_{*}(s)-p}}-\frac{\int_{\Omega} f u d x}{\|u\|_{p_{*}(s)}}\right] \\
& \geq\left[\frac{(p-1)}{\left(p_{*}(s)-1\right)} S_{\mu}\right]^{\frac{1}{p_{*}(s)-p}} \Lambda_{f}>0
\end{aligned}
$$

which is impossible.
Now, we prove that $\mathcal{N}^{ \pm} \neq \varnothing$. Define

$$
\begin{gathered}
\varphi_{u}(t)=\frac{t^{p}}{p}\|u\|_{\mu}^{p}-\frac{t^{p_{*}(s)}}{p_{*}(s)}\|u\|_{p_{*}(s)}^{p_{*}(s)}-t \int_{\Omega} f u d x \\
\bar{\varphi}_{u}(t)=t^{p-1}\|u\|_{\mu}^{p}-t^{p_{*}(s)-1}\|u\|_{p_{*}(s)}^{p_{*}(s)}
\end{gathered}
$$

for $u \in W_{\mu}^{1, p} \backslash\{0\}$, then

$$
\varphi_{u}^{\prime}(t)=\bar{\varphi}_{u}(t)-\int_{\Omega} f u d x
$$

Easy computations show that $\bar{\varphi}_{u}$ is concave and achieves its maximum at $t_{u}^{\max }$. Moreover,

$$
\bar{\varphi}_{u}\left(t_{u}^{\max }\right)=\left(p_{*}(s)-p\right)\left(\frac{\|u\|_{\mu}^{p}}{p_{*}(s)-1}\right)^{\frac{p_{*}(s)-1}{p_{*}(s)-p}}\left(\frac{p-1}{\|u\|_{p_{*}(s)}^{p_{*}(s)}}\right)^{\frac{p-1}{p_{*}(s)-p}}
$$

Then, there exist constants $t_{u_{0}}^{-}$and $t_{u_{0}}^{+}$such that

$$
0<t_{u_{0}}^{-}<t_{u}^{\max }<t_{u_{0}}^{+}, t_{u_{0}}^{-} u_{0} \in \mathcal{N}^{+} \text {and } t_{u_{0}}^{+} u_{0} \in \mathcal{N}^{-}
$$

Thus we can get easily $\mathcal{N}^{ \pm} \neq \varnothing$.

By the previous lemma we conclude that $\mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-}$, and we can define

$$
m^{+}:=\inf _{u \in \mathcal{N}^{+}} I(u) \text { and } m^{-}:=\inf _{u \in \mathcal{N}^{-}} I(u)
$$

Lemma 2.3. Suppose that $\Lambda_{f}>0$, then we have:
i) The functional I is coercive and bounded from below on \mathcal{N}.
ii) There exist $m_{0}^{+}<0$ such that

$$
\inf _{u \in \mathcal{N}} I(u) \leq \inf _{u \in \mathcal{N}^{+}} I(u) \leq m_{0}^{+}<0
$$

Proof. i) Let $u \in \mathcal{N}$, by Hölder and Young inequalities we have

$$
\begin{aligned}
I(u) & =\frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}(s)}\|u\|_{p_{*}(s)}^{p_{*}(s)}-\int_{\Omega} f u d x \\
& \geq \frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}(s)}\|u\|_{p_{*}(s)}^{p_{*}(s)}+\|u\|_{p_{*}(s)}^{p_{*}(s)}-\|u\|_{\mu}^{p} \\
& \geq-\left(\frac{p-1}{p}\right)\|u\|_{\mu}^{p}+\left(\frac{p_{*}(s)-1}{p_{*}(s)}\right) S_{\mu}^{-p_{*}(s) / p}\|u\|_{\mu}^{p_{*}(s)}
\end{aligned}
$$

Let $X=\|u\|_{\mu}^{p}$ and

$$
h(X)=-\left(\frac{p-1}{p}\right) X^{p}+\left(\frac{p_{*}(s)-1}{p_{*}(s)}\right) S_{\mu}^{-p_{*}(s) / p} X^{p_{*}(s)}
$$

Direct calculations show that h is convex and achieves its minimum at

$$
X_{0}=\left[\frac{p-1}{p_{*}(s)-1} S_{\mu}^{p_{*}(s) / p}\right]^{\frac{1}{p_{*}(s)-p}}
$$

So

$$
I(u) \geq-\frac{(p-1)\left(p_{*}(s)-p\right)}{p p_{*}(s)}\left[\frac{p-1}{p_{*}(s)-1} S_{\mu}^{p_{*}(s) / p}\right]^{\frac{p}{p_{*}(s)-p}}
$$

Then conclusion holds.
ii) Let $u_{0} \in W_{\mu}^{1, p}$ be the unique solution of the following problem

$$
\begin{cases}-\triangle_{p} u-\mu \frac{|u|^{p-2} u}{|x|^{p}}=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Then, as $f \not \equiv 0$ we have $I_{f}\left(u_{0}\right)=\left\|u_{0}\right\|_{\mu}^{p}>0$ and $\left\|u_{0}\right\|_{\mu}^{p}=\|f\|_{-}^{p}$. Moreover from the proof of Lemma 2.2, there exists $t_{u_{0}}^{-}>0$ such that $t_{u_{0}}^{-} u_{0} \in \mathcal{N}^{+}$. This implies that

$$
\begin{aligned}
m^{+} & \leq I\left(t_{u_{0}}^{-} u_{0}\right) \\
& =\frac{(1-p)\left(t_{u_{0}}^{-}\right)^{p}}{p}\left\|u_{0}\right\|_{\mu}^{p}+\frac{1-p_{*}(s)}{p_{*}(s)}\left(t_{u_{0}}^{-}\right)^{p_{*}(s)}\|u\|_{p_{*}(s)}^{p_{*}(s)} \\
& \leq \frac{(1-p)\left(t_{u_{0}}^{-}\right)^{p}}{p}\left\|u_{0}\right\|_{\mu}^{p} \\
& \leq \frac{1-p}{p}\left(t_{u_{0}}^{-}\right)^{p}\|f\|_{-}^{p}
\end{aligned}
$$

Thus $m^{+} \leq m_{0}^{+}<0$ where

$$
m_{0}^{+}=\frac{1-p}{p}\left(t_{u_{0}}^{-}\right)^{p}\|f\|_{-}^{p}
$$

Lemma 2.4. Suppose that f satisfies $\Lambda_{f}>0$, then for each $u \in \mathcal{N}$, there exist $\varepsilon>0$ and a differentiable function $\zeta: B(0, \varepsilon) \subset W_{\mu}^{1, p} \longrightarrow \mathbb{R}^{+}$such that $\zeta(0)=1, \zeta(v)(u-v) \in \mathcal{N}$ for $\|v\|<\epsilon$ and

$$
\left(\zeta^{\prime}(0), v\right)=\frac{\int_{\Omega}\left[p\left(|\nabla u|^{p-2} \nabla u \nabla v-\mu \frac{|u|^{p-2}}{|x|^{p}} u v\right)-p_{*}(s) \frac{|u|^{p_{*}(s)-2}}{|x|^{s}} u v-f v\right] d x}{(p-1)\|u\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p_{*}(s)}}
$$

Proof. Define $\psi: \mathbb{R} \times W_{\mu}^{1, p} \longrightarrow \mathbb{R}$ such that

$$
\psi(\zeta, v)=\zeta\|u-v\|_{\mu}^{p}-\zeta^{p_{*}(s)-1}\|u-v\|_{p_{*}(s)}^{p_{*}(s)}-\int_{\Omega} f(u-v) d x
$$

As $u \in \mathcal{N}$ and $\mathcal{N}^{0}=\varnothing$, we have

$$
\psi(1,0)=0, \frac{\partial \varphi}{\partial \zeta}(1,0)=(p-1)\|u\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\|u\|_{p_{*}(s)}^{p_{*}(s)} \neq 0
$$

Then by the implicit function Theorem, we get our result.

3. Proof of our main results

3.1. Proof of Theorem 1.1 (Existence of the first solution when $0 \leq \mu<\bar{\mu}$)

We prove that I can achieve a local minimum on \mathcal{N}^{+}when $0 \leq \mu<\bar{\mu}$.
It follows from Lemma 2.3 that I is coercive on \mathcal{N}^{+}. Using the Ekeland variational principle [5], we can get a minimizing sequence $\left(u_{n}\right) \subset \mathcal{N}$ such that

$$
I\left(u_{n}\right) \leq m^{+}+\frac{1}{n} \text { and } I(u) \geq I\left(u_{n}\right)-\frac{1}{n}\left\|u-u_{n}\right\|_{\mu} \text { for all } u \in \mathcal{N}
$$

By Lemma 2.3, we know that $\left(u_{n}\right)$ is bounded in $W_{\mu}^{1, p}$. As a consequence, there exist a subsequence (still denoted by $\left.\left(u_{n}\right)\right)$ and u_{1} in $W_{\mu}^{1, p}$ such that $u_{1} \not \equiv 0$ and

$$
\begin{aligned}
& u_{n} \rightharpoonup u_{1} \text { in } W_{\mu}^{1, p} \\
& u_{n} \rightharpoonup u_{1} \text { in } L_{p_{*}(s)}\left(\Omega,|x|^{-s}\right) \\
& u_{n} \rightarrow u_{1} \text { a.e.in } \Omega
\end{aligned}
$$

Now we claim that u_{1} is a positive solution for the $\operatorname{Problem}\left(\mathcal{P}_{\mu, s}\right)$ and $u_{1} \in \mathcal{N}^{+}$. In order, to prove the claim, we divide the arguments below into five steps.

Step 1. $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in W_{μ}^{*}.
Fix n such that $\left\|I^{\prime}\left(u_{n}\right)\right\|_{-} \neq 0$. Then by Lemma 2.4 there exists $\varepsilon>0$ and a function $\zeta_{n}: B(0, \varepsilon) \longrightarrow$ \mathbb{R} such that $w_{n}=\zeta_{n}\left(v_{n}\right)\left(u_{n}-v_{n}\right) \in \mathcal{N}^{+}$with

$$
v_{n}=\delta \frac{I^{\prime}\left(u_{n}\right)}{\left\|I^{\prime}\left(u_{n}\right)\right\|_{-}} \text {and } 0<\delta<\varepsilon
$$

Let $A_{n}=\left\|w_{n}-u_{n}\right\|_{\mu}$. By the Taylor expansion of I, we obtain

$$
\begin{aligned}
-\frac{1}{n} A_{n} & \leq I\left(w_{n}\right)-I\left(u_{n}\right) \\
& \leq\left\langle I^{\prime}\left(u_{n}\right), w_{n}-u_{n}\right\rangle+o\left(A_{n}\right) \\
& =\left(\zeta_{n}\left(v_{n}\right)-1\right)\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\delta \zeta_{n}\left(v_{n}\right)\left\langle I^{\prime}\left(u_{n}\right), \frac{I^{\prime}\left(u_{n}\right)}{\left\|I^{\prime}\left(u_{n}\right)\right\|_{-}}\right\rangle+o\left(A_{n}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\zeta_{n}\left(v_{n}\right)\left\|I^{\prime}\left(u_{n}\right)\right\|_{-} \leq \frac{\zeta_{n}\left(v_{n}\right)-1}{\delta}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+\frac{A_{n}}{n \delta}+\frac{o\left(A_{n}\right)}{\delta} \tag{3.1}
\end{equation*}
$$

We have

$$
\lim _{\delta \rightarrow 0} \zeta_{n}\left(v_{n}\right)=1, \lim _{\delta \rightarrow 0} \frac{\left|\zeta_{n}\left(v_{n}\right)-1\right|}{\delta}=\lim _{\delta \rightarrow 0} \frac{\left|\zeta_{n}\left(v_{n}\right)-\zeta_{n}(0)\right|}{\delta} \leq\left\|\zeta_{n}^{\prime}(0)\right\|_{-},
$$

and

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \frac{A_{n}}{n \delta} & =\lim _{\delta \rightarrow 0} \frac{1}{n \delta}\left\|\left(\zeta_{n}\left(v_{n}\right)-1\right) u_{n}-\zeta_{n}\left(v_{n}\right) v_{n}\right\|_{\mu} \\
& \leq \frac{1}{n}\left(\left\|\zeta_{n}^{\prime}(0)\right\|_{-}\left\|u_{n}\right\|_{\mu}+1\right)
\end{aligned}
$$

Taking $\delta \rightarrow 0$ in (2) and since $\left(u_{n}\right)$ is a bounded sequence we get

$$
\left\|I^{\prime}\left(u_{n}\right)\right\|_{\mu} \leq \frac{C_{3}}{n}\left(\left\|\zeta_{n}^{\prime}(0)\right\|_{-}+1\right)
$$

for a suitable constant $C_{3}>0$. Now, we must show that $\left\|\zeta_{n}^{\prime}(0)\right\|_{-}$is uniformly bounded in n. From the boundedness of $\left(u_{n}\right)$ we have by Lemma 2.4

$$
\left\langle\zeta_{n}^{\prime}(0), v\right\rangle \leq \frac{C_{4}\|v\|_{\mu}}{\left|(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}\right|},
$$

for all $v \in W_{\mu}^{1, p}$ and some constant $C_{4}>0$. We only need to show that for any sequence $\left(u_{n}\right) \subset \mathcal{N}^{+}$

$$
\left|(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}\right|>C_{5}
$$

for some constant $C_{5}>0$. Assume by contradiction that there exists $\left(u_{n}\right) \subset \mathcal{N}^{+}$such that

$$
\lim _{n \rightarrow \infty}\left[(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}(s)-1\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}\right]=0
$$

As $\left\|u_{n}\right\|_{\mu} \geq C_{1}>0$, then

$$
\left\|u_{n}\right\|_{\mu}^{-p}\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}=\frac{p-1}{p_{*}(s)-1}+o_{n}(1)
$$

and

$$
(p-1) \int_{\Omega} f u_{n} d x=\left(p_{*}(s)-p\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}+o_{n}(1)
$$

where $o_{n}(1) \rightarrow 0$ as $n \rightarrow \infty$. But this is impossible since, as in the proof of Lemma 2.2 we have

$$
\begin{aligned}
o_{n}(1) & =(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}(s)-p\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)} \\
& =\left(p_{*}(s)-p\right)\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}-(p-1) \int_{\Omega} f u_{n} d x \\
& =\|u\|_{p_{*}(s)}\left[\frac{p_{*}(s)-p}{p-1}\left[\frac{p-1}{p_{*}(s)-1} \frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}(s)}^{p}}\right]^{\frac{p_{*}(s)-1}{p_{*(s)-p}}}-\frac{\int_{\Omega} f u d x}{\|u\|_{p_{*}(s)}}\right] \\
& \geq\left[\frac{(p-1)}{\left(p_{*}(s)-1\right)} S_{\mu}\right]^{\frac{1}{p_{*}(s)-p}} \Lambda_{f}>0
\end{aligned}
$$

At this point we conclude that $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in W_{μ}^{*}.
Step 2. $u_{n} \rightarrow u_{1}$ in $W_{\mu}^{1, p}$.
Suppose otherwise, so $\left\|u_{1}\right\|_{\mu}<\underset{n \rightarrow \infty}{\lim }\left\|u_{n}\right\|_{\mu}$, which implies that

$$
\begin{aligned}
m^{+} & \leq I\left(u_{1}\right) \\
& =\left\|u_{1}\right\|_{\mu}^{p}-\frac{p_{*}(s)-1}{p_{*}(s)-2} \int_{\Omega} f u_{1} d x \\
& <\lim _{n \rightarrow \rightarrow \infty}\left(\left\|u_{n}\right\|_{\mu}^{p}-\frac{p_{*}(s)-1}{p_{*}(s)-2} \int_{\Omega} f u_{n} d x\right) \\
& =m^{+}
\end{aligned}
$$

This is a contradiction, which led to conclude that $u_{n} \rightarrow u_{1}$ in $W_{\mu}^{1, p}$ and $I\left(u_{1}\right)=m^{+}$.
Step 3. $u_{1} \in \mathcal{N}^{+}$, and u_{1} is a nontrivial solution of $\left(\mathcal{P}_{\mu, s}\right)$.
Suppose that $u_{1} \in \mathcal{N}^{-}$, then by Lemma 2.2, we can find positive numbers $t_{u_{1}}^{-}$and $t_{u_{1}}^{+}$such that $0<t_{u_{1}}^{-}<t_{u_{1}}^{\max }<t_{u_{1}}^{+}=1, t_{u_{1}}^{-} u_{u_{1}} \in \mathcal{N}^{+}, t_{u_{1}}^{+} u_{1} \in \mathcal{N}^{-}$and

$$
m^{+} \leq I\left(t_{u_{1}}^{-} u_{1}\right)<I\left(t_{u_{1}}^{+} u_{1}\right)=I\left(u_{1}\right)=m^{+}
$$

which is a contradiction. Hence $u_{1} \in \mathcal{N}^{+}$and

$$
m^{+}=\inf _{u \in \mathcal{N}^{+}} I(u)=\inf _{u \in \mathcal{N}} I(u)
$$

By the Lagrange multiplier rule, there exists $\lambda \in \mathbb{R}$ such that

$$
\varphi_{u_{1}}^{\prime}(1)=I^{\prime}\left(u_{1}\right)=\lambda \varphi_{u_{1}}^{\prime \prime}(1)
$$

which implies that

$$
0=\left\langle I^{\prime}\left(u_{1}\right), u_{1}\right\rangle=\lambda\left\langle J^{\prime}\left(u_{1}\right), u_{1}\right\rangle
$$

Note that $\left\langle J^{\prime}\left(u_{1}\right), u_{1}\right\rangle \neq 0$, then $\lambda=0$ and we conclude that $I^{\prime}\left(u_{1}\right)=0$. Therefore, u_{1} is a ground state solution of problem $\left(\mathcal{P}_{\mu, s}\right)$.

3.2. Proof of Theorem 1.2 (Existence of the second solution when $\mu=0$)

In the following, we prove that problem $\left(\mathcal{P}_{\mu, s}\right)$ has a second solution u_{2}.
Lemma 3.1. Let $1<p<N, \mu=0,0 \leq s<p$ and $f \not \equiv 0$ satisfies $\Lambda_{f}>0$. Then $I(u)$ verifies the Palais-Smale condition at level c for all $c<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}$.

Proof. Assume $\left(u_{n}\right)$ is a sequence in $W_{0}^{1, p}$ satisfying as $n \rightarrow \infty$

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow c<\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}} \text { and } I^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W_{0}^{*} \tag{3.2}
\end{equation*}
$$

By Lemma 2.3, we know that $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}$. Then, there exist a subsequence (still denoted by $\left.\left(u_{n}\right)\right)$ and u_{2} in $W_{0}^{1, p}$ such that $u_{2} \not \equiv 0$ and

$$
\begin{aligned}
& u_{n} \rightarrow u_{2} \text { in } W_{0}^{1, p} \\
& u_{n} \quad \rightharpoonup u_{2} \text { in } L_{p_{*}(s)}\left(\Omega,|x|^{-s}\right) \\
& u_{n} \rightarrow u_{2} \text { a.e.in } \Omega
\end{aligned}
$$

Denote $v_{n}=u_{n}-u_{2}$, then

$$
\begin{aligned}
& v_{n} \quad \rightharpoonup 0 \text { in } W_{0}^{1, p} \\
& v_{n} \quad \rightharpoonup 0 \text { in } L_{p_{*}(s)}\left(\Omega,|x|^{-s}\right), \\
& v_{n} \rightarrow 0 \text { a.e.in } \Omega
\end{aligned}
$$

By the Brezis - Lieb Lemma [3] we have

$$
\left\|u_{n}\right\|_{0}^{p}=\left\|v_{n}\right\|_{\mu}^{p}+\left\|u_{2}\right\|_{\mu}^{p}+o_{n}(1)
$$

and

$$
\left\|u_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}=\left\|v_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}+\left\|u_{2}\right\|_{p_{*}(s)}^{p_{*}(s)}+o_{n}(1)
$$

Then, from (3) we deduce that

$$
c+\circ_{n}(1)=I\left(u_{2}\right)+\frac{1}{p}\left\|v_{n}\right\|_{0}^{p}-\frac{1}{p_{*}(s)}\left\|v_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}
$$

and

$$
\left\|v_{n}\right\|_{0}^{p}-\left\|v_{n}\right\|_{p_{*}(s)}^{p_{*}(s)}=o_{n}(1)
$$

Using the fact that $v_{n} \rightharpoonup 0$ in $W_{0}^{1, p}$, we can assume that

$$
\left\|v_{n}\right\|_{0}^{p} \rightarrow l \text { and }\left\|v_{n}\right\|_{p_{*}(s)}^{p_{*}(s)} \rightarrow l \geq 0
$$

So, by the Sobolev-Hardy inequality, we get $l \geq S_{0, s} l^{p / p_{*}(s)}$.
Now, assume that $l \neq 0$, then

$$
l \geq\left(S_{0, s}\right)^{p_{*}(s) /\left(p_{*}(s)-p\right)}
$$

and we obtain

$$
c=I\left(u_{2}\right)+\left(\frac{1}{p}-\frac{1}{p_{*}(s)}\right) l \geq I\left(u_{2}\right)+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}} .
$$

As $I\left(u_{2}\right) \geq m^{+}$, we get a contradiction. So again $u_{n} \rightarrow u$ in $W_{0}^{1, p}$ strongly.
In order, to prove Theorem 1.2, we need the following key lemma.

Lemma 3.2. Suppose $2 \leq p<N, \mu=0, f(x) \geq a_{0}>0$ in a small neighborhood of 0 and satisfies $\Lambda_{f}>0$. Then

$$
m^{-}<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}
$$

Proof. Set

$$
\mathcal{M}_{1}=\{0\} \cup\left\{u \in W_{0}^{1, p}:\|u\|_{0}<t_{u\|u\|_{0}^{-1}}^{+}\right\} \text {and } \mathcal{M}_{2}=\left\{u \in W_{0}^{1, p}:\|u\|_{0}>t_{u\|u\|_{0}^{-1}}^{+}\right\} .
$$

We have $W_{0}^{1, p} \backslash \mathcal{N}^{-}=\mathcal{M}_{1} \cup \mathcal{M}_{2}, \mathcal{N}^{+} \subset \mathcal{M}_{1}, u_{1} \in \mathcal{M}_{1}$ and $u_{1}+T v_{\varepsilon} \in \mathcal{M}_{2}$ for some real $T>0$. Let

$$
\Gamma=\left\{h:[0,1] \rightarrow W_{0}^{1, p} \text { continuous, } h(0)=u_{1}, h(1)=u_{1}+T v_{\varepsilon}\right\}
$$

and

$$
\tilde{h}(t)=u_{1}+t T v_{\varepsilon} \text { with } t \in[0,1] .
$$

It is obvious that \tilde{h} belongs to Γ and the range of any $h \in \Gamma$ intersects \mathcal{N}^{-}. Then

$$
m^{-} \leq \inf _{h \in \Gamma} \max _{t \in[0,1]} I(h(t))
$$

Now, we show that

$$
\sup _{t \geq 0} I\left(u_{1}+t v_{\varepsilon}\right)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}} .
$$

To this purpose we define $g(t):=I\left(u_{1}+t v_{\varepsilon}\right)$, then

$$
g(0)=I\left(u_{1}\right)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}
$$

and by the continuity of g there exists $t_{0}>0$ small enough such that

$$
g(t)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}
$$

for all $t \in\left(0, t_{0}\right)$. On the other hand, it is easy to see that $g(t) \rightarrow-\infty$ as $t \rightarrow+\infty$, that is, there exists $t_{1}>0$ large enough such that

$$
g(t)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}
$$

for all $t \geq t_{1}$. So we only need to show that

$$
\sup _{t_{0} \leq t \leq t_{1}} g(t)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}} .
$$

Let ε be sufficiently small satisfying $f(x) \geq a_{0}>0$ in $B(0, \varepsilon)$. Then, we get from Lemma 2.1

$$
\begin{aligned}
\sup _{t_{0} \leq t \leq t_{1}} I\left(t v_{\varepsilon}\right) & \leq \sup _{t \geq 0}\left(\frac{1}{p}\left\|t v_{\varepsilon}\right\|_{0}^{p}-\frac{1}{p_{*}(s)}\left\|t v_{\varepsilon}\right\|_{p_{*}(s)}^{p_{*}(s)}\right)-t_{0} \int_{\Omega} f v_{\varepsilon} d x \\
& \leq \sup _{t \geq 0}\left(\frac{1}{p}\left\|t v_{\varepsilon}\right\|_{0}^{p}-\frac{1}{p_{*}(s)}\left\|t v_{\varepsilon}\right\|_{p_{*}(s)}^{p_{*}(s)}\right)-t_{0} a_{0} \int_{\Omega} v_{\varepsilon} d x \\
& \leq \frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}+O\left(\varepsilon^{\frac{N-p}{p-s}}\right)-O\left(\varepsilon^{\frac{N-p}{p^{2}}}\right) .
\end{aligned}
$$

For the second one, we can assume that the first solution u_{1} is smooth and $\nabla u_{1} \in L_{\infty}(\Omega)$. Thus we have

$$
\begin{aligned}
\sup _{t_{0} \leq t \leq t_{1}} g(t)= & \sup _{t_{0} \leq t \leq t_{1}} I\left(u_{1}+t v_{\varepsilon}\right) \\
\leq & I\left(u_{1}\right)+\sup _{t \geq 0} I\left(t v_{\varepsilon}\right)+C_{1} \int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-1}\left|\nabla v_{\varepsilon}\right|+\left|\nabla v_{\varepsilon}\right|^{p-1}\left|\nabla u_{1}\right|\right) d x+ \\
& \int_{\Omega}\left(\left|u_{1}\right|^{p_{*}(s)-1} v_{\varepsilon}+\left|v_{\varepsilon}\right|^{p_{*}(s)-1} u_{1}\right) d x \\
\leq & m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}+O\left(\varepsilon^{\frac{N-p}{p-s}}\right)-O\left(\varepsilon^{\frac{N-p}{p^{2}}}\right)+O\left(\varepsilon^{\frac{N-p}{p(p-s)}}\right)+ \\
& O\left(\varepsilon^{\frac{(N-p)(p-1)}{p(p-s)}}\right)
\end{aligned}
$$

From

$$
\frac{N-p}{p-s}>\frac{N-p}{p(p-s)}>\frac{N-p}{p^{2}} \text { for all } s>0
$$

we have

$$
O\left(\varepsilon^{\frac{N-p}{p-s}}\right)-O\left(\varepsilon^{\frac{N-p}{p^{2}}}\right)+O\left(\varepsilon^{\frac{N-p}{p(p-s)}}\right)+O\left(\varepsilon^{\frac{(N-p)(p-1)}{p(p-s)}}\right)=O\left(\varepsilon^{\frac{(N-p)(p-1)}{p(p-s)}}\right)-O\left(\varepsilon^{\frac{N-p}{p^{2}}}\right)
$$

Since

$$
\frac{(N-p)(p-1)}{p(p-s)}-\frac{N-p}{p^{2}}=\frac{N-p}{p^{2}(p-s)}[p(p-2)+s]>0
$$

then

$$
\sup _{t_{0} \leq t \leq t_{1}} I\left(u_{1}+t v_{\varepsilon}\right)<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}
$$

for ε small enough.
The proof is now complete.

Now, we prove that I can achieve a local minimum on \mathcal{N}^{-}.
By using Lemma 2.3, there exists a minimizing sequence $\left(u_{n}\right) \subset \mathcal{N}^{-}$such that

$$
I\left(u_{n}\right) \rightarrow m^{-} \text {and } I^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W_{0}^{-1}
$$

From Lemma 3.2 we have $m^{-}<m^{+}+\frac{p-s}{p(N-s)}\left(S_{0, s}\right)^{\frac{N-s}{p-s}}$, therefore, by Lemma 3.1 we get $u_{n} \rightarrow u_{2}$ in $W_{0}^{1, p}$. This means that $u_{2} \in \mathcal{N}^{-}$and $I\left(u_{2}\right)=m^{-}$.

References

1. Assunção, R., Carrião, P., Miyagaki, O. Subcritical perturbations of a singular quasilinear elliptic equation involving the critical Hardy-Sobolev exponent. Nonlinear Anal. 66, 1351-1364 (2007).
2. Bouchekif, M., Matallah, A. Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent. Appl. Math. Lett. 22, 268-275 (2009).
3. Brezis, H., Lieb, E. A Relation Between Point Convergence of Functions and Convergence of Functionals. Proc. Amer. Math. Soc. 88, 486-490 (1983).
4. Caffarelli, L., Kohn, R., Nirenberg, L. First order interpolation inequality with weights. Compos. Math. 53, 259-275 (1984).
5. Ekeland, I. On the variational principle. J. Math. Anal. Appl. 47, 324-354 (1974).
6. Filippucci, R., Pucci, P., Robert, F. On a p-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91, 156-177 (2009).
7. Garcia Azorero, J. P., Peral Alonso, I. Hardy Inequalities and Some Critical Elliptic and Parabolic Problems. J. of Di erential Equations. 144, 441-476 (1998).
8. Ghoussoub, N., Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352, 5703-5743 (2000).
9. Kang, D.S. On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal. 68, 1973-1985 (2008).
10. Sang, Y. Guo, S. Solutions for the quasi-linear elliptic problems involving the critical Sobolev exponent. Journal of Inequalities and Applications. (2017).
11. Secchi, S., Smets, D., Willem, M. Remarks on a Hardy-Sobolev inequality. C.R. Acad. Sci. Paris. 336, 811-815 (2003).
12. Liang, S.H., Zhang, J.H. Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents. Nonlinear Differ. Equ. Appl. 17, 55-67 (2010).
13. Tarantello, G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré 9, 281-304 (1992).
[^1]
[^0]: 2010 Mathematics Subject Classification: 35J20, 35J70, 47J30, 58E30.
 Submitted January 12, 2019. Published May 15, 2019

[^1]: Atika Matallah,
 Laboratory of Analysis and Control of Partial Differential Equations of Sidi Bel Abbes, Higher School of Management of Tlemcen, Algeria.
 E-mail address: atika_matallah@yahool.fr
 and
 Sara Litimein,
 University of Sidi Bel Abbès,
 Algeria.
 E-mail address: sara_litimein@yahoo.fr
 and
 Sofiane Messirdi,
 Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO).
 Department of Mathematics and informatics Faculty of Exact Sciences.
 University of Mostaganem.
 Algeria
 E-mail address: messirdi.sofiane@hotmail.fr

