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On Submanifolds of Sasakian Statistical Manifolds

Mohammad Bagher Kazemi Balgeshir

abstract: In this paper, invariant and anti-invariant submanifolds of Sasakian statistical manifolds are
studied. Necessary and sufficient conditions are given for vanishing the dual connection in the normal bundle.
Moreover, existence of a Kaehlerian structure on invariant hypersurfaces of Sasakian statistical manifolds are
proved.
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1. Introduction

An important and interesting area in statistical studies is information geometry. Amari’s idea for
α-connections in this area developed investigating statistical manifolds. In fact a statistical manifold of
probability space is a Riemannian manifold (M̄, g) which admits dual connections ∇α and ∇(−α) with
some conditions. Here, we briefly review the basic definitions in statistical manifold from information
geometry point of view. For more details one can refer to [1].

Let (χ,B) be a measure space such that χ ⊂ R and B is the σ-algebra of subsets of χ. Let P(χ) be
the set of probability measures which are defined on χ as following

P(χ) = {p(m) : χ −→ R | p(m) > 0;

∫

χ

p(m)dm = 1}.

Suppose x = [x1, . . . , xn] ∈ O ⊂ R
n. Then M̄ = {p(m,x) ∈ P(χ) | m ∈ χ, x ∈ O} is a statistical model

(manifold). Let l(m,x) = log p(m,x) and ∂il =
∂l
∂xi

, ∀i = 1, . . . , n. Define the component of an inner
product g

gij =

∫
∂il(m,x)∂j l(m,x)p(m,x)dm.

The matrix g = [gij ] is symmetric and positive semi-definite and is called Fisher information metrics of
M̄ .
For α ∈ R and taking

Lα(p) =

{
2

1−α
p

1−α

2 α 6= 1

log p α = 1

we put

Γα
ijk =

∫
∂i∂jLα(p(m,x))∂kL(−α)(p(m,x))dm.

The functions Γα
ijk define affine connections ∇α by the following equations

g(∇α
∂i
∂j , ∂k) = Γα

ijk.
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In information geometry ∇α’s are called α-connections. If g be a Riemannian metric on manifold M̄ ,
then ∇0 (α = 0) is the Levi-Civita connection on (M̄, g). It is well known that for any vector fields
U, V,W on manifold M̄ , the connections ∇α satisfy the following duality condition

Ug(V,W ) = g(∇α
UV,W ) + g(∇

(−α)
U W,V ).

In the next section, we recall the statistical manifolds from differential geometry viewpoint and review
the concept of almost contact and Sasakian manifolds. In Section 3, we introduce invariant and anti-
invariant submanifolds of Sasakian statistical manifolds and give an example. We prove some results about
embedding curvature tensors of submanifolds with respect to the dual connections. We give necessary
and sufficient conditions for the dual Riemannian curvature on the normal bundle to vanish. Moreover,
we obtain a statistical Kaehlerian structure on invariant hypersurfaces of Sasakian statistical manifolds.

2. Statistical manifolds and almost contact manifolds

Let (M̄, g) be a smooth Riemannian manifold with Levi-Civita connection ∇̂. We denote the set of
all vector fields on M̄ by T(M̄).

Definition 2.1. Let (M̄, g) be a Riemannian manifold which admits an affine connection ∇̄ such that
for all U, V,W ∈ T(M̄)

i) ∇̄UV − ∇̄V U = [U, V ];

ii) ∇̄V g(U,W ) = ∇̄Ug(V,W ).

Then (M̄, g, ∇̄) is said to be a statistical manifold.

Moreover, there exists an affine connection ∇̄
∗
on M̄ which is called a dual connection of ∇̄ with

respect to the g, such that
Ug(V,W ) = g(∇̄UV,W ) + g(V, ∇̄

∗

UW ). (2.1)

It can be verified that (∇̄
∗
)∗ = ∇̄ and ∇̄

∗
also satisfies conditions (i) and (ii) of the Definition 2.1. From

compatibility of ∇̂ with g and Equation (2.1), we obtain ∇̄
∗
= 2∇̂ − ∇̄.

For vector fields U and V on M̄ , (1, 2)-tensor field KUV is defined as following

KUV = ∇̄UV − ∇̂UV. (2.2)

From (2.2), we find K is symmetric and

g(KUV,W ) = g(V,KUW ).

LetM be an isometrically immersedm-dimensional submanifold of a statistical manifold (M̄, g, ∇̄, ∇̄
∗
).

We also denote the induced metric on M by g. The extension of Gauss formula for affine connections are
given [6]

∇̄UV = ∇UV + h(U, V ), (2.3)

∇̄
∗

UV = ∇∗
UV + h∗(U, V ), (2.4)

for any U, V ∈ T(M). Here, ∇ and ∇∗ are induced connections on M and dual with respect to g.
Moreover, h and h∗ are symmetric and bilinear which is called the embedding curvature tensors of M in
M̄ for ∇̄ and ∇̄

∗
, respectively.

We define the curvature H = 1
m
trace(h). Then we say that M is a totally umbilical submanifold if

h(U, V ) = g(U, V )H and totally geodesic submanifold if h(U, V ) = 0 for all U, V ∈ T(M).
For any vector field ζ in normal bundle T⊥(M) and U, V ∈ T(M), Vos [6] proved the Weingarten

formula for the statistical structures (∇̄, ∇̄
∗
, g) as following

∇̄Uζ = −A∗
ζU +DUζ, (2.5)

∇̄
∗

Uζ = −AζU +D∗
Uζ. (2.6)
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AζU and A∗
ζU are bilinear and related to the embedding curvature tensors by the following equations

g(AζU, V ) = g(h(U, V ), ζ), g(A∗
ζU, V ) = g(h∗(U, V ), ζ). (2.7)

It should be denoted that in the Equations (2.5) and (2.6), D and D∗ are Riemannian dual connection
on the normal bundle T

⊥(M).

The Riemannian curvature tensors R̄ of ∇̄ and R̄∗ of ∇̄
∗
are defined

R̄(U, V )W = [∇̄U , ∇̄V ]W − ∇̄[U,V ]W, R̄∗(U, V )W = [∇̄
∗

U , ∇̄
∗

V ]W − ∇̄
∗

[U,V ]W.

In addition, they are related by

g(R̄(U, V )W,X) = −g(R̄∗(U, V )X,W ). (2.8)

The statistical manifold (M̄, ∇̄
∗
, g) is called of constant curvature c, if the following equation holds [2]

R∗(U, V )W = c{g(V,W )U − g(U,W )V }.

Now, we review some basic properties of Sasakian manifolds.

Definition 2.2. [7] An odd dimensional Riemannian manifold (M̄, g) is said to be an almost contact
metric manifold if it admits a 1-form η, a vector field ξ and (1, 1)-tensor field φ which satisfy

η(ξ) = 1, φ2U = −U + η(U)ξ. (2.9)

φξ = 0, η(φU) = 0, (2.10)

g(φU, φV ) = g(U, V )− η(U)η(V ), (2.11)

for any U, V ∈ T(M).

An almost contact metric structure (g, η, ξ, φ) is called a Sasakian manifold [5] if

(∇̂Uφ)V = η(V )U − g(U, V )ξ. (2.12)

Let M be a submanifold of an almost contact manifold (M̄, g, η, ξ, φ). For all U ∈ T(M) and ζ ∈
T⊥(M), we put φU = TU +NU and φζ = tζ + nζ, where TU, tζ ∈ T(M) and NU, nζ ∈ T⊥(M).

3. Submanifolds of Sasakian statistical manifolds

Definition 3.1. [4] Let (M̄, g, ∇̄, ∇̄
∗
) be a statistical manifold which admits an almost contact structure

(φ, ξ, η). Then (M̄, g, φ, ξ, ∇̄) is said to be a Sasakian statistical manifold if (φ, ξ, g) is a Sasakian structure
on M̄ and ∀U, V ∈ T(M̄), the (1, 2)-tensor field K satisfies

KUφV + φKUV = 0. (3.1)

Theorem 3.2. [4] Let (M̄, g, ∇̄, ∇̄
∗
) be a statistical manifold with an almost contact structure (φ, ξ, η).

(g, φ, ξ, ∇̄) is an Sasakian statistical structure on M̄ if and only if the following two equations hold:

∇̄U (φV )− φ∇̄
∗

UV = g(V, ξ)U − g(V, U)ξ, (3.2)

∇̄Uξ = φU + g(∇̄Uξ, ξ)ξ. (3.3)

Remark that since (∇̄
∗
)∗ = ∇̄, the above equations satisfy in dual case.

Definition 3.3. Let (M, g) be a submanifold of a statistical manifold (M̄, g, ∇̄, ∇̄
∗
) and (φ, ξ, η) be an

almost contact structure on M̄ . Then M is called an invariant submanifold if ∀p ∈ M , φ(TpM) ⊂ TpM .
Furthermore, if ∀p ∈ M , φ(TpM) ⊂ TpM

⊥, then M is called an anti-invariant submanifold.
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Example 3.4. Let (φ, ξ, η, g) be a Sasakian structure on unit hypersphere S7. By taking K(U, V ) =

η(U)η(V )ξ and ∇̄ = ∇̂+K, (S7, ∇̄, φ, ξ, η, g) is a Sasakian statistical manifold ( [4], Ex. 2.15). So, if for
i = 1, 2, (xi, yi, t) be local coordinates of S7, then we put ξ = ∂

∂t
, φ( ∂

∂xi ) =
∂

∂yi , φ(
∂

∂yi ) = − ∂
∂xi , φ(

∂
∂t
) = 0.

Let M = (x1, y1, 0, 0, 0, 0, t) be a 3-dimensional submanifold of S7. Then M is an invariant subman-
ifold such that ξ is tangent to M .

Remark 3.5. Let M be a submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ) and ξ ∈ T⊥(M).
Then from (3.3), for all U, V ∈ T(M), we get

g(φU, V ) = g(φU + g(∇̄Uξ, ξ)ξ, V ) = g(∇̄Uξ, V ). (3.4)

Using (2.6) and (2.7) in Equation (3.4) imply

g(φU, V ) = g(−A∗
ξU +DUξ, V ) = g(−A∗

ξU, V ) = −g(h∗(U, V ), ξ), (3.5)

and since h∗ is symmetric, we obtain g(φU, V ) = g(φV, U) = −g(φU, V ) = 0. This means that if the
structure vector field ξ is normal to M , then M is an anti-invariant submanifold.

Lemma 3.6. Let M be an anti-invariant submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ)
and ξ is tangent to M . Then h∗(U, ξ) = φU and so h∗(ξ, ξ) = 0.

Proof: From (2.4) and the dual version of (3.3) we have

φU + g(∇̄
∗

Uξ, ξ)ξ = ∇̄
∗

Uξ = ∇∗
Uξ + h∗(U, ξ). (3.6)

By taking the tangential and normal components of the above equation we get ∇∗
Uξ = g(∇̄

∗

Uξ, ξ)ξ and
h∗(U, ξ) = φU . Using (2.10) implies h∗(ξ, ξ) = 0.

✷

Remark 3.7. By considering the dual of equations in the previous lemma we obtain h(U, ξ) = φU and
h(ξ, ξ) = 0.

Let M be a totally umbilical submanifold. If h(ξ, ξ) = 0, we have h(ξ, ξ) = g(ξ, ξ)H = 0, thus H = 0
and M is a totally geodesic submanifold. So, by using Lemma 3.6, we can state the following corollary.

Corollary 3.8. Any anti-invariant totally umbilical submanifold M of a Sasakian statistical manifold
(M̄, g, ∇̄, φ, ξ) which is tangent to ξ is a totally geodesic submanifold.

Lemma 3.9. Let M be an anti-invariant submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ)
and ξ be normal to M . Then A∗

ξ = 0 and DUξ = φU + g(∇̄Uξ, ξ)ξ.

Proof: Taking account of (2.5) and (3.3) we get

φU + g(∇̄Uξ, ξ)ξ = ∇̄Uξ = DUξ −A∗
ξU. (3.7)

So the normal part is DUξ = φU + g(∇̄Uξ, ξ)ξ and the tangential part is A∗
ξ = 0.

✷

In the previous lemma, by using ∇̄
∗
instead of ∇̄, it can be proved that

D∗
Uξ = φU + g(∇̄

∗

Uξ, ξ)ξ, AξU = 0. (3.8)

Theorem 3.10. Let M be an anti-invariant submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ)
and ξ be normal to M . Then R∗⊥(U, V )ξ = g(∇̄V ξ, ξ)D

∗
Uξ −g(∇̄Uξ, ξ)D

∗
V ξ.
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Proof: Since M is anti-invariant, from (2.4), (2.5) and (3.2), for all U, V ∈ T(M), we have

g(U, V )ξ = ∇̄
∗

UφV − φ∇̄UV = −AφV U +D∗
UφV − φ∇UV − φ(h(U, V )). (3.9)

Thus
D∗

UφV = g(U, V )ξ + φ∇UV + n(h(U, V )). (3.10)

Now, for convenience we put λ = g(∇̄
∗

Uξ, ξ) and γ = g(∇̄
∗

V ξ, ξ), so using Equations (3.8), (3.10) and
Lemma 3.9 imply

D∗
UD

∗
V ξ = D∗

U (φV + γξ) = g(U, V )ξ + φ∇UV + n(h(U, V )) +D∗
Uγξ, (3.11)

hence,
D∗

V D
∗
Uξ = D∗

V (φU + λξ) = g(U, V )ξ + φ∇V U + n(h(U, V )) +D∗
V λξ. (3.12)

Since D∗ is torsion free, we obtain

D∗
UD

∗
V ξ −D∗

V D
∗
Uξ = D∗

Uγξ −D∗
V λξ + φ[U, V ]. (3.13)

So,
R∗⊥(U, V )ξ = {Ug(∇̄V ξ, ξ)− V g(∇̄Uξ, ξ)− g(∇̄[U,V ]ξ, ξ))ξ}+ γD∗

Uξ − λD∗
V ξ, (3.14)

by applying (2.1) in (3.14) we deduce

R∗⊥(U, V )ξ = g(R̄∗(U, V )ξ, ξ)ξ + γD∗
Uξ − λD∗

V ξ = γD∗
Uξ − λD∗

V ξ. (3.15)

✷

Let M be an anti-invariant submanifold normal to ξ. We say that M has minimal codimension if
T⊥M = D⊕ < ξ >, where D = φ(TM). In this case, from Lemma 3.9, we have A∗

ξU = 0 and so
g(h∗(U, V ), ξ) = g(A∗

ξU, V ) = 0. Therefore

φh∗(U, V ) ∈ T(M). (3.16)

Theorem 3.11. Let M be an anti-invariant submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ)
and ξ ∈ T⊥(M). Let M has minimal codimension. Then φR⊥ = 0 on D if and only if R∗ is of constant
curvature 1.

Proof: From (3.2), Gauss and Weingarten formula, we deduce

g(V, ξ)U − g(V, U)ξ = ∇̄UφV − φ∇̄
∗

UV = DUφV −AφV X − φ∇∗
UV − φh∗(U, V ). (3.17)

Using (3.16) and taking the normal components of the previous equation we obtain

DUφV = −g(V, U)ξ − φ∇∗
UV. (3.18)

Thus (3.8) and (3.18) imply

DUDV φW = −Ug(V,W )ξ − g(V,W )DUξ − g(U,∇∗
V W )ξ + φ∇∗

U∇
∗
V W. (3.19)

and
D[U,V ]φW = −g([U, V ],W )ξ + φ∇∗

[U,V ]W = −g(∇UV −∇V U,W )ξ + φ∇∗
[U,V ]W. (3.20)

By Equations (2.1), (3.8), (3.19) and (3.20) we have

R⊥(U, V )φW = φR∗(U, V )W − g(V,W )(φU + g(∇̄
∗

Uξ, ξ)ξ)+

g(U,W )(φV + g(∇̄
∗

V ξ, ξ)ξ). (3.21)

So, If φR⊥ = 0 then R∗(U, V )W = g(V,W )U − g(U,W )V and the sectional curvature of R∗ is equal
to 1.
Conversely, if R∗(U, V )W = g(V,W )U − g(U,W )V then (3.21) implies that

φR⊥(U, V )φW = 0.

Since D = φ(TM), φR⊥ = 0 on D. ✷
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Theorem 3.12. Let M be an anti-invariant submanifold of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ).
Let ξ be in T⊥(M) and normal to ∇̄

∗
ξ. If M is of minimal codimension then R⊥ = 0 if and only if R∗

is of constant curvature 1.

Proof: Since ξ is normal to ∇̄
∗
ξ, from Theorem 3.10, R∗⊥(U, V )ξ = 0 and therefore from (2.8),

R⊥(U, V )ξ = 0. On the other hand, from (3.21) we deduce

R⊥(U, V )φW = φR∗(U, V )W − g(V,W )φU + g(U,W )φV (3.22)

Thus if R∗ is of constant curvature 1 then ∀ζ ∈ T⊥(M), R⊥(U, V )ζ = 0 and vice versa. ✷

Remark 3.13. An almost Hermitian manifold (M, g, J) with statistical structure (g,∇,∇∗) is called
a statistical Hermitian manifold. If the 2-form ω(U, V ) = g(U, JV ) is parallel with respect to ∇, then
(M, g, J) is said to be a holomorphic statistical manifold. In Proposition 2.5. of [3], it has been proved that
a statistical Hermitian manifold (M, g, J,∇) is a holomorphic statistical manifold if and only if (M, g, J)
is a Kaehlerian manifold.

Now, we introduce a Kaehlerian structure on invariant hypersurfaces of a Sasakian statistical manifold
(M̄, g, ∇̄, φ, ξ).

Theorem 3.14. Let M be an invariant hypersurface of a Sasakian statistical manifold (M̄, g, ∇̄, φ, ξ)
and ξ ∈ T⊥(M). Then M admits a Kaehlerian structure.

Proof: For all U, V ∈ T(M), we have g(U, ξ) = 0. So (2.9) implies

φ2U = −U, (3.23)

and by defining the complex structure J = φ|M on M , from (2.11) we obtain g(JU, JV ) = g(φU, φV ) =
g(U, V ). It follows that (M, g, J) is an almost Hermitian manifold.

On the other hand, ∀U, V,W ∈ T(M)

(∇Uω)(V,W ) = Ug(V, JW )− g(∇UV, JW )− g(V, J∇UW ). (3.24)

Using definition of J and Eq. (2.1) in the second and third terms of the above equation implies

(∇Uω)(V,W ) = g(V,∇∗
UJW − J∇UW ) = g(V,∇∗

UφW − φ∇UW ). (3.25)

Since ξ ∈ T⊥(M), in account of (3.2), we get

(∇Uω)(V,W ) = g(V, g(W, ξ)U − g(W,U)ξ) = 0, (3.26)

and this means that ω is a parallel 2-form, hence (M, g, J,∇) is a holomorphic statistical manifold.
Furthermore, Remark 3.13 implies (M, g, J) is a Kaehlerian manifold. ✷
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