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Common Fixed Point for Multivalued (ψ-G)-Contraction Mappings in Partial Metric
Spaces with a Graph Structure ∗
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abstract: In the present work, we first discuss the definition of a multivalued (ψ-G)-contraction mapping
in a metric space endowed with a graph as introduced in [13] and we suggest a generalization. Then, we prove
a common fixed point theorem for multivalued (ψ-G)-contraction mappings in partial metric spaces endowed
with a graph. An example of application illustrates the main existence result and some known existence results
are derived.
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1. Introduction and preliminaries

The notion of partial metric is an important generalization of the classical concept of metric. It was
introduced in 1994 by Matthews [20] who extended the Banach contraction principle in the setting of
partial metric spaces. His result has been generalized in several directions by many authors (we refer the
reader to [4], [8], [12], [18], [19], [22] and references therein).

In 2008, Jachymski [17] introduced the concept of G-contraction, that is a single-valued contraction
mapping in a metric space with a graph structure (it preserves the edges and decreases weights of edges
of the graph). Then Banach’s contraction principle in ordered metric spaces was generalized.

Following J.R. Nadler [21], some authors have considered in a natural way the fixed point theory for
multi-valued mappings in partial metric spaces endowed with a graph (see, e.g., [1], [3], [7])

More recently, Dehkordi and Ghods [13] defined a multi-valued (ψ,G)-contraction (Definition 1.9) in
some metric spaces and obtained a fixed point result.

Our contribution, in this paper, is part of these extensions. More precisely, we have introduced a
refined version of a (ψ,G)-contraction (Definition 1.11) and have obtained a new common fixed point
theorem for a pair of multivalued mappings in a partial metric space endowed with a graph (Theorem
2.1). Then some consequences have been derived.

It is well known now that some fixed point results on partial metric spaces are not real generalizations
(see, e.g., [11,14,15,24]). In this work this new version of (ψ,G)-contraction is still interesting in the
setting of metric spaces.

Before coming to the main result of this paper, we first recall some basic definitions and auxiliary
results on partial metric spaces that are well developed in the recent literature (see, e.g., [9], [16], [22],
[23]).

Definition 1.1. [20] A partial metric on a nonempty set X is a function p : X ×X → R
+ such that for

all x, y, z ∈ X:
(P1) x = y ⇔ p(x, x) = p(y, y) = p(x, y),
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(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.
Clearly a metric space is a partial metric space.

If p(x, y) = 0, then (P1) and (P2) imply that x = y. But the converse does not in general hold true.
A trivial example of a partial metric space is the pair (R+, p), where p : X × X → R

+ is defined as
p(x, y) = max{x, y}.

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open
p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and
ε > 0.

If p is a partial metric on X, then the functions ps, pw : X ×X → R given by

ps(x, y) = 2p(x, y)− p(x, x) − p(y, y) and pw(x, y) = p(x, y)−min{p(x, x), p(y, y)}

are equivalent metrics on X.

In the topology τp, the classical notions of convergence are recovered.

Definition 1.2. Let (X, p) be a partial metric space. Then
(a) A sequence (xn)n in (X, p) is said to be convergent to a point x ∈ X with respect to τp if p(x, x) =
lim

n→+∞
p(x, xn).

(b) A sequence (xn)n in X will be a Cauchy sequence if lim
m,n→+∞

p(xn, xm) exists and is finite.

(c) A partial metric space (X, p) is called a complete partial metric space if every Cauchy sequence (xn)n
in X converges with respect to τp to a point x ∈ X.

Lemma 1.3. [20] Let (X, p) be a partial metric space.
(a) A sequence (xn)n in (X, ps) is said to be convergent to a point x ∈ X if and only if

p(x, x) = lim
n→+∞

p(x, xn) = lim
m,n→+∞

p(xn, xm).

(b) A sequence (xn)n in X is Cauchy with respect to p if and only if it is Cauchy with respect to ps.
(c) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete.

A subset A of X is called closed in (X, p) if it is closed with respect to τp. Let Cp(X) be the collection
of all nonempty and closed subsets of X with respect to the partial metric p. For A ∈ Cp(X), define
p(x,A) = inf

y∈A
p(x, y). Note that p(x,A) = 0 ⇒ ps(x,A) = 0, where ps(x,A) = inf

y∈A
ps(x, y).

Lemma 1.4. [9] Let (X, p) be a partial metric space and A any nonempty set in X. Then

(a) a ∈ A if and only if p(a,A) = p(a, a),

where A denotes the closure of A with respect to the partial metric p.
(b) If A is closed in (X, p), then A is closed in (X, ps). Notice that as in metric spaces, A is closed in
(X, p) if and only if A = A.

Some fixed point theorems in partial metric spaces can be found, e.g., in [22]. Next, we present some
basic definitions from graph theory needed in the sequel. A graph G is an ordered pair (V,E), where
V is a set and E ⊂ V × V is a binary relation on V . Elements of E are called edges and are denoted
by E(G) while elements of V , denoted V (G), are called vertices. If the direction is imposed in E, that
is the edges are directed, then we obtain a digraph (directed graph). Hereafter, we assume that G has
no parallel edges, i.e. two vertices cannot be connected by more than one edge. Doing this, G can be
identified with the pair (V (G), E(G)). If x and y are vertices of G, then a path in G from x to y of
length k ∈ N is a finite sequence (xn)n, n ∈ {0, 1, 2, . . . k} of vertices such that x = x0, . . . , xk = y and
(xn−1, xn) ∈ E(G) for n ∈ {1, 2, . . . , k}. A graph G is connected if there is a path between any two
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vertices and it is weakly connected if G̃ is connected, where G̃ denotes the undirected graph obtained
from G by ignoring the direction of edges. Let G−1 be the graph obtained from G by reversing the
direction of edges (the conversion of the graph G). We have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

It is more convenient to treat G̃ as a directed graph for which the set of edges is symmetric; then we have

E(G̃) = E(G) ∪ E(G−1).

Let Gx be the component of G consisting of all the edges and vertices which are contained in some path in
G beginning at x. If G is such that E(G) is symmetric, then for x ∈ V (G), we may define the equivalence
class [x]G on V (G) by R: xRy if there is a path in G from x to y. Then V (Gx) = [x]G.

Throughout this paper, (X, p) denotes a partial metric space, G = (V (G), E(G)) is a directed graph
without parallel edges such that V (G) = X , and (x, x) /∈ E(G) (the graph does not contain loops).

Remark 1.5. By contrast with most of recent papers, you need not assume here E(G) to be symmetric.

Consider the following class of functions:

Definition 1.6. Ψ = {ψ : [0,+∞) → [0,+∞) is nondecreasing} which satisfies the following conditions:
(i) for every (tn) ⊂ R

+, ψ(tn) → 0 if and only if tn → 0;
(ii) for every t1, t2 ∈ R

+, ψ(t1 + t2) ≤ ψ(t1) + ψ(t2);
(iii) for any t > 0 we have ψ(t) ≤ t.

The following Lemma will be useful in explaining Definition 1.11. It is the analogous of the one proved
by Nadler [Remark, p. 480] [21] when dealing with multi-valued contraction mappings.

Lemma 1.7. [10] Let A, B ∈ CBp(X), a ∈ A. Then for each ε > 0, there exists b ∈ B such that

p(a, b) ≤ Hp(A,B) + ε.

Then we can deduce

Lemma 1.8. Let A, B ∈ CBp(X), a ∈ A and ψ ∈ Ψ. Then for each ε > 0, there exists b ∈ B such that

ψ(p(a, b)) ≤ ψ(Hp(A,B)) + ε.

In [Definition 2.1] [13], the authors introduced the following:

Definition 1.9. Let (X, d) be a complete metric space and G be a directed graph with no-parallel edges,
E(G) is symmetric and (x, x) /∈ E(G). Two mappings F, T : X → C(X) are said to be a common (G-ψ)
contraction if there exists k ∈ (0, 1) such that
(i) ψ(H(F (x), T (y))) ≤ kψ((d(x, y)), for all (x, y) ∈ E(G), (x 6= y)
(ii) for all (x, y) ∈ E(G) if u ∈ F (x) and v ∈ T (y) are such that

ψ(d(u, v)) ≤ kψ((d(x, y)) + ε, for each ε > 0 then (u, v) ∈ E(G)

Arguing as [5,6], we observe that Definition 1.9 is not appropriate because of condition (ii). Here is
a counter-example.

Example 1.10. Consider the space R
2 endowed with the Euclidean distance d and let the graph G be

defined by
((x1, x2), (y1, y2)) ∈ E(G) ⇔ x1 + y1 < x2 + y2 with x1 6= y1 and x2 6= y2.

Let A be the unit ball of R2, that is

A = {x = (x1, x2) ∈ R
2 : d2(x, 0) = x21 + x22 ≤ 1 and x1 ≤ x2}
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Define the multivalued maps F, T : R2 → CB(R2) by F (x) = T (x) = A. Then H(F (x), T (y)) = 0, for
all x, y ∈ R

2 and ψ(t) = t. Moreover there exists k ∈ (0, 1) such that

H(F (x), T (y)) ≤ kd(x, y), for all (x, y) ∈ E(G), (x 6= y),

However, if (x, y) = ((0, 3), (3, 3)), then (x, y) ∈ E(G) and d2(x, y) = 3. Since d2(x, y) = 3, then condition
(ii) holds if and only if for any u, v ∈ A with d(u, v) ≤ 3k + ε for all ε > 0, we must have (u, v) ∈ E(G).
But this is not the case, if for instance we take (u, v) = ((k, k), (k2 ,

k
2 )), for d(u, v) =

k√
2
≤ 3k+ ε, for all

ε > 0 while (u, v) /∈ E(G).

The following definition is suggested as alternative for Definition 1.9. The introduction of function
Mp inspires the concept of graphic F -contraction used in [Definition 1.2] [2].

Definition 1.11. Let (X, p) be a partial metric space endowed with a graph G. Two mappings F, T :
X → Cp(X) are said to be a common (ψ-G) contraction if for all x, y ∈ X such that (x, y) ∈ E(G), we
have
(1) a ∈ F (x) implies that there exists b ∈ T (y) such that (a, b) ∈ E(G) and

ψ(p(a, b)) ≤ k(p(x, y))ψ((Mp(Fx, T y)) + Lϕ(Np(Fx, T y)),

(2) a ∈ T (x) implies that there exists b ∈ F (y) such that (a, b) ∈ E(G) and

ψ(p(a, b)) ≤ k(p(x, y))ψ((Mp(Tx, Fy)) + Lϕ(Np(Tx, Fy)),

where
Np(Fx, T y) = min{Pw(x, F (x)), Pw(y, T (y)), Pw(y, F (x)), Pw(x, T (y))},

Pw(x, F (x)) = inf{pw(x, y) : y ∈ F (x)},

Mp(Fx, T y) = max

{
p(x, y), p(x, F (x)), p(y, T (y)),

p(y, F (x)) + p(x, T (y))

2

}
,

k : (0,+∞) → [0, 1) satisfies lim sup
s→t+

k(s) < 1, for all t ∈ [0,+∞), L ≥ 0, ψ ∈ Ψ, and ϕ is nondecreasing

and satisfies conditions (i) in Definition 1.6.

Remark 1.12. In Example 1.10 and according to Definition 1.11, F and T have a common (ψ-G)
contraction. Indeed, pick p = d and L = 0. For (x, y) ∈ E(G), put d1 = kM(x, y) and let a ∈ A. Then
it is sufficient to take b ∈ B

(
a, d1

2

)
.

The following condition first appeared in [17].
Property (A): for any sequence (xn)n in X , if xn → x and (xn, xn+1) ∈ E(G), for all n ∈ N, then

(xn, x) ∈ E(G) for n ∈ N.
With this condition, Jachymski showed that in a complete metric space, a G-contraction has a fixed

if and only if Xf 6= ∅, where

XF = {x ∈ X : (x, y) ∈ E(G) for some y ∈ F (x)}. (1.1)

N = {1, 2, . . .} refers to the set of natural numbers.

2. Main result

Our existence results for common fixed points are collected in the following:

Theorem 2.1. Let (X, p) be a complete partial metric space endowed with a directed graph G and suppose
that the triple (X, d,G) has Property (A). Let F, T : X → Cp(X) be a common (G-ψ) contraction. Then
the following statements hold.
(1) For every x ∈ XF , mappings F and T |[x]

G̃
have a common fixed point.

(2) If XF 6= ∅ and G is weakly connected, then F and T have a common fixed point in X.
(3) If X ′ = ∪{[x]

G̃
: x ∈ XF }, then F and T |X′ have a common fixed point.

(4) If F ⊆ E(G), then F and T have a common fixed point.
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Proof. Claim 1. (a) We first construct a Cauchy sequence. Let x0 ∈ XF , then there is an
x1 ∈ F (x0) such that (x0, x1) ∈ E(G). Since F and T are a common (ψ-G) contraction, then there exists
x2 ∈ T (x1) such that (x1, x2) ∈ E(G) and

ψ(p(x1, x2)) ≤ k(p(x0, x1))ψ(Mp(Fx0, T x1)) + Lϕ(Np(Fx0, T x1))
≤ k(p(x0, x1))ψ(Mp(Fx0, T x1)) + Lϕ(Pw(x1, F (x0)))
≤ k(p(x0, x1))ψ(Mp(Fx0, T x1)) + Lϕ(pw(x1, x1))
= k(p(x0, x1))ψ(Mp(Fx0, T x1)).

Since (x1, x2) ∈ E(G) and F, T are common (G-ψ) contraction, then there exists x3 ∈ F (x2) such that
(x2, x3) ∈ E(G) and

ψ(p(x2, x3)) ≤ k(p(x1, x2))ψ(Mp(Tx1, Fx2)) + Lϕ(Np(Tx1, Fx2))
≤ k(p(x1, x2))ψ(Mp(Tx1, Fx2)) + Lϕ(Pw(x2, T (x1)))
≤ k(p(x1, x2))ψ(Mp(Tx1, Fx2)) + Lϕ(pw(x2, x2))
= k(p(x1, x2))ψ(Mp(Tx1, Fx2)).

By induction, we construct a sequence (xn)n such that x2n+1 ∈ F (x2n), x2n+2 ∈ T (x2n+1), (xn, xn+1) ∈
E(G), and

ψ(p(xn, xn+1)) ≤

{
k(p(xn−1, xn))ψ(Mp(Fxn−1, T xn)), for odd n
k(p(xn−1, xn))ψ(Mp(Txn−1, Fxn)), for even n.

Let us distinguish between two cases:

Case 1: n is odd. We have

Mp(Fx2k, T x2k+1) = max
{
p(x2k, x2k+1), p(x2k, F (x2k)), p(x2k+1, T (x2k+1)),

p(x2k+1, F (x2k)) + p(x2k, T (x2k+1))

2

}

≤ max
{
p(x2k, x2k+1), p(x2k, x2k+1), p(x2k+1, x2k+2),

p(x2k+1, x2k+1) + p(x2k, x2k+2)

2

}

≤ max
{
p(x2k, x2k+1), p(x2k+1, x2k+2),

p(x2k, x2k+1) + p(x2k+1, x2k+2)

2

}

= max
{
p(x2k, x2k+1), p(x2k+1, x2k+2)

}
.

If Mp(Fx2k, T x2k+1) = p(x2k+1, x2k+2), then

ψ(p(x2k+1, x2k+2)) ≤ k(p(x2k, x2k+1))ψ(p(x2k+1, x2k+2)) < ψ(p(x2k+1, x2k+2)),

which is a contradiction. Therefore Mp(Fx2k, T x2k+1) = p(x2k, x2k+1).

Case 2: n is even. In an analogous manner, we can show that

Mp(Tx2k+2, Fx2k+1) = p(x2k+1, x2k+2).

Hence for all n ∈ N, we have

ψ(p(xn, xn+1)) ≤ k(p(xn−1, xn))ψ(p(xn−1, xn)). (2.1)

Since 0 < k(p(xn−1, xn)) < 1 for all n ∈ N, then

ψ(p(xn, xn+1)) < ψ(p(xn−1, xn)),
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that is (ψ(p(xn, xn+1)))n is a decreasing sequence of positive numbers. Let

l = lim
n−→∞

ψ(p(xn, xn+1)) ≥ 0.

Taking the limit in (2.1) yields
l ≤ l lim sup

n→∞
k(p(xn−1, xn)).

Since lim sup
n→∞

k(p(xn−1, xn)) < 1, then l = 0. Hence lim
n−→∞

ψ(p(xn, xn+1)) = 0. By definition of ψ,

lim
n−→∞

p(xn, xn+1) = 0.

(b) (xn)n is a Cauchy sequence in (X, p). Since lim sup
s→t+

k(s) < 1, for every nonnegative t, then

there exist δ > 0 and a ∈ (0, 1) such that

k(t) < a, ∀ t ∈ (0, δ).

Since lim
n−→∞

p(xn−1, xn) = 0, then there exists n0 ∈ N such that p(xn−1, xn) < δ for all n ≥ n0. From the

inequality in (2.1) we obtain that for n ≥ n0

ψ(p(xn, xn+1)) ≤ aψ(p(xn−1, xn)) ≤ . . . ≤ an−N+1ψ(p(xN , xN+1)).

Hence for all m,n ∈ N with m > n ≥ n0, we have

ψ(p(xn, xm)) ≤ ψ(
∑m−1

i=n p(xi, xi+1)−
∑m−1

i=n+1 p(xi, xi))

≤
∑m−1

i=n ψ(p(xi, xi+1))

≤
∑m−1

i=n ai−N+1ψ(p(xN , xN+1)).

Consequently
ψ(ps(xn, xm)) ≤ ψ(2p(xn, xm))

≤ 2ψ(p(xn, xm))

≤ 2ψ(p(xN , xN+1))
∑m−1

i=n ai−N+1.

Taking the limit as n,m → ∞, we get ψ(ps(xn, xm)) → 0. By definition of ψ, ps(xn, xm) → 0 as
n,m → ∞. This shows that (xn)n is a Cauchy sequence in (X, ps). Since (X, p) is complete, (X, ps) is
also complete by Lemma 1.3. Then there exists x ∈ X such that lim

n−→∞
ps(xn, x) = 0. Appealing again

to Lemma 1.3, we get
p(x, x) = lim

n−→∞
p(xn, x) = lim

n−→∞
p(xn, xn+m) = 0.

By Property (A), (xn, x) ∈ E(G), for all n ∈ N. Again two cases are discussed separately.

Case 1: n = 2k is even. Since F and T are common (ψ-G) contraction, then there exists yk ∈ T (x)
such that for all k ∈ N

ψ(p(x2k+1, yk)) ≤ k(p(x2k, x))ψ(Mp(Fx2k, T x)) + Lϕ(Np(Fx2k, T x))
≤ k(p(x2k, x))ψ(Mp(Fx2k, T x)) + Lϕ(Pw(x, F (x2k))
≤ k(p(x2k, x))ψ(Mp(Fx2k, T x)) + Lϕ(p(x, x2k+1)),

where

Mp(Fx2k, T x) = max
{
p(x2k, x), p(x2k, F (x2k)), p(x, T (x)),

p(x, F (x2k)) + p(x2k, T (x))

2

}

≤ max
{
p(x2k, x), p(x2k, x2k+1)), p(x, T (x)),

p(x, F (x2k)) + p(x2k, T (x))

2

}
.

Then we can choose n1 ∈ N such that Mp(Fx2k, T x) = p(x, T (x)) for all k ≥ n1. Since yk ∈ T (x), we
have for all k ≥ n1

ψ(p(x2k+1, yk)) ≤ k(p(x2k, x))ψ(p(x, T (x))) + Lϕ(p(x, x2k+1))
≤ k(p(x2k, x))ψ(p(x, yk)) + Lϕ(p(x, x2k+1))
≤ ψ(p(x, x2k+1)) + k(p(x2k, x))ψ(p(x2k+1, yk))

+Lϕ(p(x, x2k+1)).
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Hence
(1− k(p(x2k, x)))ψ(p(x2k+1, yk)) ≤ ψ(p(x, x2k+1)) + Lϕ(p(x, x2k+1)).

Taking the limit as k → ∞ and using properties of functions ψ, ϕ, and k, we obtain that

lim
k−→∞

ψ(p(x2k+1, yk)) = 0.

For all k ≥ n1, we have

ψ(p(x, T (x))) ≤ ψ(p(x, x2k+1) + p(x2k+1, T (x))− p(x2k+1, x2k+1))
≤ ψ(p(x, x2k+1)) + ψ(p(x2k+1, yk)).

Passing to the limit as k → ∞, we obtain ψ(p(x, T (x))) = 0 which implies that p(x, T (x)) = 0. Hence
p(x, x) = p(x, T (x)) = 0. By Lemma 1.4, we conclude that x ∈ T (x).

Case 2: n = 2k + 1 is odd. Arguing as in Case 1, we find that x ∈ F (x).
Since (xn, xn+1) ∈ E(G) and (xn, x) ∈ E(G), for n ∈ N, we conclude that (x0, x1, x2, . . . , xn, x) is a path
in G and so x ∈ [x0]G.

Claim 2. Since XF 6= ∅, then there exists an x0 ∈ XF . In addition G is weakly connected, then
[x0]G = X and by Claim 1, F and T have a common fixed point.

Claim 3. The result follows from Claim 1 and Claim 2.

Claim 4. F ⊆ E(G) implies that all x ∈ X are such that there exists some u ∈ F (x) with (x, u) ∈
E(G), so XF = X which implies that F and T have a common fixed point, which completes the proof of
Theorem 2.1. �

3. Example of application

To support our result, an example of application is developed. We have modified [Example 2.3] [13]
so that E(G) is no longer symmetric. We have also introduced the function ψ both with a partial metric
p.

Let X = { 1
2n , n ∈ N} ∪ {0, 1} and p(x, y) = max{x, y} for all x, y ∈ X . Let

E(G) = {(
1

2n
, 0), (

1

2n
,

1

2n+1
), n ∈ N} ∪ {(1, 0)},

ψ(t) = t
t+1 , L > 0, and k ∈ [ 25 , 1). Notice that E(G) is not symmetric. Let F and T : X → Cp(X) be

defined by

F (x) =





{0}, if x = 0,
{ 1
22 }, if x = 1,

{ 1
2n+2 ,

1
2n+3 , . . .}, if x = 1

2n , n ∈ N.

T (x) =





{0}, if x = 0,
{ 1
24 }, if x = 1,

{ 1
2n+2 ,

1
2n+3 , . . .}, if x = 1

2n , n ∈ N.

Then F and T are a common (ψ-G) contraction and 0 ∈ F (0)∩T (0). To check this, let x, y ∈ X be such
that (x, y) ∈ E(G) and consider three cases:

Case 1. If (x, y) =
(

1
2n , 0

)
, then

(i) F
(

1
2n

)
= { 1

2n+2 ,
1

2n+3 , . . .} and T (0) = {0}. For a = 1
2n+s where s ∈ {2, 3, . . .}, let b = 0 and

kψ(Mp(Fx, T y)) + Lϕ(Np(Fx, T y)) = k 1
1+2n + Lϕ(Np(Fx, T y))

≥ 1
1+2n+s = ψ(p(a, b)).
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(ii) T
(

1
2n

)
= { 1

2n+2 ,
1

2n+3 , . . .} and F (0) = {0}. For a = 0, let b = 1
2n+2 and

kψ(Mp(Tx, Fy)) + Lϕ(Np(Tx, Fy)) = k 1
1+2n + Lϕ(Np(Tx, Fy))

≥ 1
1+2n+2 = ψ(p(a, b)).

Case 2. If (x, y) =
(

1
2n ,

1
2n+1

)
, then

(i) F
(

1
2n

)
= { 1

2n+2 ,
1

2n+3 , . . .} and T
(

1
2n+1

)
= { 1

2n+3 ,
1

2n+4 , . . .}. For a = 1
2n+s where s ∈ {2, 3, . . .}, let

b = 1
2n+s+1 and

kψ(Mp(Fx, T y)) + Lϕ(Np(Fx, T y)) = k 1
1+2n + Lϕ(Np(Fx, T y))

≥ 1
1+2n+s = ψ(p(a, b)).

(ii) T
(

1
2n

)
= { 1

2n+2 ,
1

2n+3 , . . .} and F
(

1
2n+1

)
= { 1

2n+3 ,
1

2n+4 , . . .}. For a = 1
2n+s+1 where s ∈ {2, 3, . . .}, let

b = 1
2n+s and

kψ(Mp(Tx, Fy)) + Lϕ(Np(Tx, Fy)) = k 1
1+2n + Lϕ(Np(Tx, Fy))

≥ 1
1+2n+s = ψ(p(a, b)).

Case 3. If (x, y) = (1, 0), then
(i) F (1) = { 1

22 } and T (0) = {0}. Hence ( 1
22 , 0) ∈ E(G) and

kψ(Mp(Fx, T y)) + Lϕ(Np(Fx, T y)) = k 1
2 + Lϕ(Np(Fx, T y))

≥ 1
1+22 = ψ(p(a, b)).

(ii) T (1) = { 1
24 } and F (0) = {0}. Hence ( 1

24 , 0) ∈ E(G) and

kψ(Mp(Tx, Fy)) + Lϕ(Np(Tx, Fy)) = k 1
2 + Lϕ(Np(Tx, Fy))

≥ 1
1+24 = ψ(p(a, b)).

Remark 3.1. In the previous example, if we take p(x, y) = d(x, y) = |x− y| and

E(G) = {(
1

2n
, 0), (0,

1

2n
), (

1

2n
,

1

2n+1
), (

1

2n+1
,
1

2n
), n ∈ N} ∪ {(1, 0), (0, 1)},

i.e., E(G) is symmetric, then
(1) F and T are a common (ψ-G) contraction.
(2) F and T are not a common (ψ-G) contraction (with respect to Definition 1.9). Indeed if (x, y) =(

1
2n ,

1
2n+1

)
, then F

(
1
2n

)
= { 1

2n+2 ,
1

2n+3 , . . .} and T
(

1
2n+1

)
= { 1

2n+3 ,
1

2n+4 , . . .}. Let a = 1
2n+2 and b = 1

2n+4 .
Then there exists k ∈ (0, 1) such that

kψ(d(x, y)) = k 1
1+2n+1 + ε

≥ 3
3+2n+4 = ψ(d(a, b)),

for all ε > 0, but ( 1
2n+2 ,

1
2n+4 ) /∈ E(G).

4. Common fixed point theorems

We end this paper with some consequences.

Corollary 4.1. Let (X, p) be a complete partial metric space endowed with a directed graph G and suppose
that the triplet (X, p,G) has Property (A). Let F, T : X → Cp(X) be mappings with the property that for
any x, y ∈ X such that (x, y) ∈ E(G), we have the conditions:
(1) a ∈ F (x) implies that there exists b ∈ T (y) with (a, b) ∈ E(G) and

ψ(p(a, b)) ≤ aψ((p(x, y)) + bψ(p(x, F (x))) + cψ(p(y, T (y)))

+dψ

(
p(y, F (x)) + p(x, T (y))

2

)
+ Lϕ(Np(Fx, T y)),
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(2) a ∈ T (x) implies that there exists b ∈ F (y) with (a, b) ∈ E(G) and

ψ(p(a, b)) ≤ aψ((p(x, y)) + bψ(p(x, T (x))) + cψ(p(y, F (y)))

+dψ

(
p(y, T (x)) + p(x, F (y))

2

)
+ Lϕ(Np(Tx, Fy)),

where
Np(Fx, T y) = min{Pw(x, F (x)), Pw(y, T (y)), Pw(y, F (x)), Pw(x, T (y))},

L ≥ 0, ψ ∈ Ψ and ϕ is nondecreasing and satisfies conditions (i) of Definition 1.6 and a+ b+ c+ d < 1.
If further there exist x0 ∈ X and x1 ∈ F (x0) such that (x0, x1) ∈ E(G), then F and T have a common
fixed point.

Corollary 4.2. Let (X, d) be a complete metric space endowed with a directed graph G and suppose that
the triplet (X, d,G) satisfies Property (A). Let F, T : X → C(X) be mappings with the property that for
any x, y ∈ X with (x, y) ∈ E(G), we have the conditions:
(1) a ∈ F (x) implies that there exists b ∈ T (y) such that (a, b) ∈ E(G) and

ψ(d(a, b)) ≤ k(d(x, y))ψ((M(Fx, T y)) + Lϕ(N(Fx, T y)),

(2) a ∈ T (x) implies that there exists b ∈ F (y) such that (a, b) ∈ E(G) and

ψ(d(a, b)) ≤ k(d(x, y))ψ((M(Fx, T y)) + Lϕ(N(Fx, T y)),

where

M(Fx, T y) = max

{
d(x, y), d(x, F (x)), d(y, T (y)),

d(y, F (x)) + d(x, T (y))

2

}
,

N(Fx, T y) = min{d(x, F (x)), d(y, T (y)), d(y, F (x)), d(x, T (y))},

k : (0,+∞) → [0, 1) satisfies lim sup
s→t+

k(s) < 1, for every nonnegative t, L ≥ 0, ψ ∈ Ψ and ϕ is nonde-

creasing and satisfies conditions (i) of Definition 1.6.
If E(G) ∩Graph(F ) 6= ∅, then F and T have a common fixed point in X.

To prove Corollary 4.2, it suffices to pick p = d in Theorem 2.1.
Finally, we recapture [13, Theorem 2.2]. Recall that XF is defined by (1.1).

Corollary 4.3. Let (X, d) be a complete metric space and suppose that the triple (X, d,G) satisfies
Property (A). Let F, T : X → CB(X) be a (ψ-G) contraction. Then the following statements hold.
(1) For any x ∈ XF , F and T |[x]G have a common fixed point,
(2) If XF 6= ∅ and G is weakly connected, then F and T have a common fixed point in X.
(3) If X ′ = ∪{x]G : x ∈ XF }, then F and T |X′ have a common fixed point.
(4) If F ⊆ E(G), then F and T have a common fixed point.
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