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abstract: In this paper, we investigate the existence of multiple solutions for a second-order boundary
value problems of Kirchhoff-type equation involving a p(x)-Laplacian.
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1. Introduction

In this article, we consider the following boundary value problem of Kirchhoff-type equation involving
an ordinary differential equation with p(x)-Laplacian operator and nonhomogeneous Neumann conditions







T (u) = λf(x, u), in (0, 1),

|u′(0)|p(0)−2u′(0) = −µg(u(0)),

|u′(1)|p(1)−2u′(1) = µh(u(1)),

(1.1)

where T (u) := M
(

∫ 1

0
1

p(x)

(

|u′|p(x) + α(x)|u|p(x)
)

dx
) [

−
(

|u′|p(x)−2u′
)′
+ α(x)|u|p(x)−2u

]

. Here, M :

[0,+∞[→ R is a continuous function such that there exist positive numbers m0 and m1 with

m0 ≤ M(t) ≤ m1 for all t ≥ 0, (1.2)

p ∈ C([0, 1];R), f : [0, 1]×R → R is an L1-Carathéodory function, g, h : R → R are non-negative contin-
uous functions, λ and µ are real parameters with λ > 0 and µ ≥ 0, α ∈ L∞([0, 1]), with ess inf [0,1] α > 0.

Problem (1.1) is a general version of a model presented by Kirchhoff [16]. More precisely Kirchhoff
introduced a model

ρ
∂2u

∂t2
−

(

ρ0
h

+
E

2L

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0, (1.3)

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave equation by considering
the effects of the changes in the length of the strings during the vibrations. Equation (1.3) was developed
to form utt(x) −M

(∫

Ω
|∇u(x)|2 dx

)

∆u(x) = f(x, u(x)). Latter , several authors studied the following
nonlocal elliptic boundary value problem







−M

(∫

Ω

|∇u|2 dx

)

∆u(x) = f(x, u) in Ω,

u = 0 on ∂Ω.
(1.4)
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Problems like (1.4) can be used for modeling several physical and biological systems and also for describing
the dynamics of an axially moving string ( [1]).

Due to this, many authors have investigated the existence and multiplicity of solutions for such
problems by using variational methods like the symmetric mountain pass theorem and critical point
theorems, lower and upper solution method, fixed point theorems, degree theory and Morse theory (
[4,5,7,8]).

Differential equations with variable exponents arise from the nonlinear elasticity theory and the theory
electroheological fluids. The study of such problems has received considerable attention in recent years.
For background, we refer the readers to [12,17,10,20,22,23].

For example, Zhikov in [26] via Leray-Schauder degree theory, obtained sufficient conditions for the
existence of one solution for a weighted p(x)-Laplacian system. Wang and Yuan in [25] have been
studied the periodic solutions for a class of systems of equation coupled with non-standard p(x)-growth.
Bonanno and Chinǹı in [2] by using a multiple critical points theorem for non-differentiable functionals,
investigated the existence and multiplicity of solutions for the following problem

{

−∆p(x)u(x) = λf(x, u(x)) + µg(x, u(x)), in Ω,
u = 0 on ∂Ω.

After that, in [3] the existence of three weak solutions for the following problem







−∆p(x)u(x) + a(x)|u(x)|p(x)−2u(x) = λf(x, u(x)) + µg(x, u(x)), in Ω,
∂u

∂n
= 0 on ∂Ω,

has been obtained by using a three critical points theorem due to Ricceri. D’Agùı in [9], by using
variational methods, obtained the existence of an unbounded sequence of weak solutions for the problem







−(|u′|p(x)−2u′)′ + α(x)|u|p(x)−2u = λf(x, u), in (0, 1),

|u′(0)|p(0)−2u′(0) = −µg(u(0)),

|u′(1)|p(1)−2u′(1) = µh(u(1)).

(1.5)

Recently, Heidarkhani et al. in [14] studied the existence of three solutions for the second order boundary
value problems with variable exponent (1.5).
Motivated by the papers [6,13,14], in the present paper, we introduce a Kirchhoff p(x)-Laplacian problem
with nonhomogeneous Neumann condition.

Inspired by the above results, in the present paper, we study the existence of at least three weak
solutions for the problem (1.1) for appropriate values of the parameters λ and µ belonging to real intervals.
Precisely, employing variational methods and a three critical point theorem due to Ricceri [24], we
establish the existence result for problem (1.1) requiring an algebraic condition on f . An example is
presented to illustrate our main results.

This paper is organized as follows: In Section 2 we shall recall our main tool and some properties of
variable exponent spaces and basic notations. Whereas, in Section 3 we formulate the main result and
prove it, in order to discuss the existence of three weak solutions for the problem (1.1). We also list some
consequences of the main result and present an example to illustrate the result.

2. Preliminary results

We shall prove the existence of at least three weak solutions to the problem (1.1) applying the following
three critical points theorem obtained by Ricceri [24]

For a real Banach space X , we denoted by WX , the class of all functionals Φ : X → R possess the
following property:

If {un} is a sequence in X converging weakly to u ∈ X and lim infn→∞ Φ(un) ≤ Φ(u), then
{un} has a subsequence converging strongly to u.

Remark 2.1. [15, Remark 2.1] If X is uniformly convex and g : [0,+∞) → R is continuous and strictly
increasing function, then, by a classical result, the functional u → g(‖u‖) belongs to the class WX .
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Theorem 2.2. Let X be a separable and reflexive real Banach space, let Φ : X → R be a coercive,
sequentially weakly lower semicontinuous C1-functional, belonging to WX , bounded on each bounded subset
of X and whose derivative admits a continuous inverse on X∗; J : X → R be a C1-functional with compact
derivative. Assume that Φ has a strict local minimum u0 with Φ(u0) = J(u0) = 0. Finally, setting

ρ = max

{

0, lim sup
‖u‖→+∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}

,

σ = sup
u∈Φ−1(0,+∞)

J(u)

Φ(u)
,

assume that ρ < σ. Then, for each compact interval [c, d] ⊆ ( 1
σ
, 1
ρ
) (with the conventions 1

0 = ∞, 1
∞ = 0),

there exists R > 0 with the following property: for every λ ∈ [c, d] and every C1-functional Ψ : X → R with
compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ], the equation Φ′(u)−λJ ′(u)−µΨ′(u) =
0 has at least three solutions in X whose norms are less than R.

Now we state some properties of variable exponent Sobolev spaces.
For p ∈ C([0, 1],R) we assume that

1 < p− := min
x∈[0,1]

p(x) ≤ p+ := max
x∈[0,1]

p(x). (2.1)

The variable exponent Lebesgue space is defined as follows

Lp(x)([0, 1]) :=

{

u : [0, 1] → R : u is measurable and

∫ 1

0

|u|p(x) dx < +∞

}

,

endowed with the norm

‖u‖Lp(x)([0,1]) := inf

{

λ > 0 :

∫ 1

0

|
u(x)

λ
|p(x) dx ≤ 1

}

.

The generalized Lebesgue-Sobolev space W 1,p(x)([0, 1]) is defined by

W 1,p(x)([0, 1]) :=
{

u : u ∈ Lp(x)([0, 1]), u′ ∈ Lp(x)([0, 1])
}

,

which is endowed with the norm

‖u‖W 1,p(x)([0,1]) := ‖u‖Lp(x)([0,1]) + ‖|u′|‖Lp(x)([0,1]). (2.2)

From (2.1), both Lp(x)([0, 1]) and W 1,p(x)([0, 1]) are separable, reflexive uniformly convex Banach spaces
(for more details, see [12]). Moreover, since α ∈ L∞([0, 1]), with α− := ess infx∈[0,1] α(x) > 0

‖u‖α := inf

{

σ > 0 :

∫ 1

0

(

|
u′(x)

σ
|p(x) + α(x)|

u(x)

σ
|p(x)

)

dx ≤ 1

}

,

on W 1,p(x)([0, 1]) is an equivalent to that introduced in (2.2).

Proposition 2.3. (see [9, Proposition 2.1]) For all u ∈ W 1,p(x)([0, 1]), one has

‖u‖C0([0,1] ≤ m‖u‖α and ‖u‖C0([0,1] ≤ 2‖u‖W 1,p(x)([0,1]) (2.3)

and in particular, ‖u‖ := ‖u‖W 1,p(x)([0,1]) ≤
m
2 ‖u‖α, where

m =







































2







1

1 + α
p+

p−(1−p+)

−







1

p+

+






1−

1

1 + α
p+

p−(1−p+)

−







1

p+

2

α
1

p−

−

, if α− < 1,

2





1

1 + α
1

(1−p+)

−





1

p+

+



1−
1

1 + α
1

(1−p+)

−





1

p+

2

α
1

p+

−

, if α− ≥ 1.
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Proposition 2.4. [11] For u, uk ∈ W 1,p(x)(]0, 1[); k = 1, 2, ..., we have

(1) ‖u‖ ≥ 1 if and only if ‖u‖p
−

≤ ρα(u) ≤ ‖u‖p
+

;

(2) ‖u‖ ≤ 1 if and only if ‖u‖p
−

≥ ρα(u) ≥ ‖u‖p
+

;

(3) ‖uk‖ → 0 as k → +∞ if and only if ρα(uk) → 0 as k → +∞;

(4) ‖uk‖ → +∞ as k → +∞ if and only if ρα(uk) → +∞ as k → +∞.

Throughout this article, assume that f : [0, 1]× R → R is an L1-Carathéodory function, that is,

(a) x 7→ f(x, ξ) is measurable for every ξ ∈ R;

(b) ξ 7→ f(x, ξ) is continuous for almost every x ∈ [0, 1];

(c) for every s > 0 there is a function ls ∈ L1([0, 1]) such that

sup
|ξ|≤s

|f(x, ξ)| ≤ ls(x), for a.e. x ∈ [0, 1],

the functions g, h : R → R are non-negative continuous, and parameters λ and µ are real.
Corresponding to the functions f, g, h and M , we introduce the functions F : [0, 1]× R → R, G,H :

R → [0,+∞[ and M̃ : [0,+∞[→ R defined as follows

F (x, t) =

∫ t

0

f(x, ξ) dξ for all (x, t) ∈ [0, 1]× R,

G(t) =

∫ t

0

g(ξ) dξ, H(t) =

∫ t

0

h(ξ) dξ for all t ∈ R,

M̃(t) =

∫ t

0

M(ξ) dξ for all t ≥ 0.

Definition 2.5. u : [0, 1] → R is a weak solution of the problem (1.1) if

M

(∫ 1

0

1

p(x)

(

|u′|p(x) + α(x)|u|p(x)
)

dx

)

×

[∫ 1

0

|u′|p(x)−2u′v′dx+

∫ 1

0

α(x)|u|p(x)−2uvdx

]

−λ

∫ 1

0

f(x, u)v dx− µ [g(u(0))v(0) + h(u(1))v(1)] = 0,

for all v ∈ W 1,p(x)([0, 1]).

3. Main results

In this section, we establish the main abstract results of this paper. Before introducing our results,
for θ > 0 and η ∈ C([0, 1]) with 1 < η−, we put

[θ]η := max
{

θη
−

, θη
+
}

and [θ]η := min
{

θη
−

, θη
+
}

.

Let

λ1 := inf







M̃
(

∫ 1

0
1

p(x)

(

|u′(x)|p(x) + α(x)|u(x)|p(x)
)

dx
)

∫ 1

0
F (x, u(x)) dx

: u ∈ X,

∫ 1

0

F (x, u(x)) dx > 0







and λ2 := 1
max{0,λ0,λ∞} , where

λ0 := lim sup
|u|→0

∫ 1

0 F (x, u(x)) dx

M̃
(

∫ 1

0
1

p(x)

(

|u′(x)|p(x) + α(x)|u(x)|p(x)
)

dx
)



Existence of Weak Solutions for Second-order Boundary-value Problems... 5

and

λ∞ := lim sup
‖u‖→+∞

∫ 1

0 F (x, u(x)) dx

M̃
(

∫ 1

0
1

p(x)

(

|u′(x)|p(x) + α(x)|u(x)|p(x)
)

dx
) .

Our main result reads as follows:

Theorem 3.1. Assume that

(f1) there exists a constant ǫ > 0 such that

max

{

lim sup
u→0

maxx∈[0,1] F (x, u(x))

|u|p−
, lim sup
|u|→+∞

maxx∈[0,1] F (x, u(x))

|u|p−

}

< ǫ;

(f2) there exists a function w ∈ W 1,p(x)([0, 1]) such that

Kw := M̃

(∫ 1

0

1

p(x)

(

|w′(x)|p(x) + α(x)|w(x)|p(x)
)

dx

)

6= 0

and

ǫ <
m0

∫ 1

0 F (x,w(x)) dx

p+2p+
Kw

.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the following property: for every
λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R, there exists δ > 0 such that, for
each µ ∈ [0, δ], the problem (1.1) has at least three weak solutions whose norms in W 1,p(x)([0, 1]) are less
than R.

Proof. Take X = W 1,p(x)([0, 1]). It is well known that, in view of (2.1), both Lp(x)([0, 1]) and X are
separable and reflexive uniformly convex Banach spaces (see [12]). Let the functionals Φ, J and Ψ be
defined as fallow:

Φ(u) = M̃

(∫ 1

0

1

p(x)

(

|u′|p(x) + α(x)|u|p(x)
)

dx

)

, (3.1)

J(u) =

∫ 1

0

F (x, u(x)) dx, (3.2)

Ψ(u) = G(u(0)) +H(u(1)), (3.3)

for every u ∈ X. The functional Φ is of C1, and by [2, Theorem 3.1] and [9, Theorem 3.1], Φ is sequen-
tially weakly lower semi-continuous and continuously Gâteaux differentiable functional whose Gâteaux
derivative Φ′ : X → X∗ defined as

Φ′(u)(v) = M

(∫ 1

0

1

p(x)

(

|u′|p(x) + α(x)|u|p(x)
)

dx

)

×
[

∫ 1

0

|u′|p(x)−2u′v′ dx+

∫ 1

0

α(x)|u|p(x)−2u v dx
]

,

for every u, v ∈ X , is a homeomorphism, in particular Φ′ admits a continuous inverse on X∗ :=
(

W 1,p(x)([0, 1])
)∗
. Moreover, since m0 ≤ M(t) ≤ m1 for all t ∈ [0,+∞[, from (3.1) and using Proposition

2.4, we have
m0

p+
[‖u‖]p ≤ Φ(u) ≤

m1

p−
[‖u‖]p, (3.4)

for all u ∈ X , which follows lim‖u‖→+∞ Φ(u) = +∞, namely, the functional Φ is coercive. Moreover,
let A be a bounded subset of X . That is, there exists a constant m2 > 0 such that ‖u‖ ≤ m2 for each
u ∈ A. Then, by (3.4), we have |Φ(u)| ≤ m1

p−
[m2]

p. Hence Φ is bounded on each bounded subset of X .

Furthermore, by Remark 2.1, Φ ∈ WX . The functionals J and Ψ are two C1-functionals and using the
compact embedding W 1,p(x)(]0, 1[) →֒ Lp(x)(]0, 1[) and considering in fact that the functions g and h are
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non-negative, It can be obtained that J and Ψ have compact derivatives (for more details see [2, Theorem
3.1]) defined as

J ′(u)(v) =

∫ 1

0

f(x, u(x))v(x) dx

and
Ψ′(u)(v) = g(u(0))v(0) + h(u(1))v(1),

for every u, v ∈ X. Moreover, Φ has a strict local minimum 0 with Φ(0) = J(0) = 0. In view of (f1),
there exist τ1, τ2 with 0 < τ1 < τ2 such that

F (x, u) ≤ ǫ|u|p
−

(3.5)

for every x ∈ (0, 1) and every u with |u| ∈ [0, τ1) ∪ (τ2,+∞). Since F (x, u) is continuous on (0, 1) × R,
it is bounded on x ∈]0, 1[ and |u| ∈ [τ1, τ2]. Thus we can choose η > 0 and ν > p+ such that F (x, u) ≤

ǫ|u|p
+

+ η|u|ν for all (x, u) ∈]0, 1[×R. So, by Proposition 2.3, we have

J(u) =

∫ 1

0

F (x, u) dx ≤ ǫ2p
+

‖u‖p
+

+ η 2ν‖u‖ν (3.6)

for all u ∈ X. Hence, from (3.4) and (3.6) we obtain

lim sup
|u|→0

J(u)

Φ(u)
≤ lim sup

|u|→0

ǫ2p
+

‖u‖p
+

+ η2ν‖u‖ν

m0

p+ ‖u‖p+

=
p+2p

+

ǫ

m0
. (3.7)

Moreover, by using (3.4), (3.5) and Proposition 2.3, for each u ∈ X\{0}, we obtain

J(u)

Φ(u)
=

∫

|u|≤τ2
F (x, u) dx

Φ(u)
+

∫

|u|>τ2
F (x, u) dx

Φ(u)

≤
p+ supx∈(0,1),|u|∈[0,τ2] F (x, u)

m0[‖u‖]p
+

2p
+

p+ǫ[‖u‖]p
m0[‖u‖]p

.

So

lim sup
‖u‖→+∞

J(u)

Φ(u)
≤

2p
+

p+ǫ

m0
. (3.8)

In view of (3.7) and (3.8), we have

ρ = max

{

0, lim sup
‖u‖→+∞

J(u)

Φ(u)
, lim sup

u→0

J(u)

Φ(u)

}

≤
p+2p

+

ǫ

m0
. (3.9)

Assumption (f2) in conjunction with (3.9) yields

σ = sup
u∈Φ−1(0,+∞)

J(u)

Φ(u)
= sup

X\{0}

J(u)

Φ(u)

≥

∫ 1

0
F (x,w(x)) dx

Φ(w(x))
=

∫ 1

0
F (x,w(x)) dx

Kw

>
p+2p

+

ǫ

m0
≥ ρ.

Thus, all the hypotheses of Theorem 2.2 are satisfied. Clearly, λ1 = 1
σ
and λ2 = 1

ρ
. Then, using Theorem

2.2, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the following property: for every
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λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R, there exists δ > 0 such that
for each µ ∈ [0, δ], the problem (1.1) has at least three weak solutions whose norms in X are less than
R (standard arguments show that I =: Φ− λJ − µΨ is a Gâteaux differentiable functional and a vector
u ∈ X is a solution of the problem (1.1) if and only if u be a critical point of the function I). �

Another announced application of Theorem 2.2 reads as follows:

Theorem 3.2. Assume that

max

{

lim sup
u→0

maxx∈[0,1] F (x, u(x))

|u|p−
, lim sup
|u|→+∞

maxx∈[0,1] F (x, u(x))

|u|p−

}

≤ 0 (3.10)

and

sup
u∈X

m0

∫ 1

0
F (x, u(x)) dx

p+2p+
M̃
(

∫ 1

0
1

p(x)

(

|u′(x)|p(x) + α(x)|u(x)|p(x)
)

dx
) > 0. (3.11)

Then, for each compact interval [c, d] ⊂ (λ1,+∞), there exists R > 0 with the following property: for
every λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R, there exists δ > 0 such
that, for each µ ∈ [0, δ], the problem (1.1) has at least three weak solutions whose norms in X are less
than R.

Proof. In view of (3.10), there exist an arbitrary ǫ > 0 and τ1, τ2 with 0 < τ1 < τ2 such that F (x, u) ≤

ǫ|u|p
−

for every x ∈]0, 1[ and every u with |u| ∈ [0, τ1)∪(τ 2,+∞). Since F (x, u) is continuous on [0, 1]×R,
it is bounded on x ∈]0, 1[ and |u| ∈ [τ1, τ2]. Thus we can choose η > 0 and ν > p+ in a manner that

F (x, u)ǫ|u|p
+

+ η|u|ν for all (x, u) ∈]0, 1[×R. So, by the same process as that in the proof of Theorem
3.1, we have relations (3.7) and (3.8). Since ǫ is arbitrary, (3.7) and (3.8) give

max

{

0, lim sup
‖u‖→+∞

J(u)

Φ(u)
, lim sup

u→0

J(u)

Φ(u)

}

≤ 0.

Then, with the notation of Theorem 2.2, we have ρ = 0. By (3.11), we also obtain σ > 0. In this case,
clearly λ1 = 1

σ
and λ2 = +∞. Thus, by using Theorem 2.2, the result is achieved. �

Put

ϑ1 :=

∫

( 1
6 ,

5
6 )\(

1
3 ,

2
3 )

1

p(x)

∣

∣

∣

∣

324|x−
1

2
|(x −

1

2
)− 216(x−

1

2
) +

27

|x− 1
2 |

∣

∣

∣

∣

p(x)

dx,

ϑ2 :=

∫ 2
3

1
3

α(x)

p(x)
dx+

∫

( 1
6 ,

5
6 )\(

1
3 ,

2
3 )

α(x)

p(x)

∣

∣

∣

∣

108|x−
1

2
|3 − 108|x−

1

2
|2 + 27|x−

1

2
| − 1

∣

∣

∣

∣

p(x)

dx,

and
L := ϑ1 + ϑ2. (3.12)

The next theorem provides sufficient conditions for applying Theorem 3.1, which does not require to
know a test function w satisfying (f2).

Theorem 3.3. Assume that assumption (f1) in Theorem 3.1 holds and there exists a positive constant
d such that

(f3) F (x, t) ≥ 0 for each x ∈ (16 ,
1
3 ] ∪ [ 23 ,

5
6 );

(f4) M̃ ([d]pϑ1 + [d]pϑ2) 6= 0 and ǫ <
m0

∫ 2
3
1
3

F (x,d)dx

p+2p+M̃([d]pϑ1+[d]pϑ2)
.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the following property: for every
λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R, there exists δ > 0 such that, for
each µ ∈ [0, δ], the problem (1.1) has at least three weak solutions whose norms in X are less than R.
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Proof. We claim that all the assumptions of Theorem 3.1 are fulfilled by choosing w as follows:

w(x) :=















0, if x ∈ [0, 16 ] ∪ [ 56 , 1],

d

(

108|x−
1

2
|3 − 108|x−

1

2
|2 + 27|x−

1

2
| − 1

)

, if x ∈ (16 ,
1
3 ] ∪ [ 23 ,

5
6 ),

d, if x ∈ (13 ,
2
3 ).

(3.13)

We have

w′(x) :=







0, if x ∈ [0, 1
6 ] ∪ [ 56 , 1] ∪ (13 ,

2
3 ),

d

(

324|x−
1

2
|(x−

1

2
)− 216(x−

1

2
)2 +

27

|x− 1
2 |

)

, if x ∈ (16 ,
1
3 ] ∪ [ 23 ,

5
6 ).

In particular

∫ 1

0

1

p(x)
|w′(x)|p(x) dx















≥ [d]p

∫

I1

1

p(x)

∣

∣

∣
324|x−

1

2
|(x−

1

2
)− 216(x−

1

2
) +

27

|x− 1
2 |

∣

∣

∣

p(x)

dx,

≤ [d]p
∫

I1

1

p(x)

∣

∣

∣324|x−
1

2
|(x−

1

2
)− 216(x−

1

2
) +

27

|x− 1
2 |

∣

∣

∣

p(x)

dx,

where I1 := (16 ,
5
6 )\(

1
3 ,

2
3 ).

So

[d]pϑ1 ≤

∫ 1

0

1

p(x)
|w′(x)|p(x) dx ≤ [d]pϑ1

and similarly

[d]pϑ2 ≤

∫ 1

0

α(x)

p(x)
|w(x)|p(x) dx ≤ [d]pϑ2.

It is easy to see that w ∈ X , and one has

m0[d]pL = m0[d]p(ϑ1 + ϑ2)

≤ M̃([d]pϑ1 + [d]pϑ2)

≤ Φ(w) = M̃

(∫ 1

0

1

p(x)

(

|w′|p(x) + α(x)|w|p(x)
)

dx

)

≤ M̃ ([d]pϑ1 + [d]pϑ2)

≤ m1[d]
p(ϑ1 + ϑ2) = m1[d]

pL. (3.14)

Thus from (3.14), taking into account we derive that if M̃([d]p(ϑ1+ϑ2)) 6= 0 than M̃([d]p(ϑ1+ϑ2)) 6= 0.
So from (f3) and (f4), it is easy to see that the assumption (f2) of Theorem 3.1 is satisfied. Hence,
Theorem 3.1 follows the results. �

Remark 3.4. The statements of Theorem 3.3 depend upon the test function w defined by (3.13). If we
choose the other type of w, we observe another statement. For example, we pick

ϑ′
1 :=

∫

( 1
6
, 5
6
)\( 1

3
, 2
3
)

1

p(x)

∣

∣

∣

∣

(
1

3
− |x−

1

2
|)(

1

3
− 2|x−

1

2
|)(x −

1

2
)

∣

∣

∣

∣

p(x)

dx,

ϑ′
2 :=

∫ 2
3

1
3

α(x)

p(x)
dx+

∫

( 1
6 ,

5
6 )\(

1
3 ,

2
3 )

α(x)

p(x)

∣

∣

∣

∣

(x−
1

2
)(
1

3
− |x−

1

2
|)

∣

∣

∣

∣

2p(x)

dx

and L′ := ϑ′
1 + ϑ′

2 and we take

w(x) :=











0, if x ∈ [0, 16 ] ∪ [ 56 , 1],

64d|x−
1

2
|2(

1

3
− |x−

1

2
|)2, if x ∈ (16 ,

1
3 ] ∪ [ 23 ,

5
6 ),

d, if x ∈ (13 ,
2
3 ),

(see [21] for x0 =
1

2
, s =

1

3
) (3.15)
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then we obtain

w′(x) :=

{

0, if x ∈ [0, 16 ] ∪ [ 56 , 1] ∪ (13 ,
2
3 ),

2d 64(
1

3
− |x−

1

2
|)(

1

3
− 2|x−

1

2
|)(x −

1

2
), if x ∈ (16 ,

1
3 ] ∪ [ 23 ,

5
6 ).

So,

[d]pϑ
′
1 ≤

∫ 1

0

1

p(x)
|w′(x)|p(x) dx ≤

(

2× 64
)p+

[d]pϑ′
1

and similarly

[d]pϑ
′
2 ≤

∫ 1

0

α(x)

p(x)
|w(x)|p(x) dx ≤

(

2× 64
)p+

[d]pϑ′
2.

It is easy to see that w ∈ X and in particular, one has

m0[d]pL
′ = m0[d]p(ϑ

′
1 + ϑ′

2)

≤ M̃([d]pϑ
′
1 + [d]pϑ

′
2)

≤ Φ(w) = M̃

(∫ 1

0

1

p(x)

(

|w′|p(x) + α(x)|w|p(x)
)

dx

)

≤
(

2× 64
)p+

M̃
(

[d]pϑ′
1 + [d]pϑ′

2

)

≤ M+[d]pL′,

where M+m1

(

2× 64
)p+

. Therefore, condition (f4) in Theorem 3.3 takes the following form:

(f5) there exists a positive constant d such that

M̃
(

[d]pϑ
′
1 + [d]pϑ

′
2

)

6= 0 and ǫ <
m0

∫ 1

0
F (x, d) dx

p+2p+
M̃
(

[d]pϑ′
1 + [d]pϑ′

2

) ,

where w is given by (3.15).

Also, by choosing w as given in [21, Remark 3.4] (for x0 = 1
2 , r2 = 1

3 and r1 = 1
6 ), which is as follows:

w(x) :=















0, if x ∈ [0, 1
6 ] ∪ [ 56 , 1],

432 d|x−
1

2
|2
[

3|x−
1

2
|)2 − 2|x−

1

2
|+

1

3

]

, if x ∈ (16 ,
1
3 ] ∪ [ 23 ,

5
6 ),

d, if x ∈ (13 ,
2
3 ),

(see [18,19])

one has another form of condition (f4).

Now, we point out some results in which the function f has separated variables. Consider the following
problem







T (u) = λθ(x)f(u), in (0, 1),

|u′(0)|p(0)−2u′(0) = −µg(u(0)),

|u′(1)|p(1)−2u′(1) = µh(u(1)),

(3.16)

where T (u) := M
( ∫ 1

0
1

p(x) (|u
′|p(x) +α(x)|u|p(x))dx

)

[−(|u′|p(x)−2u′)′ +α(x)|u|p(x)−2u], θ : (0, 1) → R is a

non-negative and non-zero function, θ ∈ L1(]0, 1[), f : R → R is a continuous function and g, h : R → R

are as introduced in the problem (1.1) in Introduction.

Set F (x, t) = θ(x)F (t) for every (x, t) ∈ (0, 1) × R, where F (t) =
∫ t

0
f(ξ) dξ for all t ∈ R. The

following existence results are consequences of Theorem 3.3

Theorem 3.5. Suppose that



10 I. E. Eskandarkolaei, S. Khademloo, G. A. Afrouzi

(f6) there exists a positive constant ǫ such that

sup
x∈(0,1)

θ(x) max

{

lim sup
u→0

F (u)

|u|p−
, lim sup
|u|→+∞

F (u)

|u|p−

}

< ǫ;

(f7) there exists a positive constant d such that

M̃ ([d]pϑ1 + [d]pϑ2) 6= 0 and ǫ <
m0

∫ 1

0
F (x,w(x)) dx

p+2p+
M̃ ([d]pϑ1 + [d]pϑ2)

,

where w is given by (3.13).

Then, for each compact interval [c, d] ⊂ (λ3, λ4), (where λ3 and λ4 are the same as λ1 and λ2 but
∫ 1

0
F (x, u(x)) dx is replaced by

∫ 1

0
θ(x)F (u(x)) dx, respectively), there exists R > 0 with the following

property: for every λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R, there exists
δ > 0 such that, for each µ ∈ [0, δ], the problem (3.16) has at least three weak solutions whose norms in
X are less than R.

Theorem 3.6. Assume that there exists a positive constant d such that

M̃ ([d]pϑ1 + [d]pϑ2) > 0 and F (d) > 0. (3.17)

Moreover, suppose that

lim sup
u→0

f(u)

|u|p−−1
= lim sup

|u|→+∞

f(u)

|u|p−−1
= 0. (3.18)

Then, for each compact interval [c, d] ⊂ (λ3,+∞), where λ3 is the same as λ1 but
∫ 1

0
F (x, u(x)) dx is

replaced by
∫ 1

0 θ(x)F (u(x)) dx, there exists R > 0 with the following property: for every λ ∈ [c, d] and
every two non-negative continuous functions g, h : R → R, there exists δ > 0 such that, for each µ ∈ [0, δ],
the problem (3.16) has at least three weak solutions whose norms in X are less than R.

Proof. We easily see that from (3.18), assumption (f6) is satisfied for every ǫ > 0. Moreover, using (3.17),
by choosing ǫ > 0 small enough, one can arrive to assumption (f7). Hence, the conclusion follows from
Theorem 3.5. �

Remark 3.7. From cited results, we realize that nowhere in theorems asymptotic conditions on the
functions f, g and h are required, and only the algebraic conditions on f are supposed to guarantee the
existence of solutions.

We consider the following example in which the nonlinearity f verifies the hypotheses of Theorem 3.6
and the constructions of the nonlinear functions are partly motivated by [15, Example 3.1].

Example 3.8. Let p(x) = x2 + 6, α(x) = 1, for each x ∈ (0, 1),

M(t) = 1 +
1

cosh t
for all t ≥ 0,

θ(x) = 1 for all x ∈ (0, 1) and

f(t) =

{

2(t+ sin t)2, if t < π,

2π2 + tanh(t− π), if t ≥ π.

Thus, m0 = 1, m1 = 2, p− = 6, p+ = 7 and f is a non-negative and continuous function by which
choosing d = 1, we have

F (d) = F (1) = 2

∫ 1

0

(t+ sin t)2 dt > 0.
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On the other hand, since M̃(t) ≥ m0t for each t ≥ 0, one has

M̃(ϑ1 + ϑ2) ≥ ϑ1 + ϑ2 ≥

∫ 2
3

1
3

α(x)

p(x)
dx

≥
1

7

∫ 2
3

1
3

dx =
1

21
> 0.

Moreover, we have

lim sup
u→0

f(u)

|u|p−−1
= lim

u→0

2(u+ sinu)2

|u|5
= 0

and

lim
|u|→+∞

f(u)

|u|p−−1
= lim

|u|→+∞

2π2 + tanh(u − π)

|u|5
= 0.

Hence, by applying Theorem 3.6 for each compact interval [c, d] ⊂ (0,+∞), there exists R > 0 with the
following property: for every λ ∈ [c, d] and every two non-negative continuous functions g, h : R → R,
there exists δ > 0 such that, for each µ ∈ [0, δ], the problem







Υ(u) = λf(u), in (0, 1),
|u′(0)|4u′(0) = −µg(u(0)),
|u′(1)|5u′(1) = µh(u(1)),

where

Υ(u) :=



1 +
1

cosh
(

∫ 1

0
1

x2+6

[

|u′|x2+6 + |u|x2+6
]

dx
)





[

−
(

|u′|x
2+4u′

)′

+ |u|x
2+4u

]

,

has at least three weak solutions whose norms in X (by p(x) = x2 + 6) are less than R.

Remark 3.9. We point out that the same statements of the above given results can be obtained by
considering the special case M(t) = b1 + b2t for t ∈ [ι, κ], where b1, b2, ι and κ are positive numbers. In
fact, we have

M̃(t) =

∫ t

0

M(ξ) dξ =

∫ t

0

(b1 + b2ξ) dξ = b1t+
b2

2
t2 =

(b1 + b2t)
2

2b2
−

b21
2b2

for t ∈ [ι, κ],

m0 = b1 + b2ι and m1 = b1 + b2κ.

Arguing as in the proof of Theorem 3.1, three weak solutions can be obtained.
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