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1. Introduction

In [8], K. Kenmotsu defined and studied a new class of almost contact manifolds called Kenmotsu
manifolds.
Let (M,J, g) be an almost Hermitian manifold of dimension 2n, where J denotes the almost complex
structure and g the Hermitian metric. Then (M,J, g) is called a locally conformal Kaehler manifold if
for each point p of M , there exists an open neighborhood U of p and a positive function fU on U so
that the local metric gU = exp(−f)g|U is Kaehlerian. If U = M , then the manifold (M,J, g) is said to
be a globally conformal Kaehler manifold. The 1-form ω = df is called the Lee form and its metrically
equivalent vector field ω♯ = grad f , where ♯ means the rising of the indices with respect to g, namely
g(X,ω♯) = ω(X) for all X tangent to M , is called Lee vector field [7].
We have introduced conformal Kenmotsu manifolds by using an idea of globally conformal Kaehler
manifolds. Also, we have given an example of a conformal Kenmotsu manifold that is not Kenmotsu.
Hence the category of conformal Kenmotsu manifolds and Kenmotsu manifolds is not the same (see [1]-
[5]).
In [9], Kobayashi has proved: let M be a submanifold of a Kenmotsu manifold M̃ such that the structural
vector field ξ |M is tangent to M , then

∇Xξ = X − η(X)ξ, h(X, ξ) = 0, R(X,Y )ξ = η(X)Y − η(Y )X

for all vector fields X and Y tangent to M , where ∇, h and R are the Riemannian connection, the second
fundamental form and the curvature tensor of M , respectively.
In this paper, as a generalization of these results, we state Lemmas 3.1, 3.2, 3.3 and 3.4 for a submanifold
of a conformal Kenmotsu manifold.
A Riemannian manifold (M, g) is called a locally symmetric if its Riemannian curvature tensor R saties-
fies ∇R = 0 where ∇ denotes its Riemannian connection. This notion of locally symmetric manifold has
been weakened by many authors in several ways for example the notion of semi symmetric manifolds.
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In this paper, we present the following problem:
Can we characterize locally symmetric submanifolds in conformal Kenmotsu manifolds such that the
structural vector field ξ is tangent to the submanifold and the Lee vector field ω♯ is either tangent or
normal to the submanifold?
Before considering the answer of the above question, an example for the existence of submanifolds in con-
formal Kenmotsu manifolds tangent to ξ and either tangent or normal to ω♯ is constructed (see Section
3).
Corresponding to the above problem, first we consider semi symmetric submanifolds in conformal Ken-
motsu manifolds and then using obtained results for this type of submanifolds, we give the following
theorems for locally symmetric submanifolds in conformal Kenmotsu manifolds.

• Let Ḿm be a locally symmetric submanifold of a conformal Kenmotsu manifold M normal to ω♯.
Then Ḿ is locally isometric to the hyperbolic space H

m(− exp(f)).

• There is not any locally symmetric submanifold Ḿ of a conformal Kenmotsu manifold M tangent
to ω♯.

The present paper is organized as follows. In Section 2, we recall some definitions and notions about
conformal Kenmotsu manifolds. Section 3 gives some preliminary lemmas on submanifolds of a confor-
mal Kenmotsu manifold. Also, we present an example for the existence of submanifolds in conformal
Kenmotsu manifolds tangent to ξ and either tangent or normal to ω♯. In sections 4 and 5, we consider
semi-symmetric and locally symmetric submanifolds of a conformal Kenmotsu manifold tangent (normal)
to the Lee vector field.

2. Conformal Kenmotsu Manifolds

A (2n + 1)-dimensional differentiable manifold M is an almost contact metric manifold, if it admits
an almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type (1, 1), a vector field ξ,
a 1-form η and a Riemannian metric g and satisfying following conditions:

ϕ2 = −Id+ η ⊗ ξ, η(ξ) = 1, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

ϕξ = 0, ηoϕ = 0, η(X) = g(X, ξ)

for all vector fields X,Y on the module of the vector fields χ(M) [6].
An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is said to be a Kenmotsu manifold and an α-
Kenmotsu manifold if the following relations

(∇Xϕ)Y = −g(X,ϕY )ξ − η(Y )ϕX (2.1)

and

(∇Xϕ)Y = α{−g(X,ϕY )ξ − η(Y )ϕX} (2.2)

hold on M , respectively, where ∇ denotes the Riemannian connection of g and α is a constant function
on M . From (2.1) for a Kenmotsu manifold, we have

∇Xξ = X − η(X)ξ. (2.3)

For a Kenmotsu manifold, we also have

R(X,Y )ξ = η(X)Y − η(Y )X (2.4)

for all vector fields X,Y tangent to M , where R is the curvature tensor of M (see [8]).
A (2n + 1)-dimensional smooth manifold M with almost contact metric structure (ϕ, η, ξ, g) is called a
conformal Kenmotsu manifold if there exists a positive smooth function f : M → R such that

g̃ = exp(f)g, ξ̃ = (exp(−f))
1

2 ξ, η̃ = (exp(f))
1

2 η, ϕ̃ = ϕ
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is a Kenmotsu structure on M (see [1]- [5]).
Let M be a conformal Kenmotsu manifold, with ∇̃ and ∇ denote the Riemannian connections of M
with respect to the metrics g̃ and g, respectively. Using the Koszul formula, one can simply obtain the
following relation between ∇̃ and ∇:

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω♯} (2.5)

for all vector fields X,Y on M , where ω(X) = g(grad f,X) = X(f). Note that the vector field ω♯ =
grad f is called the Lee vector field of the conformal Kenmotsu manifold M . Then from η(X) = g(X, ξ),
we have the equality η(ω♯) = ω(ξ). Although ω(ω♯) = ‖ω♯‖2, it is not necessarily ‖ω♯‖2 = 1, that is, ω♯

is not necessarily a unit vector field.
Assuming that R̃ and R are the curvature tensors of (M,ϕ, η̃, ξ̃, g̃) and (M,ϕ, η, ξ, g), respectively. We
have the following relation between R̃ and R:

exp(−f)g̃(R̃(X,Y )Z,W ) =g(R(X,Y )Z,W )

+
1

2
{B(X,Z)g(Y,W )−B(Y, Z)g(X,W )

+B(Y,W )g(X,Z)−B(X,W )g(Y, Z)}

+
1

4
‖ω♯‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )} (2.6)

for all vector fields X,Y, Z,W on M , where B satisfies

B := ∇ω −
1

2
ω ⊗ ω. (2.7)

Obviously, B is a symmetric tensor field of type (0,2). On the other hand, from equations (2.1), (2.3) and
(2.5), we get

(∇Xϕ)Y = (exp(f))
1

2 {−g(X,ϕY )ξ − η(Y )ϕX}

−
1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω♯ − g(X,ϕY )ω♯}, (2.8)

∇Xξ = (exp(f))
1

2 {X − η(X)ξ} −
1

2
{ω(ξ)X − η(X)ω♯} (2.9)

for all vector fields X,Y on M .
Note that, if the function of conformal change f be constant on the conformal Kenmotsu manifold M ,
i.e. ω♯ = 0, then M is an α-Kenmotsu manifold in view of (2.2) and (2.8). In this paper, we suppose that
the conformal Kenmotsu manifold M is non-α-Kenmotsu, that is, f is non-constant, so ω♯ is a non-zero
vector field on M . Also, in the definition of the conformal Kenmotsu manifold M , we have assumed that
f is non-zero, hence M is non-Kenmotsu by (2.8).

3. Submanifolds of Conformal Kenmotsu Manifolds

Let (Ḿ, ǵ) be an m-dimensional submanifold of a (2n+1)-dimensional conformal Kenmotsu manifold
(M, g). The Gauss and Weingarten formulas are given as

∇XY = ∇́XY + h(X,Y ), ∇XN = −ANX +∇⊥
XN

for all vector fields X,Y tangent to Ḿ and each vector field N normal to Ḿ , where ∇́ is the Riemannian
connection of Ḿ determined by the induced metric ǵ and ∇⊥ is the normal connection of T⊥Ḿ . It is
known that g(h(X,Y ), N) = ǵ(ANX,Y ), where AN is the shape operator of Ḿ with respect to unit
normal vector field N .
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The Gauss equation is given as

exp(−f)g̃(R̃(X,Y )Z,W ) =ǵ(Ŕ(X,Y )Z,W )

− ǵ(h(X,W ), h(Y, Z)) + ǵ(h(Y,W ), h(X,Z))

+
1

2
{B(X,Z)ǵ(Y,W )−B(Y, Z)ǵ(X,W )

+B(Y,W )ǵ(X,Z)−B(X,W )ǵ(Y, Z)}

+
1

4
‖ω♯‖2{ǵ(X,Z)ǵ(Y,W )− ǵ(Y, Z)ǵ(X,W )} (3.1)

for all X,Y, Z,W tangent to Ḿ , where Ŕ is the curvature tensor of Ḿ .
In this paper, we assume that ξ |Ḿ is tangent to Ḿ .

3.1. Example

In this subsection, we construct an example of a five-dimensional conformal Kenmotsu manifold which
is not Kenmotsu. Also, we present two submanifolds M1 and M2 in M such that the structural vector
field ξ is tangent to both M1 and M2 and the Lee vector field ω♯ is tangent to M1 and normal to M2.
We consider the five-dimensional manifold

M = {(x1, x2, y1, y2, z) ∈ R
5 | x1 > 0, z 6= 0},

where (x1, x2, y1, y2, z) are the standard coordinates in R
5. We choose the vector fields

e1 = exp(−z)
∂

∂x1
, e2 = exp(−z)

∂

∂x2
, e3 = exp(−z)

∂

∂y1
,

e4 = exp(−z)
∂

∂y2
, e5 = (exp(x1))

1

2

∂

∂z
,

which are linearly independent at each point of M . Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = exp(−x1), g(e5, e5) = 1

and the remaining g(ei, ej) = 0, i, j : 1, · · · , 5. Let η be the 1-form defined by η(X) = g(X, e5) for each
vector field X on M . Thus, we have

η(e1) = 0, η(e2) = 0, η(e3) = 0, η(e4) = 0, η(e5) = 1.

We define the (1, 1)-tensor field ϕ as

ϕe1 = e3, ϕe2 = e4, ϕe3 = −e1, ϕe4 = −e2, ϕe5 = 0.

Then using the linearity of ϕ and g, we have

ϕ2X = −X + η(X)e5, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M . Thus, for e5 = ξ, (ϕ, ξ, η, g) defines an almost contact metric structure
on M . Moreover, by the definition of bracket on manifolds we get

[e1, e5] = (exp(x1))
1

2 e1 +
1

2
exp(−z)e5, [e2, e5] = (exp(x1))

1

2 e2,

[e3, e5] = (exp(x1))
1

2 e3, [e4, e5] = (exp(x1))
1

2 e4

and the remaining [ei, ej ] = 0, i, j : 1, · · · , 5. The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z]) + g(Y, [Z,X ]) + g(Z, [X,Y ]),
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which is known as Koszul formula. By using this formula, we obtain

∇e1e1 = −
1

2
exp(−z)e1 − (exp(−x1))

1

2 e5, ∇e1e2 = −
1

2
exp(−z)e2,

∇e1e3 = −
1

2
exp(−z)e3, ∇e1e4 = −

1

2
exp(−z)e4,

∇e1e5 = (exp(x1))
1

2 e1, ∇e2e1 = −
1

2
exp(−z)e2,

∇e2e2 =
1

2
exp(−z)e1 − (exp(−x1))

1

2 e5, ∇e2e5 = (exp(x1))
1

2 e2,

∇e3e1 = −
1

2
exp(−z)e3, ∇e3e3 =

1

2
exp(−z)e1 − (exp(−x1))

1

2 e5,

∇e3e5 = (exp(x1))
1

2 e3, ∇e4e1 = −
1

2
exp(−z)e4,

∇e4e4 =
1

2
exp(−z)e1 − (exp(−x1))

1

2 e5, ∇e5e1 = −
1

2
exp(−z)e5,

∇e5e5 =
1

2
exp(x1 − z)e1, ∇e4e5 = (exp(x1))

1

2 e4

and the remaining ∇eiej = 0, i, j : 1, · · · , 5. By the following conformal change

g̃ = exp(x1)g, ξ̃ = (exp(−x1))
1

2 ξ, η̃ = (exp(x1))
1

2 η, ϕ̃ = ϕ,

(M, ϕ̃, ξ̃, η̃, g̃) is a Kenmotsu manifold that we verify it as follows. The above conformal change can be
written as

ξ̃ =
∂

∂z
, g̃(e1, e1) = g̃(e2, e2) = g̃(e3, e3) = g̃(e4, e4) = g̃(ξ̃, ξ̃) = 1,

η̃(e1) = η̃(e2) = η̃(e3) = η̃(e4) = 0, η̃(ξ̃) = 1,

ϕ̃e1 = e3, ϕ̃e2 = e4, ϕ̃e3 = −e1, ϕ̃e4 = −e2, ϕ̃ξ̃ = 0.

Also, we have

[e1, ξ̃] = e1, [e2, ξ̃] = e2, [e3, ξ̃] = e3, [e4, ξ̃] = e4

and the remaining [ei, ej] = 0, i, j : 1, · · · , 4. Suppose that ∇̃ is the Riemannian connection of the metric
g̃. Using the Koszul formula, we get

∇̃e1e1 = −ξ̃, ∇̃e1 ξ̃ = e1, ∇̃e2e2 = −ξ̃,

∇̃e2 ξ̃ = e2, ∇̃e3e3 = −ξ̃, ∇̃e3 ξ̃ = e3,

∇̃e4e4 = −ξ̃, ∇̃e4 ξ̃ = e4, ∇̃ξ̃ ξ̃ = 0

and the remaining ∇̃eiej = 0, i, j : 1, · · · , 4. It can be easily considered that (2.1) holds on (M, ϕ̃, ξ̃, η̃, g̃).
Thus, (M,ϕ, ξ, η, g) is a conformal Kenmotsu manifold but is not Kenmotsu, Since we have

(∇Xϕ)Y 6= −g(X,ϕY )ξ − η(Y )ϕX

for some vector fields X,Y on M (for instance, (∇e4ϕ)e2 6= −g(e4, ϕe2)ξ − η(e2)ϕe4).
Suppose M1 = {(x1, y1, y2, z) ∈ R

4 | (x1, y1, y2, z) 6= 0} is a four-dimensional submanifold of M with the
isometric immersion defined by

ι1 : M1 → M

ι(x1, y1, y2, z) = (x1, 0, y1, y2, z),

where (x1, y1, y2, z) are the standard coordinates in R
4. We choose the vector fields

e1 = exp(−z)
∂

∂x1
, e3 = exp(−z)

∂

∂y1
,

e4 = exp(−z)
∂

∂y2
, e5 = (exp(x1))

1

2

∂

∂z
,
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which are linearly independent at each point of M1. Then, e1, e3, e4 and e5 form a basis for the tangent
space of M1 and e2 spans the normal space of M1 in M . Let g1 be the induced metric on M1. Thus, we
have

g1(e1, e1) = g1(e3, e3) = g1(e4, e4) = exp(−x1), g1(e5, e5) = 1.

Using ω(Y ) = Y (x1), for each vector field Y on M , it can be easily calculated that

ω(e1) = e1(x1) = exp(−z), ω(e2) = 0, ω(e3) = 0, ω(e4) = 0, ω(e5) = 0

then ω♯ = exp(x1 − z)e1. We see that M1 is a submanifold of the conformal Kenmotsu manifold M such
that ω♯ |M1

and ξ |M1
are tangent to M1.

Now, let M2 = {(x2, y1, y2, z) ∈ R
4 | (x2, y1, y2, z) 6= 0} be a four-dimensional submanifold of M with the

isometric immersion defined by

ι2 : (M2, g2) → (M, g)

ι2(x2, y1, y2, z) = (2, x2, y1, y2, z),

where (x2, y1, y2, z) are the standard coordinates in R
4. We choose the vector fields

e2 = exp(−z)
∂

∂x2
, e3 = exp(−z)

∂

∂y1
,

e4 = exp(−z)
∂

∂y2
, e5 = exp(1)

∂

∂z
,

which are linearly independent at each point of M2. Then, e2, e3, e4 and e5 form a basis for the tangent
space of M2 and e1 spans the normal space of M2 in M . Suppose g2 is the induced metric on M2. Then,
we have

g2(e2, e2) = g2(e3, e3) = g2(e4, e4) = exp(−2), g2(e5, e5) = 1.

Thus, M2 is a submanifold of the conformal Kenmotsu manifold M such that ξ |M2
and ω♯ |M2

= exp(2−
z)e1 are tangent and normal to M2, respectively, in view of the values ω(ei) for all i : 1, · · · , 5.
Now, we give some preliminary lemmas on the submanifold Ḿ of the conformal Kenmotsu manifold M

tangent to ξ and either tangent or normal to ω♯.

Lemma 3.1. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is normal

to Ḿ . Then

B(X,Y ) = −ω(h(X,Y )), (3.2)

h(X, ξ) =
1

2
η(X)ω♯, (3.3)

∇́Xξ = (exp(f))
1

2 {X − η(X)ξ} (3.4)

for all vector fields X,Y tangent to Ḿ .

Proof. From (2.7) we have

B(X,Y ) = (∇Xω)Y −
1

2
ω(X)ω(Y ) = ∇X(ω(Y ))− ω(∇XY )−

1

2
ω(X)ω(Y )

for all X,Y tangent to Ḿ . Since ω♯ |Ḿ is normal to Ḿ , the above equation can be written as

B(X,Y ) = −ω(∇XY )

for all X,Y on Ḿ . Then by using the Gauss formula, we obtain (3.2).
Taking Y = ξ in the Gauss formula and using (2.9), we have

∇́Xξ + h(X, ξ) = ∇Xξ = (exp(f))
1

2 {X − η(X)ξ} −
1

2
{ω(ξ)X − η(X)ω♯}
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for each X tangent to Ḿ . Since ω♯ |Ḿ is normal to Ḿ , comparing the tangential part and the normal
part in the above equation, we obtain (3.3) and (3.4). �

Lemma 3.2. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is tangent

to Ḿ . Then

B(X,Y ) = ǵ(∇́Xω♯, Y )−
1

2
ω(X)ω(Y ), (3.5)

h(X, ξ) = 0, (3.6)

∇́Xξ = (exp(f))
1

2 {X − η(X)ξ} −
1

2
{ω(ξ)X − η(X)ω♯} (3.7)

for all vector fields X,Y tangent to Ḿ .

Proof. Similarly to the Lemma 3.1, equations (3.5), (3.6) and (3.7) are immediate results of (2.7), (2.9)
and the Gauss formula. �

Lemma 3.3. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is normal

to Ḿ . Then

Ŕ(X,Y )ξ = exp(f){η(X)Y − η(Y )X}, (3.8)

Ŕ(X, ξ)Y = exp(f){ǵ(X,Y )ξ − η(Y )X} (3.9)

for all vector fields X,Y tangent to Ḿ .

Proof. Equation (3.8) follows from (2.4), (3.1), (3.2) and (3.3). Using the relation (3.8) and the symmetric
property of Ŕ, we get (3.9). �

Lemma 3.4. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is tangent

to Ḿ . Then

Ŕ(X,Y )ξ =(exp(f)−
1

4
‖ ω♯ ‖2){η(X)Y − η(Y )X}

−
1

2
{η(∇́Xω♯)Y −

1

2
ω(X)ω(ξ)Y − η(∇́Y ω

♯)X +
1

2
ω(Y )ω(ξ)X

+η(X)∇́Y ω
♯ −

1

2
η(X)ω(Y )ω♯ − η(Y )∇́Xω♯ +

1

2
η(Y )ω(X)ω♯} (3.10)

for all vector fields X,Y tangent to Ḿ .

Proof. Equations (2.4), (3.1), (3.5) and (3.6) yield (3.10). �

Corollary 3.5. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is tangent

to Ḿ and parallel on Ḿ . Then

Ŕ(X,Y )ξ =(exp(f)−
1

4
‖ ω♯ ‖2){η(X)Y − η(Y )X}

+
1

4
{ω(X)ω(ξ)Y − ω(Y )ω(ξ)X + η(X)ω(Y )ω♯ − η(Y )ω(X)ω♯}, (3.11)

Ŕ(X, ξ)Y =(exp(f)−
1

4
‖ ω♯ ‖2){ǵ(X,Y )ξ − η(Y )X}

+
1

4
{ω(ξ)ǵ(X,Y )ω♯ − ω(ξ)ω(Y )X + ω(X)ω(Y )ξ − ω(X)η(Y )ω♯} (3.12)

for all vector fields X,Y tangent to Ḿ .



8 R. Abdi

Proof. Equation (3.11) is an immediate resulte of (3.10). We obtain (3.12) by (3.11) and the symmetric
property of Ŕ. �

Lemma 3.6. Let Ḿ be a submanifold of a conformal Kenmotsu manifold M such that ω♯ |Ḿ is tangent

to Ḿ and parallel on Ḿ . Then

ω(ξ) 6= 0, (3.13)

(exp(f))
1

2 −
1

2
ω(ξ) 6= 0, (3.14)

αexp(f) + β(‖ω♯‖2 − ω(ξ)2) 6= 0. (3.15)

In (3.15), α and β are some non-zero constants.

Proof. The proof of the relations (3.13), (3.14) and (3.15) are given by contradiction.
Suppose ω(ξ) = 0. Taking the covariant differentation of ω(ξ) = 0 with respect to ξ and using ∇́ω♯ = 0,
we obtain

ǵ(∇́ξξ, ω
♯) = 0.

Using (3.7) in the above equation, we get

‖ω♯‖2 = ω(ξ)2.

Since we have assumed that ω(ξ) = 0, from the above equation it follows that ‖ω♯‖2 = 0 which contradicts
the hypothesis ω♯ 6= 0. Hence (3.13) holds on Ḿ .
Now, we assume

(exp(f))
1

2 −
1

2
ω(ξ) = 0. (3.16)

Taking the covariant differentation of (3.16) along vector field ξ, we have

1

2
ω(ξ)(exp(f))

1

2 −
1

2
ξ(ω(ξ)) = 0. (3.17)

Using (3.16) and ∇́ω♯ = 0 in (3.17), we get 2ǵ(∇́ξξ, ω
♯) = ω(ξ)2. Then by making use of (3.7) in

2ǵ(∇́ξξ, ω
♯) = ω(ξ)2, we find 2ω(ξ)2 = ‖ω♯‖2. As ω♯ is parallel on Ḿ , it follows that ‖ω♯‖2 is constant

on Ḿ . Thus, ω(ξ)2 is constant on Ḿ . Then from (3.17) we have ω(ξ) = 0 which is a contradiction in
view of (3.13).
Finally, we suppose

αexp(f) + β(‖ω♯‖2 − ω(ξ)2) = 0. (3.18)

Taking the covariant differentation of (3.18) along vector field ξ and using ∇́ω♯ = 0, we find

αω(ξ)exp(f)− 2βω(ξ)ǵ(∇́ξξ, ω
♯) = 0.

Making use of (3.7) and (3.13) in the above equation, we get

αexp(f) + β(ω(ξ)2 − ‖ω♯‖2) = 0. (3.19)

Summing (3.18) to (3.19), we have αexp(f) = 0 which is a contradiction.
Hence (3.13), (3.14) and (3.15) hold on Ḿ . �
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4. Semi-Symmetric Submanifolds

A submanifold Ḿ of a conformal Kenmotsu manifoldM is said to be semi-symmetric if Ŕ(X,Y ).Ŕ = 0,
for all vector fields X,Y tangent to Ḿ where Ŕ denotes the curvature tensor of Ḿ .

Theorem 4.1. Let Ḿ be a semi-symmetric submanifold of a conformal Kenmotsu manifold M such that
ω♯ |Ḿ is normal to Ḿ . Then K(X,Y ) = − exp(f) for all vector fields X,Y orthogonal to ξ.

Proof. Since Ḿ is semi-symmetric, we have

0 = Ŕ(X, ξ)Ŕ(X,Y )Y − Ŕ(Ŕ(X, ξ)X,Y )Y (4.1)

− Ŕ(X, Ŕ(X, ξ)Y )Y − Ŕ(X,Y )Ŕ(X, ξ)Y

for all vector fields X,Y on Ḿ . From (3.9), we obtain

0 = g(Ŕ(X,Y )Y,X)ξ − η(Ŕ(X,Y )Y )ξ − g(X,X)Ŕ(ξ, Y )Y

+ η(X)Ŕ(X,Y )Y + η(Y )Ŕ(X,Y )X

for each X orthogonal to Y . From inner product the above equation with vector field ξ and by using
(3.9), we get

g(Ŕ(X,Y )Y,X) = − exp(f)g(X,X)g(Y, Y )

for each plane {X,Y } orthogonal to ξ. The above equation compelets the proof of the theorem. �

Theorem 4.2. Let Ḿ be a semi-symmetric submanifold of a conformal Kenmotsu manifold M such that
ω♯ |Ḿ is tangent to Ḿ and parallel on Ḿ . Then

K(X,Y ) = − exp(f) +
1

4
‖ ω♯ ‖2 −

1
4 exp(f) ‖ ω♯ ‖2 cos2θ

exp(f)− 1
4 ‖ ω♯ ‖2 sin2θ

(4.2)

for all X,Y orthogonal to both ξ and ω♯ |Ḿ , where θ denotes angle between ξ and ω♯ |Ḿ .

Proof. Since Ḿ is semi-symmetric, we have

0 = Ŕ(X, ξ)Ŕ(X,Y )Y − Ŕ(Ŕ(X, ξ)X,Y )Y (4.3)

− Ŕ(X, Ŕ(X, ξ)Y )Y − Ŕ(X,Y )Ŕ(X, ξ)Y

for all vector fields X,Y on Ḿ . Since ω♯ |Ḿ is parallel on Ḿ , so by using (3.12), we get

0 = (exp(f)−
1

4
‖ ω♯ ‖2)(g(Ŕ(X,Y )Y,X)ξ − η(Ŕ(X,Y )Y )X)

−
1

4
{ω(Ŕ(X,Y )Y )ω(ξ)X − ω(ξ)g(Ŕ(X,Y )Y,X)ω♯

− ω(Ŕ(X,Y )Y )ω(X)ξ + η(Ŕ(X,Y )Y )ω(X)ω♯}

− (exp(f)−
1

4
‖ ω♯ ‖2)g(X,X)Ŕ(ξ, Y )Y

+
1

4
{ω(X)ω(ξ)Ŕ(X,Y )Y − g(X,X)ω(ξ)Ŕ(ω♯, Y )Y

− (ω(X))2Ŕ(ξ, Y )Y − ω(X)ω(Y )Ŕ(X, ξ)Y

+ ω(Y )ω(ξ)Ŕ(X,Y )X − ω(X)ω(Y )Ŕ(X,Y )ξ}
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for each plane {X,Y } orthogonal to ξ. Taking X and Y orthogonal to ω♯ |Ḿ in the above equation, we
obtain

0 = (exp(f)−
1

4
‖ ω♯ ‖2)(g(Ŕ(X,Y )Y,X)ξ − η(Ŕ(X,Y )Y )X)

−
1

4
{ω(Ŕ(X,Y )Y )ω(ξ)X − ω(ξ)g(Ŕ(X,Y )Y,X)ω♯

+ g(X,X)ω(ξ)Ŕ(ω♯, Y )Y } − (exp(f)−
1

4
‖ ω♯ ‖2)g(X,X)Ŕ(ξ, Y )Y.

From inner product, the above equation with vector field ξ, we conclude

(exp(f)−
1

4
‖ ω♯ ‖2 +

1

4
(ω(ξ))2)g(R(X,Y )Y,X)

= (exp(f)−
1

4
‖ ω♯ ‖2)g(X,X)g(R(ξ, Y )Y, ξ) +

1

4
g(X,X)ω(ξ)g(R(ω♯, Y )Y, ξ).

Putting (3.12) in the above equation, we get

(exp(f)−
1

4
‖ ω♯ ‖2 +

1

4
(ω(ξ))2)g(R(X,Y )Y,X)

= −(exp(f)−
1

4
‖ ω♯ ‖2 +

1

4
(ω(ξ))2)(exp(f)−

1

4
‖ ω♯ ‖2)g(X,X)g(Y, Y )

−
1

4
g(X,X)g(Y, Y )(ω(ξ))2.

Then making use of (3.15), we find

g(R(X,Y )Y,X) = −(exp(f)−
1

4
‖ ω♯ ‖2)g(X,X)g(Y, Y )

−
1
4g(X,X)g(Y, Y )(ω(ξ))2

exp(f)− 1
4 ‖ ω♯ ‖2 + 1

4 (ω(ξ))
2

for each plane {X,Y } orthogonal to both ξ and ω♯ |Ḿ . Using ω(ξ) =‖ ω♯ ‖ cosθ (where θ denotes angle
between ξ and ω♯ |Ḿ ) in the above equation, we get (4.2). Thus theorem is proved. �

5. Locally Symmetric Submanifolds

A submanifold Ḿ of a conformal Kenmotsu manifold M is said to be locally symmetric such that
∇́Ŕ = 0 where ∇́ and Ŕ denote the Riemannian connention and curvature tensor of Ḿ , respectively.

Theorem 5.1. Let Ḿm be a locally symmetric submanifold of a conformal Kenmotsu manifold M such
that ω♯ |Ḿ is normal to Ḿ . Then Ḿ is locally isometric to the hyperbolic space H

m(− exp(f)).

Proof. Since Ḿ is locally symmetric, we can write

0 = ∇́Z(Ŕ(X,Y )ξ)− Ŕ(∇́ZX,Y )ξ − Ŕ(X, ∇́ZY )ξ − Ŕ(X,Y )∇́Zξ.

From (3.8) and (3.4), we get

Ŕ(X,Y )Z = (exp(f))
1

2ω(X){η(Y )X − η(X)Y }

− exp(f){g(Y, Z)X − g(X,Z)Y }.

Since ω♯ |Ḿ is normal to Ḿ , we obtain

Ŕ(X,Y )Z = − exp(f){g(Y, Z)X − g(X,Z)Y } (5.1)

for all vector fields X,Y, Z on Ḿ . Note that f is constant on Ḿ because ω♯ |Ḿ is normal to Ḿ . Thus
the proof of the theorem is completed. �
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Lemma 5.2. Let Ḿ be a locally symmetric submanifold of a conformal Kenmotsu manifold M such that
ω♯ |Ḿ is tangent to Ḿ and parallel on Ḿ . Then

Ŕ(X,Y )Z = (exp(f)−
1

4
‖ ω♯ ‖2){g(X,Z)Y − g(Y, Z)X}

+
2 exp(f)

2(exp(f))
1

2 − ω(ξ)
(ω(Z)− η(Z)ω(ξ)){η(X)Y − η(Y )X}

−
1

4
{ω(Y )ω(Z)X − ω(X)ω(Z)Y − g(X,Z)ω(Y )ω♯ + g(Y, Z)ω(X)ω♯} (5.2)

for all vector fields X,Y, Z on Ḿ .

Proof. Since ω♯ |Ḿ is parallel on Ḿ , taking the covariant differentiation of (3.11) along vector field Z

tangent to Ḿ , we have

Ŕ(X,Y )∇́Zξ = exp(f)ω(Z){η(X)Y − η(Y )X}

+ (exp(f)−
1

4
‖ ω♯ ‖2){g(X, ∇́Zξ)Y − g(Y, ∇́Zξ)X} −

1

4
{ω(Y )ω(∇́Zξ)X

− ω(X)ω(∇́Zξ)Y − g(X, ∇́Zξ)ω(Y )ω♯ + g(Y, ∇́Zξ)ω(X)ω♯},

then making use of (3.7) in the above equation, it follows that

((exp(f))
1

2 −
1

2
ω(ξ))Ŕ(X,Y )Z

= exp(f)ω(Z){η(X)Y − η(Y )X}

+ ((exp(f))
1

2 −
1

2
ω(ξ)){(exp(f)−

1

4
‖ ω♯ ‖2){g(X,Z)Y − g(Y, Z)X}

−
1

4
{ω(Y )ω(Z)X − ω(X)ω(Z)Y + ω(X)g(Y, Z)ω♯ − ω(Y )g(X,Z)ω♯}}

for each vector field Z orthogonal to ξ. Then by using (3.14) in the above equation, we obtain

Ŕ(X,Y )Z = (exp(f)−
1

4
‖ ω♯ ‖2){g(X,Z)Y − g(Y, Z)X}

+
2 exp(f)

2(exp(f))
1

2 − ω(ξ)
ω(Z){η(X)Y − η(Y )X} −

1

4
{ω(Y )ω(Z)X − ω(X)ω(Z)Y

+ ω(X)g(Y, Z)ω♯ − ω(Y )g(X,Z)ω♯}

for each vector field Z orthogonal to ξ. For all vector fields X,Y, Z, using (3.11), we get (5.2). �

Corollary 5.3. Let Ḿ be a locally symmetric submanifold of a conformal Kenmotsu manifold M such
that ω♯ |Ḿ is tangent to Ḿ and parallel on Ḿ . Then

K(X,Y ) = − exp(f) +
1

4
‖ ω♯ ‖2 (5.3)

for all vector fields X,Y orthogonal to both ξ and ω♯ |Ḿ .

Proof. Equation (5.3) yields (5.2). �

Theorem 5.4. There is no locally symmetric submanifold Ḿ of a conformal Kenmotsu manifold M such
that ω♯ |Ḿ is tangent to Ḿ and parallel on Ḿ .
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Proof. Let Ḿ be locally symmetric. Since any Locally symmetric manifold is semi-symmetric, from
Theorem 4.2, we have

K(X,Y ) = − exp(f) +
1

4
‖ ω♯ ‖2 −

1
4 exp(f) ‖ ω♯ ‖2 cos2θ

exp(f)− 1
4 ‖ ω♯ ‖2 sin2θ

(5.4)

for all vector fields X,Y orthogonal to both ξ and ω♯ |Ḿ . Comparing (5.3) and (5.4), we get cos2θ = 0.
Hence, ω(ξ) = 0, that is a contradiction in view of (3.13). �
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