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abstract: This paper is devoted to the study of a class of parabolic equation of type

∂u

∂t
− div

(

A(x, t, u,∇u) + B(x, t, u)
)

= f in QT ,

where div(A(x, t, u,∇u) is a Leray-Lions type operator, B(x, t, u) is a nonlinear lower order term and f ∈

L1(QT ). We show the existence and the uniqueness of renormalized solution in the framework of Musielak-
Orlicz spaces.
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1. Introduction

Let Ω be a bounded open set of IRN (N ≥ 2), T is a positive real number, and QT = Ω× (0, T ).
We consider the Dirichlet problem:





∂u
∂t

− div
(
A(x, t, u,∇u) +B(x, t, u)

)
= f in QT ,

u(x, t) = 0 on ∂Ω× (0, T ),
u(x, t = 0) = u0(x) in Ω,

(1.1)

where A : QT ×IR×IRN → IRN is a Leray-Lions operator defined on the inhomogeneous Musielak-Orlicz-
Sobolev spaceW 1,x

0 LM (QT ), M is a Musielak-Orlicz-function related to the growth of A. B : QT × IR →
IRN is a Carathéodory function satisfy only a growth condition (see (3.4)), u0 ∈ L1(Ω) and f ∈ L1(QT ).

In the case whereM(x, t) = tp (Classical Lebesgue’s spaces), many works that show the existence and
uniqueness result with B(x, t, u) = B(u) ∈ C

∞(IRN ), the control of this term is by using Stokes formula,
(see [7]) and by using Gagliardo-Nirenberg inequality type when B depend on variables x, t and u (see
[11]).
In the anisotropic case M(x, t) = tp(x) (Lebesgue with variable exponent) we refer to ( [5], [9], [10], [18]).

For more general anisotropic N-function, where the operator A + B has exponential or logarithmic
growth with respect to ∇u, we refer to [15] and [16].

The study of the problem in the framework of renormalized solutions is motivated by the luck of
regularity of the distributional formulation. It’s not strong to provide the uniqueness (for more detail see
the counterexample in [19]).

For the applied motivation: we refer to Chen, Levine and Rao [9], the authors propose a framework
for image restoration based on a variable exponent Laplacian, a second application is modeling the
electrorheological fluids [10], [18], the constitutive equation is given by

ut + div(S(u)) + (u∇)u+∇π = f
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2 A. Aberqi and J. Bennouna and M. Elmassoudi

where u the velocity, π the pressure, f the external forces and S(u) = µ(x)(1 + |∇u(x)|2)
p(x)−2

2 ∇u(x).
Our novelty in the present paper is to give the existence and uniqueness result of renormalized solution

of (1.1) in the general framework inhomogeneous Musielak-Orlicz spaces with a lower order term B which
depends on x, t and u, namely with A(x, t, u,∇u) is replaced by A(x, t, u,∇u)+B(x, t, u), in order to study
the behavior of the approximate solutions we call upon compactness tools. The difficulties encountered
during the proof of the existence and uniqueness of the solution is that the term B does not satisfy the
coercivity condition and nonlinearities are characterized by N-functions M(x, t), for which ∆2-conditions
not imposed, will lose the reflexivity of the space LM (QT ) and W 1

0LM (QT ). In the literature, in our
knowledge, there is no result of the uniqueness of the operator A(x, t, u,∇u)+B(x, t, u) in the framework
of Musielak- Orlicz spaces.

This paper is organized as follows. In section 2, we recall some well-known preliminaries, properties
of inhomogeneous Musielak-Orlicz spaces. In section 3, we give the definition of a renormalized solution
of problem (1.1) and the existence theorem of such a solution. Finally, in section 4, we establish the
uniqueness result.

2. Inhomogeous Musielak-Orlicz space- Notation and properties

Let M be a real-valued function defined in Ω× IR+ and satisfying conditions:

• M(x, .) is a N-function for all x ∈ Ω, (i.e. convex, non-decreasing, continuous, M(x, 0) = 0,

M(x, 0) > 0 for t > 0, limt→0 supx∈Ω
M(x,t)

t
= 0 and limt→∞ infx∈Ω

M(x,t)
t

= ∞).

• M(., t) is a measurable function for all t ≥ 0.

A function M which satisfies the above conditions is called a Musielak-Orlicz function.
Let Mx(t) = M(x, t), we associate its non-negative reciprocal function M−1

x , with respect to t, that
is M−1

x (M(x, t)) =M(x,M−1
x (t)) = t.

LetM and P be two Musielak-Orlicz functions, we say that P grows essentially less rapidly thanM at

0 (resp. near infinity), and we write P ≪M , for every positive constant c, we have lim
t→0

(
sup
x∈Ω

P (x, ct)

M(x, t)

)
= 0

(resp. lim
t→∞

(
sup
x∈Ω

P (x, ct)

M(x, t)

)
= 0

)
.

Proposition 2.1. ( [13]) Let P ≪ M near infinity and ∀t > 0, supx∈Ω P (x, t) < ∞, then ∀ǫ > 0,
∃Cǫ > 0 such that

P (x, t) ≤M(x, ǫt) + Cǫ, ∀t > 0. (2.1)

The Musielak-Orlicz space LM (Ω) is define as

LM (Ω) = {u : Ω → IR mesurable : ̺M,Ω(
u

λ
) <∞, for some λ > 0}.

where ̺M,Ω(u) =

∫

Ω

M(x, |u(x)|)dx, equipped with the Luxemburg norm

‖u‖M = inf
{
λ > 0 : ̺M,Ω(

u

λ
) ≤ 1

}
.

Denote M(x, s) = supt≥0(st−M(x, s)) the conjugate Musielak-Orlicz function of M .

We define EM (Ω) as the subset of LM (Ω) of all measurable functions u : Ω 7→ IR such that ̺M,Ω(
u

λ
) <

∞ for all λ > 0. It is a separable space and (EM (Ω))∗ = LM (Ω).
We define the Musielak-Orlicz-Sobolev space as

W 1LM (Ω) = {u ∈ LM (Ω) : Dαu ∈ LM (Ω), ∀|α| ≤ 1},

endowed with the norm

‖u‖1M,Ω = inf{λ > 0 :
∑

|α|≤1

̺M,Ω(
Dαu

λ
) ≤ 1}.
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Lemma 2.2. ( [3])(Approximation theorem) Let Ω be a bounded Lipschitz domain in IRN and let M and
M be two complementary Musielak-Orlicz functions which satisfy the following conditions:

1. There exists a constant c > 0 such that infx∈ΩM(x, 1) > c,

2. There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1
2 , we have

M(x, t)

M(y, t)
≤ |t|

(
A

log( 1
|x−y|

)

)
for all t ≥ 1,

3.

∫

K

M(y, λ)dx <∞, ∀λ > 0 and for every compact K ⊂ Ω,

4. There exists a constant C > 0 such that M(y, t) ≤ C a.e. in Ω.

Under this assumptions D(Ω) is dense in LM (Ω) with respect to the modular topology, D(Ω) is dense
in W 1

0LM (Ω) for the modular convergence and D(Ω) is dense in W 1
0LM (Ω) for the modular convergence.

Example 2.3. We give some example for a Musielak-Orlicz functions of approximation theorem

• M1(x, t) = |t|p(x) with p : Ω → [1,∞) a measurable function with Log-Hölder continuite

M1(x, t)

M1(y, t)
= |t|p(x)−p(y) ≤ t

(
A

log( 1
|x−y|

)

)
for all t ≥ 1.

• M2(x, t) = α(x)(exp(|t|)− 1 + |t|), 0 < α(x) ∈ L∞(Ω).

Remark that M1 ∈ △2 if p+ := ess sup
x∈Ω

p(x) <∞ while M2 /∈ △2.

Lemma 2.4. ( [1])(Modular Poincaré inequality) Under the assumptions of lemma 2.2, and by assuming
that M(x, .) decreases with respect to one of coordinate of x, there exists a constant δ > 0 which depends
only on Ω such that

∫

Ω

M(x, |u|)dx ≤

∫

Ω

M(x, δ|∇u|)dx for all u ∈W 1
0LM (Ω). (2.2)

Inhomogeneous Musielak-Orlicz-Sobolev spaces :

Let M be an Musielak-Orlicz function, for each α ∈ INN , denote by ∇α
x the distributional derivative

on QT of order α with respect to the variable x ∈ IRN . The inhomogeneous Musielak-Orlicz-Sobolev
spaces are defined as follows,

W 1,xLM (QT ) = {u ∈ LM (QT ) : ∇
α
xu ∈ LM (QT ), ∀α ∈ INN , |α| ≤ 1},

W 1,xEM (QT ) = {u ∈ EM (QT ) : ∇
α
xu ∈ EM (QT ), ∀α ∈ INN , |α| ≤ 1}.

The last space is a subspace of the first one, and both are Banach spaces under the norm

‖u‖ =
∑

|α|≤1

‖∇α
xu‖M,QT

.

The spaceW 1,x
0 EM (QT ) is defined as the (norm) closureW 1,xEM (QT ) of D(QT ). We can easily show as

in [6], that when Ω has the segment property, then each element u of the closure of D(QT ) with respect
of the weak* topology σ(ΠLM ,ΠEM ) is a limit, in W 1,x

0 EM (QT ), of some subsequence in D(QT ) for

the modular convergence. This space will be denoted by W 1,x
0 LM (QT ) . Furthermore, W 1,x

0 EM (QT ) =
W 1,x

0 LM (QT ) ∩ ΠEM , and the dual space of W 1,x
0 EM (QT ) will be denoted by

W−1,xLM (QT ) =

{
f =

∑

|α|≤1

∇α
xfα : fα ∈ LM (QT )

}
.

This space will be equipped with the usual quotient norm ‖f‖ = inf
∑

|α|≤1 ‖fα‖M,QT
.
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Lemma 2.5. [13] Let a < b ∈ IR and Ω be a bounded open subset of IRN with the segment property, then
{u ∈W 1,x

0 LM (Ω× (a, b))∩L1(Ω× (a, b)) : ∂u
∂t

∈W−1,xLM (Ω× (a, b))+L1(Ω× (a, b))} ⊂ C([a, b], L1(Ω)).

Lemma 2.6. ( [12])
Under assumptions (3.1)-(3.6), and let (zn) be a sequence in W 1,x

0 LM (QT ) such that:

zn ⇀ z for σ(ΠLM ,ΠEM ),

(A(x, zn,∇zn))n is bounded in (LM (QT ))
N ,

∫

QT

[A(x, zn,∇zn)−A(x, zn,∇zχs)][∇zn −∇zχs]dxdt → 0

as n and s tend to +∞, and where χs is the characteristic function of Qs = {x ∈ QT ; |∇z| ≤ s}. Then,

∇zn → ∇z a.e. in QT ,

lim
n→+∞

∫

QT

A(x, zn,∇zn)∇zndxdt =

∫

QT

A(x, z,∇z)∇zdxdt,

M(x, |∇zn|) →M(x, |∇z|) in L1(QT ).

Finally, Tk, k > 0, denotes the truncation function at level k defined on IR by

Tk(r) = max(−k,min(k, r)) for all r ∈ IR,

and T̃k(s) =

∫ s

0

Tk(t)dt =
{ s2

2 if |s| ≤ k

k|s| − k2

2 if |s| ≥ k
.

3. Formulation of the problem and existence of solution

Let Ω be a bounded open subset of IRN (N ≥ 2) satisfying the segment property,and let M and P be
two Musielak-Orlicz functions such that M and its complementary M satisfies conditions of Lemma 2.2,
assuming that M decreases with respect to one of coordinate of x and P ≪M .
A : QT × IR× IRN → IRN is Carathéodory function such that there exist a two strict positive constants
α > 0, υ > 0 , for a.e. (x, t) ∈ QT and for all s ∈ IR, ξ, ξ∗ ∈ IRN , ξ 6= ξ∗,

|A(x, t, s, ξ)| ≤ ν(a0(x, t) +M
−1

x P (x, |s|)) with a0 ∈ EM (QT ), (3.1)

(A(x, t, s, ξ)−A(x, t, s, ξ∗))(ξ − ξ∗) > 0, (3.2)

A(x, t, s, ξ).ξ ≥ αM(x, |ξ|). (3.3)

B : QT × IR → IRN is a Carathéodory function such that

|B(x, t, s)| ≤ q(x, t)M
−1

x M(x,
α0

δ
|s|), (3.4)

where 0 < α0 < 1 and ‖q(x, t)‖L∞(QT ) <
α

α0+1 ,

f ∈ L1(QT ), (3.5)

and
u0 ∈ L1(Ω). (3.6)

Following [7] and [8] we recall the definition of a renormalized solution to Problem (1.1).

Definition 3.1. A measurable function u defined on QT is a renormalized solution of problem (1.1), if
it satisfies the following conditions:

Tk(u) ∈W 1,x
0 LM (QT ), ∀k > 0, (3.7)

lim
m→+∞

∫

{m≤|u|≤m+1}

A(x, t, u,∇u)∇udxdt = 0, (3.8)
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and if, for every function S ∈ W 2,∞(IR) which is piecewise C1 and such that S′ has a compact support,
we have in the sense of distributions

∂S(u)

∂t
− div

(
S′(u)(A(x, t, u,∇u) +B(x, t, u))

)
(3.9)

+S′′(u)
(
A(x, t, u,∇u) +B(x, t, u)

)
= fS′(u) in D(QT ), (3.10)

S(u)(t = 0) = S(u0) in Ω. (3.11)

Theorem 3.2. Assume that (3.1)-(3.6) hold true. Then there exists at least one renormalized solution
u of the problem (1.1) in the sense of the definition 3.1.

Proof of the existence theorem 3.2
The proof will be divided into several steps.
Truncated problem .
For each n > 0, we define the following approximations:

An(x, t, s, ξ) = A(x, t, Tn(s), ξ) a.e. (x, t) ∈ QT , ∀ s ∈ IR, ∀ ξ ∈ IRN , (3.12)

Bn(x, t, s) = B(x, t, Tn(s)) a.e. (x, t) ∈ QT , ∀ s ∈ IR, (3.13)

fn ∈ C
∞(QT ) such that fn → f strongly in L1(QT ), (3.14)

u0n ∈ C
∞
0 (Ω). (3.15)

And consider the approximate problem:






∂un
∂t

− div
(
An(x, t, un,∇un) +Bn(x, t, un)

)
= fn in QT ,

un(x, t) = 0 on ∂Ω× (0, T ),
un(x, t = 0) = u0n(x) in Ω.

(3.16)

Let show that the problem (3.16) admits at least one solution. It is easy to see that the operator
An(x, t, un,∇un) + Bn(x, t, un) satisfies the assumptions (A1), (A2) and (A3) (see section conditions on
mapping T in J.P. Gossez and V. Mustonen [14]). It remains to shown (A4).

Indeed, for any fixed n > 0, let un ∈W 1,x
0 LM (QT ) and using (3.4) we get

|Bn(x, t, un)∇un| ≤ ‖q(., .)‖L∞(QT )

(

M(x,
1

ǫ
M

−1
x M(x,

α0

δ
|Tn(un)|)) + ǫM(x, |∇un|)

)

.

Then
|Bn(x, t, un)∇un| ≤ dn,ǫ(x, t) + ǫ‖q(., .)‖L∞(QT )M(x, |∇un|)

where dn,ǫ ∈ L1(QT ).
Finally

(An(x, t, un,∇un) +Bn(x, t, un))∇un ≥ [α− ǫ‖q(., .)‖L∞(QT )]M(x, |∇un|)− dn,ǫ(x, t)

we can choose ǫ such that ǫ ≤ α
2‖q(.,.)‖L∞(QT )

, we obtain

(An(x, t, un,∇un) +Bn(x, t, n))∇un ≥
α

2
M(x, |∇un|)− dn,ǫ(x, t).

Then the operator (An(x, t, un,∇un) + Bn(x, t, un)) satisfies the coercivity condition and we have the
conditions to apply the Proposition 5 of [14] and there exists at least one solution un ∈ W 1,x

0 LM (QT ) of
(3.16).

Remark 3.3. the explicit dependence in x and t of the functions A and B will be omitted so that
A(x, t, u,∇u) = A(u,∇u) and B(x, t, u) = B(u).
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Step 1: A priori estimates.

Lemma 3.4.
Let {un}n be a solution of the approximate problem (3.16), then for all k > 0, there exists a constant C
such that ∫

QT

M(x, |∇Tk(un)|)dxdt ≤ kC, (3.17)

un → u a.e in QT , (3.18)

An(Tk(un),∇Tk(un)) is bounded in(LM (QT ))
N . (3.19)

Proof. Fixed k > 0 and τ ∈ (0, T ). Let Tk(un)χ(0,τ) as a test function in problem (3.16) and using the
Young Inequality we get

∫

Ω

T̃k(un(τ ))dx +

∫

Qτ

An(un,∇un)∇Tk(un)dxdt+

∫

Qτ

Bn(un)∇Tk(un)dxdt

=

∫

Qτ

fnTk(un)dxdt +

∫

Ω

T̃k(u0n)dx. (3.20)

By definition of T̃k, we deduce

∫

Ω

T̃k(un(τ ))dx ≥ 0 and

∫

Ω

T̃k(u0n)dx ≤ k‖u0)‖L1(Ω).

and by (3.4) and Young Inequality we have
∫

Qτ

Bn(un)∇Tk(un)dxdt ≤ ‖q(., .)‖L∞(QT )

[
α0

∫

Qτ

M(x,
|Tk(un)|

δ
)dxdt

+

∫

Qτ

M(x, |∇Tk(un)|)dxdt
]
,

thanks to Lemma 2.4, we obtain
∫

Qτ

Bn(un)∇Tk(un)dxdt ≤ ‖q(., .)‖L∞(QT )(α0 + 1)

∫

Qτ

M(x, |∇Tk(un)|)dxdt.

Returning to (3.20) and using (3.3) we get
∫

Qτ

An(un,∇un)∇Tk(un)dxdt ≤ ‖q(., .)‖L∞(QT )
(α0 + 1)

α

∫

Qτ

An(un,∇un)∇Tk(un)dxdt

+ k
[

‖fn‖L1(QT ) + ‖u0‖L1(QT )

]

,

thus [
1−

(α0 + 1)

α
‖q(., .)‖L∞(QT )

] ∫

QT

An(un,∇un)∇Tk(un)dxdt ≤ kc1.

Taking
1

c2
=

[
1−

(α0 + 1)

α
‖q(., .)‖L∞(QT )

]
> 0, from (3.4), we obtain

∫

Qτ

A(un,∇un)∇Tk(un)dxdt ≤ kC,

where C = c1c2. So by (3.3) we get (3.17).
Hence Tk(un) is bounded in W 1,x

0 LM (QT ) independently of n and for any k > 0, so there exists a
subsequence still denoted by un such that Tk(un)⇀ ξk weakly in W 1,x

0 LM (QT ).
On the other hand, using Lemma 2.4 and (3.17), we have

inf
x∈Ω

M(x,
k

δ
)meas{|un| > k} ≤

∫

|un|>k

M(x,
|Tk(un)|

δ
)dxdt

≤

∫

QT

M(x, |∇Tk(un)|)dxdt ≤ kC.
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Then

meas{|un| > k} ≤
kC2

infx∈ΩM(x, k
δ
)
,

for all n and for all k.
Assuming that there exists a positive function ψ such that limt→∞

ψ(t)
t

= +∞ and
ψ(t) ≤ ess infx∈ΩM(x, t), ∀t ≥ 0. Thus, we get

lim
k→∞

meas{|un| > k} = 0. (3.21)

For every λ > 0, we have

meas{|un − um| > λ} ≤ meas{|un| > k}+meas{|um| > k}

+meas{|Tk(un)− Tk(um)| > λ}. (3.22)

We can assume that Tk(un) is a Cauchy sequence in measure in QT . Let ǫ > 0, then by (3.21) and (3.22)
there exists k(ǫ) > 0 such that

meas{|un − um| > λ} ≤ ǫ for all n,m > h(k(ǫ), λ).

This proves that (un)n is a Cauchy sequence in measure in QT , thus it converges almost everywhere to
some measurable function u. Then Tk(un) → Tk(u) weakly in W 1,x

0 LM (QT ) for σ(ΠLM ,ΠEM ), strongly
in EM (QT ) and a.e. in QT .
Proof of (3.19) : The same way in [2], we deduce that An(x, t, Tk(un),∇Tk(un)) is a bounded sequence
in (LM (QT ))

N and we obtain (3.19).
�

Step 2:Almost everywhere convergence of the gradients.
To have that the gradient converges almost everywhere, we need to prove this proposition

Proposition 3.5. Let {un}n be a solution of the approximate problem 3.16, then

lim
m→∞

lim sup
n→∞

∫

{m≤|un|≤m+1}

A(un,∇un)∇undxdt = 0, (3.23)

lim
m→∞

lim sup
n→∞

∫

{m≤|un|≤m+1}

B(un)∇undxdt = 0, (3.24)

and
∇un → ∇u a.e. in QT . (3.25)

Proof.
Taking the function

Zm(un) = T1(un − Tm(un))

then
∇Zm(un) = ∇unχ{m≤|un|≤m+1}.

Multiplying the approximating equation (3.16) by the test function Zm(un) and using the same argument
in step 2, we get

∫

{m≤|un|≤m+1}

An(un,∇un)∇undxdt ≤ C
[

∫

QT

fnZm(un) dxdt+

∫

{|u0n|>m}

|u0n|dxdt
]

,

where
1

C
=

[
1−

(α0 + 1)

α
‖q(., .)‖L∞(QT )

]
> 0.

Passing to limit as n→ +∞, since the pointwise convergence of un and strongly convergence in L1(QT )
of fn we get

lim
n→+∞

∫

{m≤|un|≤m+1}

An(un,∇un)∇undxdt ≤ C
[

∫

QT

fZm(u) dxdt+

∫

{|u0|>m}

|u0|dxdt
]

.
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By using Lebesgue’s Theorem and passing to limit as m → +∞, in the all term of the right-hand side,
we get (3.23).From (3.3), we also deduce

lim
m→+∞

lim
n→+∞

∫

{m≤|un|≤m+1}

M(x, |∇Zm(un)|)dxdt = 0 (3.26)

On the other hand, we have

lim
m→+∞

lim
n→+∞

∫

QT

Bn(un)∇Zm(un)dxdt ≤ lim
m→+∞

lim
n→+∞

∫

QT

M(x, |∇Zm(un)|)dxdt,

+ lim
m→+∞

lim
n→+∞

∫

{m≤|un|≤m+1}

M(x, |Bn(un)|)dxdt.

Using the pointwise convergence of un and by Lebegue’s theorem, in the second term of the right side,
we get

lim
n→+∞

∫

{m≤|un|≤m+1}

M(x, |Bn(un)|)dxdt =

∫

{m≤|u|≤m+1}

M(x, |B(u)|)dxdt,

and also, by Lebesgue’s theorem

lim
m→+∞

∫

{m≤|u|≤m+1}

M(x, |B(u)|)dxdt = 0, (3.27)

Thus with (3.26) and (3.27), we get the (3.24).

Now let υj ∈ D(QT ) be a sequence such that υj → u in W 1,x
0 LM (QT ) for the modular convergence.

This specific time regularization of Tk(υj) (for fixed k ≥ 0) is defined as follows.
Let (αµ0 )µ be a sequence of functions defined on Ω such that

αµ0 ∈ L∞(Ω) ∩W 1
0LM (Ω) for all µ > 0, (3.28)

‖αµ0‖L∞(Ω) ≤ k, for all µ > 0,

and αµ0 converges to Tk(u0) a.e. in Ω and 1
µ
‖αµ0‖M,Ω converges to 0 as µ→ +∞.

For k ≥ 0 and µ > 0, let us consider the unique solution (Tk(υj))µ ∈ L∞(Q) ∩ W 1,x
0 LM (Q) of the

monotone problem:
∂(Tk(υj))µ

∂t
+ µ((Tk(υj))µ − Tk(υj)) = 0 in D′(Ω),

(Tk(υj))µ(t = 0) = αµ0 in Ω.

Remark that due to
∂(Tk(υj))µ

∂t
∈W 1,x

0 LM (QT ).

We just recall that,

(Tk(υj))µ → Tk(u) a.e. in QT , weakly− ∗ in L∞(QT )

(Tk(υj))µ → (Tk(u))µ in W 1,x
0 LM (QT ),

for the modular convergence as j → +∞. Also,

(Tk(u))µ → Tk(u) in W 1,x
0 LM (QT ),

for the modular convergence as µ→ +∞ and

||(Tk(υj))µ||L∞(QT ) ≤ max(||(Tk(u))||L∞(QT ), ||αµ0 ||L∞(Ω)) ≤ k, for all µ > 0, and k > 0.
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We introduce a sequence of increasing C1(IR)-functions Sm such that

Sm(r) = 1 for |r| ≤ m, Sm(r) = m+ 1− |r|, for m ≤ |r| ≤ m+ 1, Sm(r) = 0 for |r| ≥ m+ 1

for any m ≥ 1. And we denote by ǫ(n, µ, η, j,m) all quantities (possibly different) such that

lim
m→+∞

lim
j→+∞

lim
η→+∞

lim
µ→+∞

lim
n→+∞

ǫ(n, µ, η, j,m) = 0.

For fixed k ≥ 0, let Wn,j
µ,η = (Tη(Tk(un) − Tk(υj)µ))

+ and W j
µ,η = (Tη(Tk(u) − Tk(υj)µ))

+. Multiplying

the approximating equation by exp(G(un)))W
n,j
µ,ηSm(un), we obtain:





∫

QT

<
∂un
∂t

exp(G(un))W
n,j
µ,ηSm(un) dx dt+

∫

QT

an(un,∇un) exp(G(un))∇(Wn,j
µ,η )Sm(un) dx dt

+

∫

QT

an(un,∇un)∇un exp(G(un))W
n,j
µ,ηS

′
m(un) dx dt −

∫

QT

Bn(un) exp(G(un))∇(Wn,j
µ,η )Sm(un) dx dt

−

∫

QT

Bn(un)∇un exp(G(un))W
n,j
µ,ηS

′
m(un) dx dt ≤

∫

QT

fn exp(G(un))W
n,j
µ,ηSm(un) dx dt.

(3.29)
Now we pass to the limit in (3.29) for k real number fixed. In order to perform this task we prove

below the following results for any fixed k ≥ 0:

∫

QT

∂un
∂t

exp(G(un))W
n,j
µ,ηSm(un) dx dt ≥ ǫ(n, µ, η, j) for any m ≥ 1, (3.30)

∫

QT

Bn(un)Sm(un) exp(G(un))∇(Wn,j
µ,η ) dx dt = ǫ(n, j, µ) for any m ≥ 1, (3.31)

∫

QT

Bn(un)∇unS
′
m(un) exp(G(un))W

n,j
µ,η dx dt = ǫ(n, j, µ) for any m ≥ 1, (3.32)

∫

QT

an(un,∇un)∇unS
′
m(un) exp(G(un))W

n,j
µ,η dx dt ≤ ǫ(n,m), (3.33)

∫

QT

an(un,∇un)Sm(un) exp(G(un))∇(Wn,j
µ,η ) dx dt ≤ Cη + ǫ(n, j, µ,m), (3.34)

∫

QT

fnSm(un) exp(G(un))W
n,j
µ,η dx dt ≤ ǫ(n, η), (3.35)

∫

QT

[
a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))

][
∇Tk(un)−∇Tk(u)

]
dx dt → 0. (3.36)

Proof of (3.30):

Lemma 3.6. ∫

QT

∂un
∂t

exp(G(un))W
n,j
µ,ηSm(un)dxdt ≥ ǫ(n, µ, η, η, j) m ≥ 1. (3.37)

Proof. Is a particular case of the proof in [7], with b(x, u) = u. �

Proof of (3.31): If we take n > m+ 1, we get

Bn(un) exp(G(un))Sm(un) = B(Tm+1(un)) exp(G(Tm+1(un)))Sm(Tm+1(un)),

then Bn(un) exp(G(un))Sm(un) is bounded in LM (QM ), thus, by using the pointwise convergence of un
and Lebesgue’s theorem we obtain

Bn(un) exp(G(un))Sm(un) → B(u) exp(G(u))Sm(u),
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with the modular convergence as n → +∞, then Bn(un) exp(G(un))Sm(un) → B(u) exp(G(u))Sm(u)
for σ(

∏
LM ,

∏
LM ). In the other hand ∇Wn,j

µ,η = ∇Tk(un) − ∇(Tk(υj))µ for |Tk(un) − (Tk(υj))µ| ≤ η

converge to ∇Tk(u)−∇(Tk(υj))µ weakly in (LM (QT ))
N , then

∫

QT

Bn(un) exp(G(un))Sm(un)∇W
n,j
µ,η dx dt →

∫

QT

B(u)Sm(u) exp(G(u))∇W j
µ,η dx dt,

as n→ +∞.
By using the modular convergence of W j

µ,η as j → +∞ and letting µ tends to infinity, we get (3.31).
Proof of (3.32):

For n > m + 1 > k , we have ∇unS
′
m(un) = ∇Tm+1(un), a.e. in QT . By the almost every where

convergence of un we have exp(G(un))W
n,j
µ,η → exp(G(u))W j

µ,η in L∞(QT ) weak-* and since the sequence
(Bn(Tm+1(un)))n converge strongly in EM (QT ), then

Bn(Tm+1(un)) exp(G(un)) W
n,j
µ,η → B(Tm+1(u)) exp(G(u))W j

µ,η,

converge strongly in EM (QT ) as n→ +∞. By virtue of ∇Tm+1(un) → ∇Tm+1(u) weakly in (LM (QT ))
N

as n→ +∞ we have
∫

m≤|un|≤m+1

Bn(Tm+1(un))∇unS
′
m(un) exp(G(un))W

n,j
µ,η dx dt

→

∫

m≤|u|≤m+1

B(u)∇u exp(G(u))W j
µ,η dx dt

as n→ +∞ with the modular convergence of W j
µ,η as j → +∞ and letting µ → +∞ we get 3.32.

Proof of (3.33):
We have ∫

QT

an(un,∇un)S
′
m(un)∇un exp(G(un)) exp(G(un))W

n,j
µ,η dx dt

=

∫

m≤|un|≤m+1

an(un,∇un)S
′
m(un)∇un exp(G(un))W

n,j
µ,η dx dt

≤ ηC

∫

m≤|un|≤m+1

an(un,∇un)∇un dx dt.

Using (3.23), we get

∫

QT

an(un,∇un)S
′
m(un)∇un exp(G(un))W

n,j
µ,η dx ds ≤ ǫ(n, µ,m).

Proof of (3.35):
Since Sm(r) ≤ 1 and Wn,j

µ,η ≤ η we get

∫

QT

fnSm(un) exp(G(un))W
n,j
µ,η dx dt ≤ ǫ(n, η).

Proof of (3.34):

∫

QT

an(un,∇un)Sm(un) exp(G(un))∇W
n,j
µ,η dx dt

=

∫

{|un|≤k}∩{0≤Tk(un)−Tk(υj)µ)≤η}

an(Tk(un),∇Tk(un))Sm(un) exp(G(un))(∇Tk(un)−∇Tk(υj)µ) dx dt

−

∫

{|un|>k}∩{0≤Tk(un)−Tk(υj)µ)≤η}

an(un,∇un)Sm(un) exp(G(un))∇Tk(υj)µ dx dt. (3.38)
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Since an(Tk+η(un),∇Tk+η(un)) is bounded in (LM (QT ))
N , there exist some ̟k+η ∈ (LM (QT ))

N

such that an(Tk+η(un),∇Tk+η(un)) → ̟k+η weakly in (LM (QT ))
N . Consequently,

∫

{|un|>k}∩{0≤Tk(un)−Tk(υj)µ)≤η}

an(un,∇un)Sm(un) exp(G(un))∇Tk(υj)µ dx dt

=

∫

{|u|>k}∩{0≤Tk(u)−Tk(υj)µ)≤η}

Sm(u) exp(G(u))∇Tk(υj)µ̟k+η dx dt+ ǫ(n), (3.39)

where we have used the fact that

Sm(un) exp(G(un))∇Tk(υj)µ)χ{|un|>k}∩{0≤Tk(un)−Tk(υj)µ)≤η}

→ Sm(u) exp(G(u))∇Tk(υj)µ)χ{|u|>k}∩{0≤Tk(u)−Tk(υj)µ)≤η},

strongly in (EM (QT ))
N .

Letting j → +∞, we obtain

∫

{|u|>k}∩{0≤Tk(u)−Tk(υj)µ)≤η}

Sm(u) exp(G(u))∇Tk(υj)µ̟k+η dx dt

=

∫

{|u|>k}∩{0≤Tk(u)−Tk(u)µ)≤η}

Sm(u) exp(G(u))∇Tk(u)µ̟k+η dx dt + ǫ(n, j).

One easily has,

∫

{|u|>k}∩{0≤Tk(u)−Tk(u)µ)≤η}

Sm(u) exp(G(u))∇Tk(u)µ̟k+η dx dt = ǫ(n, j, µ).

By (3.29)-(3.35), (3.38) and (3.39) we obtain

∫

{|un|≤k}∩{0≤Tk(un)−Tk(υj)µ)|≤η}

an(Tk(un),∇Tk(un))Sm(un) exp(G(un))(∇Tk(un)−∇Tk(υj)µ) dx dt

≤ Cη + ǫ(n, j, µ,m),

we know that exp(G(un)) ≥ 1 and Sm(un) = 1 for |un| ≤ k then

∫

{|un|≤k}∩{0≤Tk(un)−Tk(υj)µ)|≤η}

an(Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(υj)µ) dx dt ≤ Cη + ǫ(n, j, µ,m).

(3.40)
Proof of (3.36):
Setting for s > 0, Qs = {(x, t) ∈ QT : |∇Tk(u)| ≤ s} and Qsj = {(x, t) ∈ QT : |∇Tk(υj)| ≤ s} and
denoting by χs and χsj the characteristic functions of Qs and Qsj respectively. Let 0 < δ < 1, and define

Θn,k = (a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u)).

For s > 0, we have

0 ≤

∫

Qs

Θδn,k dx dt =

∫

Qs

Θδn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt+

∫

Qs

Θδn,kχ|Tk(un)−Tk(υj)µ|>η) dx dt.

With the Hölder inequality, the first and the second term of the right-side hand can written as

∫

Qs

Θδn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt ≤ (

∫

Qs

Θn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt)
δ(

∫

Qs

dx dt)1−δ
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≤ C1(

∫

Qs

Θn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt)
δ .

and ∫

Qs

Θδn,kχ|Tk(un)−Tk(υj)µ|>η) dx dt ≤ (

∫

Qs

Θn,k dx dt)
δ(

∫

|Tk(un)−Tk(υj)µ|>η)

dx dt)1−δ.

Since a(Tk(un),∇Tk(un)) is bounded in (LM (QT ))
N , while ∇Tk(un) is bounded in (LM (QT ))

N we have

∫

Qs

Θδn,kχ|Tk(un)−Tk(υj)µ|>η) dx dt ≤ C2meas{(x, t) ∈ QT : |Tk(un)− Tk(υj)µ| > η}1−δ.

We obtain, ∫

Qs

Θδn,k dx dt ≤ C1(

∫

Qs

Θn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt)
δ

+C2meas{(x, t) ∈ QT : |Tk(un)− Tk(υj)µ| > η}1−δ.

On the other hand, ∫

Qs

Θn,kχ|Tk(un)−Tk(υj)µ|≤η) dx dt

≤

∫

|Tk(un)−Tk(υj)µ|≤η)

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χs))

×(∇Tk(un)−∇Tk(u)χs) dx dt.

For each s > r, r > 0, one has

0 ≤

∫

Qr∩{|Tk(un)−Tk(υj)µ|≤η)}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))

×(∇Tk(un)−∇Tk(u)) dx dt

≤

∫

Qs∩{|Tk(un)−Tk(υj)µ|≤η)}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))

×(∇Tk(un)−∇Tk(u)) dx dt

=

∫

Qs∩{|Tk(un)−Tk(υj)µ|≤η)}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χs))

×(∇Tk(un)−∇Tk(u)χs) dx dt

≤

∫

Q∩{|Tk(un)−Tk(υj)µ|≤η)}

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s))

×(∇Tk(un)−∇Tk(u)χ
s) dx dt

=

∫

|Tk(un)−Tk(υj)µ|≤η

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(υj)χ
s
j))

×(∇Tk(un)−∇Tk(υj)χ
s
j) dx dt

+

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(un))(∇Tk(υj)χ
s
j −∇Tk(u)χ

s) dx dt

+

∫

|Tk(un)−Tk(υj)µ|≤η

(a(Tk(un),∇Tk(υj)χ
s
j)− a(Tk(un),∇Tk(u)χ

s))∇Tk(un) dx dt

−

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(υj)χ
s
j)∇Tk(υj)χ

s
j) dx dt



Existence and Uniqueness of Renormalized Solution... 13

+

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(u)χ
s)∇Tk(u)χ

s) dx dt

= I1(n, j, s) + I2(n, j) + I3(n, j) + I4(n, j, µ) + I5(n, µ).

We go to the limit as n, j, µ, and s→ +∞

I1 =

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(υj)µ) dx dt

−

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(un))(∇Tk(υj)χ
s
j −∇Tk(υj)µ) dx dt

−

∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(υj)χ
s
j))(∇Tk(un)−∇Tk(υj)χ

s
j)) dx dt.

Using (3.40), the first term of the right-hand side, we get
∫

|Tk(un)−Tk(υj)µ|≤η

a(Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(υj)µ) dx dt

≤ Cη + ǫ(n,m, j, s)−

∫

|u|>k∩|Tk(u)−Tk(υj)µ|≤η

a(Tk(u), 0)∇Tk(υj)µ dx dt

≤ Cη + ǫ(n,m, j, µ).

The second term of the right-hand side tends to
∫

|Tk(u)−Tk(υj)µ|≤η

̟k(∇Tk(υj)χ
s
j −∇Tk(υj)µ) dx dt,

since a(Tk(un),∇Tk(un)) is bounded in (LM (QT ))
N , there exist some ̟k ∈ (LM (QT ))

N such that (for
a subsequence still denoted by un

a(Tk(un),∇Tk(un)) → ̟k in (LM (QT ))
N for σ(ΠLM ,ΠEM ).

In view of the fact that

(∇Tk(υj)χ
s
j −∇Tk(υj)µ)χ|Tk(un)−Tk(υj)µ|≤η → (∇Tk(υj)χ

s
j −∇Tk(υj)µ)χ|Tk(u)−Tk(υj)µ|≤η,

strongly in (EM (QT ))
N as n→ +∞.

The third term of the right-hand side tends to
∫

|Tk(u)−Tk(υj)µ|≤η

a(Tk(u),∇Tk(υj)χ
s
j))(∇Tk(u)−∇Tk(υj)χ

s
j)) dx dt.

Since
a(Tk(un),∇Tk(υj)χ

s
j))χ|Tk(un)−Tk(υj)µ|≤η → a(Tk(u),∇Tk(υj)χ

s
j))χ|Tk(u)−Tk(υj)µ|≤η,

in (EM (QT ))
N while

(∇Tk(un)−∇Tk(υj)χ
s
j)) → (∇Tk(u)−∇Tk(υj)χ

s
j)),

in (LM (QT ))
N for σ(ΠLM ,ΠEM ).

Passing to limit as j → +∞ and µ→ +∞ and using Lebesgue’s theorem, we have

I1 ≤ Cη + ǫ(n, j, s, µ).

For what concerns I2, by letting n→ +∞, we have

I2 →

∫

|Tk(u)−Tk(υj)µ|≤η)

̟k(∇Tk(υj)χ
s
j −∇Tk(u)χ

s) dx dt.
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Since a(Tk(un),∇Tk(un))⇀ ̟k in (LM (QT ))
N , for σ(ΠLM ,ΠEM ),

and

(∇Tk(υj)χ
s
j −∇Tk(u)χ

s)χ|Tk(un)−Tk(υj)µ|≤η → (∇Tk(υj)χ
s
j −∇Tk(u)χ

s)χ|Tk(u)−Tk(υj)µ|≤η,

strongly in (EM (QT ))
N .

Passing to limit j → +∞, and using Lebesgue’s theorem, we have

I2 = ǫ(n, j).

Similar ways as above give
I3 = ǫ(n, j).

I4 =

∫

|Tk(u)−Tk(u)µ|≤η)

a(Tk(u),∇Tk(u))∇Tk(u) dx dt+ ǫ(n, j, µ, s,m).

I5 =

∫

|Tk(u)−Tk(u)µ|≤η)

a(Tk(u),∇Tk(u))∇Tk(u) dx dt+ ǫ(n, j, µ, s,m).

Finally, we obtain,

∫

Qs

Θn,k dx dt ≤ C1(Cη + ǫ(n, µ, η,m))δ + C2(ǫ(n, µ, ))
1−δ.

Which yields, by passing to the limit sup over n, j, µ , s and η

∫

{Tη(Tk(un)−Tk(υj))≥0}∩Qr

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))

(∇Tk(un)−∇Tk(u))dxdt = ǫ(n), (3.41)

Taking on the hand the function Wn,j
η = Tη(Tk(un)− Tk(υj))

− and W j
η = Tη(Tk(u)− Tk(υj))

−.

Multiplying the approximating equation by exp(G(un))W
n,j
η Sm(un), we obtain

∫

{Tη(Tk(un)−Tk(υj))≤0}∩Qr

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))

× (∇Tk(un)−∇Tk(u))dxdt = ǫ(n), (3.42)

by (3.41) and (3.42) we get

∫

Qr

(a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)))(∇Tk(un)−∇Tk(u))dxdt = ǫ(n)

Thus, passing to a subsequence if necessary,∇un → ∇u a.e. in Qr, and since r is arbitrary,

∇un → ∇u a.e. in QT .

Step 3: We show that u satisfies the Definition 3.1
For this, let show that (3.8) holds. We have for any m > 0,

∫

{m≤|un|≤m+1}

A(un,∇un)∇undxdt =

∫

QT

A(un,∇un)[∇Tm+1(un)−∇Tm(un)]dxdt

=

∫

QT

A(Tm+1(un),∇Tm+1(un))∇Tm+1(un)dxdt

−

∫

QT

A(Tm(un),∇Tm(un))∇Tm(un)dxdt.
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According to Lemma 2.6, we pass to the limit as n tends to +∞ for fixed m > 0 and we obtain

lim
n→+∞

∫

{m≤|un|≤m+1}

A(un,∇un)∇undxdt =

∫

QT

A(Tm+1(u),∇Tm+1(u))∇Tm+1(u)dxdt

−

∫

QT

A(Tm(u),∇Tm(u))∇Tm(u)dxdt

=

∫

{m≤|u|≤m+1}

A(u,∇u)∇udxdt,

with (3.23), we obtain easily (3.8).
Note that, similarly we deduce

lim
m→+∞

∫

{m≤|u|≤m+1}

B(u)∇udxdt = 0. (3.43)

Let S ∈ W 2,∞(IR) which is piecewise C1 and such that S′ has a compact support, Let K > 0 such that
supp(S′) ⊂ [−K,K]. Pointwise multiplication of the approximate problem (3.16) by S′(un), we get





∂S(b(un))

∂t
+ div

(
S′(un)(A(un,∇un)−B(un))

)

+S′′(un)
(
A(un,∇un)−B(un)

)
∇un = fS′(un).

(3.44)

Now we will pass to the limit as n→ +∞ of each term of (3.44),

Limit of
∂S(un)
∂t

: since S is bounded, and S(un) converges to S(u) a.e. in QT and weakly in L∞(QT ),

then ∂S(un)
∂t

converges to ∂S(u)
∂t

in D
′(QT ).

Limit of S′(un)A(un,∇un): since supp(S
′) ⊂ [−K,K] we have

S′(un)A(un,∇un) = S′(un)A(Tk(un),∇Tk(un)) a.e. in QT .

The pointwise convergence of un to u, the bounded character of S′, and by Lemma 2.6 and Proposition
3.5, we conclude A(Tk(un),∇Tk(un)) converges to A(Tk(un),∇Tk(un)) weakly in (LM (QT ))

N allows us
to obtain S′(un)A(Tk(un),∇Tk(un)) converges to S

′(u)A(Tk(u),∇Tk(u)) weakly for σ(ΠLM ,ΠEM ), and
S′(u)A(Tk(u),∇Tk(u) = S′(u)A(u,∇u) a.e. in QT .

Limit of S′′(un)A(un,∇un)∇un: since supp(S
′) ⊂ [−K,K], we get

S′′(un)A(un,∇un)∇un = S′′(un)A(Tk(un),∇Tk(un))∇un a.e. in QT .

The pointwise convergence of S′′(un) to S′′(u) as n tends to +∞, the bounded character of S′′ and by
Lemma 2.6 and Proposition 3.5, we conclude

S′′(un)A(Tk(un),∇Tk(un))∇un ⇀ S′′(u)A(Tk(u),∇Tk(u))∇u weakly in L1(QT )

as n→ +∞, and
S′′(u)A(Tk(u),∇Tk(u))∇u = S′′(u)A(u,∇u)∇u a.e. in QT .

Limit of S′(un)B(un): Since supp(S
′) ⊂ [−K,K] we have

S′(un)B(un) = S′(un)B(Tk(un)) a.e. in QT .

In a similar way, we obtain

S′(un)B(un) → S′(u)B(u) weakly for σ(ΠLM ,ΠEM ).
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Limit of S′′(un)B(un)∇un: Also we have

S′′(un)B(un)∇un = S′′(un)B(Tk(un))∇Tk(un).

Using the weakly convergence of truncation, it is possible to prove that,

S′′(un)B(un)∇un → S′′(u)B(u)∇u strongly in L1(QT ).

Limit of fnS
′(un): we have un → u a.e. in QT , S

′ is piecewise C1. It is enough to use (3.14) to
get that fnS

′(un) → fS′(u) strongly in L1(QT ).

Finally, to show (3.11), remark that S being bounded, S(un) is bounded in L∞(QT ). the equation

(3.44) allows to show that ∂S(un)
∂t

is bounded in W−1,xLM (QT ) + L1(QT ). By Lemma 2.5 implies that
S(un) lies in a compact set of C0([0, T ];L∞(Ω)). It follows that, on one hand, S(un(t = 0)) converges to
S(u(t = 0)) strongly in L1(QT ). On the other hand, the smoothness of S imply that S(u(t = 0) = S(u0)
in Ω. This complete the existence result. �

4. Uniqueness result

Before showing the uniqueness of the solution of the problem (1.1), we will give the following technical
lemma.
Let u and v be two renormalized solutions of the problem (1.1) and let us define for any 0 < k < s,

Γ(u, v, s, k) =

∫

{s−k<|u|<s+k}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt

+

∫

{s−k<|v|<s+k}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt. (4.1)

Lemma 4.1. Assume that (3.1)-(3.6) hold, then

lim inf
s→+∞

lim sup
k→0

1

k
Γ(u, v, s, k) = 0. (4.2)

Proof.
Define the two functions,

L1(s) =

∫

{0<u<s}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt

+

∫

{0<v<s}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt, (4.3)

and

L2(s) =

∫

{−s<u<0}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt

+

∫

{−s<v<0}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt. (4.4)

Due to (3.2) the function L1 and L2 are monotone increasing. L1 and L2 are derivable almost everywhere
see [17], with L′

1 and L′
2 measurable and that we have for any s > η > 0

L1(s)− L1(η) ≥

∫ s

η

L′
1(ξ)dξ and L2(s)− L2(η) ≥

∫ s

η

L′
2(ξ)dξ, (4.5)

and for almost any s > 0

L′
1(s) =

1

2
lim sup
k→0

1

k

[ ∫

{s−k<u<s+k}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt
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+

∫

{s−k<v<s+k}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt

]
, (4.6)

and

L′
2(s) =

1

2
lim sup
k→0

1

k

[ ∫

{−s−k<u<−s+k}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt

+

∫

{−s−k<v<−s+k}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt

]
. (4.7)

If the thesis of the lemma is not true, let ǫ0 > 0 and let n0 > 0 be a real number such that for every real
number s ≥ n0 we have

lim sup
k→0

1

k
Γ(u, v, s, k) ≥ ǫ0. (4.8)

On the other hand, we have for almost s ≥ n0,

lim sup
k→0

1

k
Γ(u, v, s, k) = 2(L′

1(s) + L′
2(s)),

then, from (4.6), (4.7) and (4.8) it follows that L′
1(ξ) + L′

2(ξ) ≥
ǫ0
2 .

In view of (4.5), we deduce that for any s > η > n0 we have

L1(s)− L1(η) + L2(s)− L2(η) ≥
ǫ0
2
(s− η). (4.9)

Taking s = n+ 1 and η = n with n > n0 we have

∫

{n≤|u|≤n+1}

(
A(u,∇u)∇u+ |B(u)||∇u|

)
dxdt

+

∫

{n≤|v|≤n+1}

(
A(v,∇v)∇v + |B(v)||∇v|

)
dxdt ≥

ǫ0
2
.

The last inequality contradicts (3.8) and (3.43). �

Theorem 4.2. Assume that assumptions (3.1)-(3.6) hold true and moreover that for any compact set
D ⊂ IR, there exists LD ∈ EM (QT ) and ρD > 0 such that ∀s, s ∈ D,

|A(x, t, s, ξ)−A(x, t, s, ξ)| ≤
(
LD(x, t) + ρDP

−1
P (|ξ|)

)
|s− s|, (4.10)

|B(x, t, s)−B(x, t, s)| ≤ LD(x, t)|s− s|, (4.11)

for almost every (x, t) ∈ QT and for every ξ ∈ IRN . Then the problem (1.1) has a unique renormalized
solution.

Proof. Let define a smooth approximation of Tn by S̃σn such that for all n > 0 and σ > 0, we have

S̃σn(0) = 0 and

(S̃σn)
′(r) =





0 for |r| ≥ n+ σ,

n+σ−|r|
σ

for n ≤ |r| ≤ n+ σ,

1 for |r| ≤ n.

(4.12)

For a fixed n > 0, we have
lim
σ→0

(S̃σn)
′(z) = χ|z|≤n a.e. in QT . (4.13)

and
lim
σ→0

S̃σn(z) = Tn(z) a.e. in QT . (4.14)
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Consider now two renormalized solutions u and v of (3.7)- (3.11) for the data f and u0. Since

S̃σn ∈W 2,∞(IR) and supp(S̃σn)
′ ⊂ [−n− σ, n+ σ] , then we take S = S̃σn and we use 1

k
Tk(S̃

σ
n(u)− S̃σn(u))

as a test function in the difference of equation (3.9) for u and v , we get

1

k

∫ T

0

∫ t

0

<
∂
(
S̃σn(u)− S̃σn(v))

∂t
;Tk(S̃

σ
n(u)− S̃σn(v)

)
> dsdt

+ Iσ1,n + Iσ2,n + Iσ3,n + Iσ4,n = Iσ5,n, (4.15)

where

Iσ1,n =
1

k

∫ T

0

∫ t

0

∫

Ω

[(S̃σn)
′(u)A(u,∇u)− (S̃σn)

′(v)A(v,∇v)]∇Tk(S̃
σ
n(u)− S̃σn(v))dxdsdt,

Iσ2,n =
1

k

∫ T

0

∫ t

0

∫

Ω

[(S̃σn)
′′(u)A(u,∇u)∇u− (S̃σn)

′′(v)A(v,∇v)∇v]Tk(S̃
σ
n(u)− S̃σn(v))dxdsdt,

Iσ3,n =
1

k

∫ T

0

∫ t

0

∫

Ω

[(S̃σn)
′(u)B(u)− (S̃σn)

′(v)B(v)]∇Tk(S̃
σ
n(u)− S̃σn(v))dxdsdt,

Iσ4,n =
1

k

∫ T

0

∫ t

0

∫

Ω

[(S̃σn)
′′(u)B(u)∇u− (S̃σn)

′′(v)B(v)∇v]Tk(S̃
σ
n(u)− S̃σn(v))dxdsdt,

Iσ5,n =
1

k

∫ T

0

∫ t

0

∫

Ω

f [(S̃σn)
′(u)− (S̃σn)

′(v)]Tk(S̃
σ
n(u)− S̃σn(v))dxdsdt.

for any k > 0, n > 0, σ > 0.
Firstly we give this lemma.

Lemma 4.3.

lim
n→+∞

lim
k→0

lim
σ→0

1

k

∫ T

0

∫ t

0

<
∂
(
S̃σn(u)− S̃σn(v)

)

∂t
;Tk(S̃

σ
n(u)− S̃σn(v)) > dsdt =

∫

QT

|u− v|dxdt. (4.16)

Proof.
Remark that S̃σn(u)(t = 0) = S̃σn(v)(t = 0) = S̃σn(u0) a.e. in Ω, then

∫ t

0

<
∂
(
S̃σn(u)− S̃σn(v)

)

∂t
;Tk(S̃

σ
n(u)− S̃σn(v)

)
> dsdt =

∫

Ω

T̃k(S̃
σ
n(u)− S̃σn(v))(t)dx,

and

lim
k→0

lim
σ→0

1

k

∫ T

0

∫ t

0

<
∂
(
S̃σn(u)− S̃σn(v)

)

∂t
;Tk(S̃

σ
n(u)− S̃σn(v)

)
> dsdt

= lim
k→0

lim
σ→0

1

k

∫

QT

T̃k(S̃
σ
n(u)− S̃σn(v))dxdt

=

∫

QT

|Tn(u)− Tn(v)|dxdt,

where T̃k(r) =

∫ r

0

Tk(z)dz.

We pass to the limit as n→ +∞ in the last equality and we deduce (4.16). �

Secondly we will proof the limit of Iσ1,n, I
σ
2,n, I

σ
3,n, I

σ
4,n, I

σ
5,n respectively.

The limit of Iσ1,n:
Let define

Iσ1,n =
1

k

∫ T

0

∫ t

0

∫

Ω

Qσndxdsdt =
1

k

∫

QT

(T − t)Qσndxdt
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where Qσn = [(S̃σn)
′(u)A(u,∇u)− (S̃σn)

′(v)A(v,∇v)]∇Tk(S̃
σ
n(u)− S̃σn(v)).

Since supp(S̃σn)
′) ⊂ [−n− σ, n+ σ], we get

(S̃σn)
′(u)A(u,∇u) = (S̃σn)

′(u)A(Tn+1(u),∇Tn+1(u))

and
(S̃σn)

′(v)A(v,∇v) = (S̃σn)
′(u)A(Tn+1(v),∇Tn+1(v)).

Then by (4.12), (4.13) and (4.14), we have





Qσn converges to [χ|u|≤nA(u,∇u)− χ|v|≤nA(v,∇v)]∇Tk(Tn(u)− Tn(v)),

|Qσn| ≤
[
|A(Tn+1(u),∇Tn+1(u))|+ |A(Tn+1(v),∇Tn+1(v))|

]

×(|∇Tn+1(u)|+ |∇Tn+1(v)|)χ|Tn(u)−Tn(v)|≤k = Rn.

Since Rn ∈ L1(QT ) we use the Lebesgue’s Dominated convergence Theorem to have

lim
σ→0

Iσ1,n = lim
σ→0

1

k

∫

QT

(T − t)Qσndxdt

=
1

k

∫

QT

(T − t)[χ|u|≤nA(u,∇u)− χ|v|≤nA(v,∇v)]∇Tk(Tn(u)− Tn(v))dxdt

= J1 + J2 + J3 + J4, (4.17)

where

J1 =
1

k

∫

{|u−v|≤k,|u|≤n,|v|≤n}

(T − t)
(
A(u,∇u)−A(u,∇v)

)
(∇u−∇v)dxdt,

J2 =
1

k

∫

{|u−v|≤k,|u|≤n,|v|≤n}

(T − t)
(
A(u,∇v)−A(v,∇v)

)
(∇u−∇v)dxdt,

J3 =
1

k

∫

{|Tn(u)−Tn(v)|≤k,|u|>n,|v|≤n}

(T − t)A(v,∇v)∇vdxdt,

J4 =
1

k

∫

{|Tn(u)−Tn(v)|≤k,|u|≤n,|v|>n}

(T − t)A(u,∇u)∇udxdt.

Since A(u,∇u) check the condition (3.3), one can have immediately

J1 ≥ 0. (4.18)

On the other hand by (4.10) we have

|J2| ≤
T

k

∫

QT

χ{|u−v|≤k}|u− v|
(
LD(x, t) + ρDP

−1
P (|v|)

)
(|∇u|+ |∇v|)dxdt

≤ T

∫

{|u−v|≤k}

(
LD(x, t) + ρDP

−1
P (|v|)

)
(|∇u|+ |∇v|)dxdt.

Since LD(x, t) ∈ EM (QT ), u and v in W 1,xLM (QT ) and using (2.1), one can have

(LD(x, t) + ρDP
−1
P (|v|))(|∇u|+ |∇v|) ∈ L1(QT )

and the Lebesgue Dominated Convergence Theorem allows us to conclude that for all n ≥ 1

lim sup
k→0

J2 = 0. (4.19)



20 A. Aberqi and J. Bennouna and M. Elmassoudi

In view of the definition of Tn, we have

J3 =
1

k

∫

{n− k ≤ v ≤ n}
∪{−n ≤ v ≤ −n+ k}

(T − t)A(v,∇v)∇vdxdt,

and using (3.3) we deduce
lim inf
n→+∞

lim sup
k→0

J3 ≥ 0. (4.20)

Similarly we have

J4 =
1

k

∫

{n− k ≤ u ≤ n}
∪{−n ≤ u ≤ −n+ k}

(T − t)A(u,∇u)∇udxdt,

and
lim inf
n→+∞

lim sup
k→0

J4 ≥ 0. (4.21)

Now from (4.17)-(4.21) we obtain
lim inf
n→+∞

lim sup
k→0

lim
σ→0

Iσ1,n ≥ 0. (4.22)

The limit of Iσ2,n and Iσ4,n :

Now we claim that

|Iσ2,n|+ |Iσ4,n| ≤
T

σ
Γ(u, v, n, σ), (4.23)

A simple derivation of the function (S̃σn)
′ one have for any σ > 0 and k > 0

|Iσ2,n| ≤
T

σ

∫

{n− σ ≤ u ≤ n}
∪{−n ≤ u ≤ −n+ σ}

A(u,∇u))∇udxdt

+
T

σ

∫

{n− σ ≤ v ≤ n}
∪{−n ≤ v ≤ −n+ σ}

A(v,∇v))∇vdxdt, (4.24)

Similarly we have

|Iσ4,n| ≤
T

σ

∫

{n− σ ≤ u ≤ n}
∪{−n ≤ u ≤ −n+ σ}

B(u)∇udxdt

+
T

σ

∫

{n− σ ≤ v ≤ n}
∪{−n ≤ v ≤ −n+ σ}

B(v)∇vdxdt. (4.25)

Combine (4.24) and (4.25) we deduce (4.23).
The limit of Iσ3,n:
Let prove that

lim sup
σ→0

|Iσ3,n| ≤
T

k
Γ(u, v, n, k) + ǫ(k), (4.26)

where ǫ(k) is a positive function such that limk→0 ǫ(k) = 0.
For n ≥ 0 we have

lim sup
σ→0

|Iσ3,n| = |
1

k

∫

QT

(T − t)(χ{|u|≤n}B(u)− χ{|v|≤n}B(v))∇Tk(Tn(u)− Tn(v))dxdt|.

≤ K1 +K2 +K3,

where

K1 =
T

k

∫

QT

χ{|u|≤n,|v|>n}|B(u)||∇Tk(Tn(u)− nsgn(v)|dxdt,
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K2 =
T

k

∫

QT

χ{|u|>n,|v|≤n}|B(v)||∇Tk(Tn(v)− nsgn(u)|dxdt,

K3 =
T

k

∫

QT

χ{|u|≤n,|v|≤n}|B(u)−B(v)||∇Tk(Tn(u)− Tn(v))|dxdt.

We estimate K1 and K2 by (3.4) we have

K1 ≤
T

k

∫

QT

χ{|u|≤n,|v|>n}χ{|u−nsgn(v)|≤k}|B(u)||∇u|dxdt

≤
T

k

∫

{n− k ≤ u ≤ n}
∪{−n ≤ u ≤ −n+ k}

|B(u)||∇u|dxdt, (4.27)

and similarly

K2 ≤
T

k

∫

{n− k ≤ v ≤ n}
∪{−n ≤ v ≤ −n+ k}

|B(v)||∇v|dxdt. (4.28)

On the other hand, by (4.11) one have since LD ∈ LM (QT ),

K3 ≤
T

k

∫

{|Tn(u)−Tn(v)|≤k}∩{|u|≤n,|v|≤n}

LD(x, t)|u − v||∇Tk(Tn(u)− Tn(v))|dxdt

=
T

k

∫

{|Tn(u)−Tn(v)|≤k}∩{|u|≤n,|v|≤n}

LD(x, t)|Tn(u)− Tn(v)||∇Tk(Tn(u)− Tn(v))|dxdt

≤ T

∫

{|Tn(u)−Tn(v)|≤k}∩{|u|≤n,|v|≤n}

LD(x, t)(|∇Tn(u)|+ |∇Tn(v)|)dxdt = ǫ(k).

Since LD in LM (QT ) and due to (3.7), the function LD(x, t)(|∇Tn(u)|+ |∇Tn(v)|) ∈ L1(QT ). Using the
Lebesgue’s Dominated Convergence Theorem we obtain limk→0 ǫ(k) = 0 and

lim
k→0

|K3| = 0. (4.29)

Estimates (4.27)-(4.29) imply (4.26).
The limit of Iσ5,n:
Using the Lebesgue’s Theorem and (4.13) and (4.14), it is possible to have

lim
σ→0

|Iσ5,n| ≤
T

k

∫

QT

|Tk(Tn(u)− Tn(v))| × |f ||χ{|u|≤n} − χ{|v|≤n}|dxdt.

Since limk→0
Tk(z)
k

= sign(z) in IR and weakly-* in L∞ then

lim
k→0

lim
n→+∞

lim
σ→0

|Iσ5,n| ≤ lim
n→+∞

(

∫

{|u|≥n}

|f |dxdt+

∫

{|v|≥n}

|f |dxdt) = 0.

Then

lim
k→0

lim inf
n→+∞

lim
σ→0

Iσ5,n = 0. (4.30)

Finally, let’s go back to (4.15) and using Lemma (4.1), one have collected all the data to show that u = v
a.e. in QT . �
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