(3s.) **v. 2022 (40)** : 1–7. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.45988

Spectral Inclusions Between C_0 -quasi-semigroups and Their Generators

A. Tajmouati, Y. Zahouan and M. A. Ould Mohamed Baba

ABSTRACT: In this paper, we show a spectral inclusion of a different spectra of a C_0 -quasi-semigroup and its generator A(t). Precisely, we focus for ordinary spectrum, point spectrum, approximate spectrum, residual spectrum and essential spectrum.

Key Words: C_0 -quasi-semigroup, C_0 -semigroup, Ordinary spectrum, Point spectrum, Approximate spectrum, Residual spectrum, Essential spectrum.

Contents

1 Introduction 1

2 Main results 4

1. Introduction

Throughout, X denotes a complex Banach space and $\mathcal{B}(X)$ the algebra of all bounded linear operators on X. An unbounded operator T on X is a linear application partially defined on a subspace $D(T) \subseteq X$ called domain of T, and it's closed if its graph $\Gamma(T) = \{(x; T(x))/x \in D(T)\}$ is closed in X^2 , we denote the space of these operators by $\mathcal{C}(X)$.

Let T be a closed linear operator on X with domain D(T), we denote by Rg(T), $Rg^{\infty}(T) := \bigcap_{n \geq 1} Rg(T^n)$, N(T), $\rho(T)$, $\sigma(T)$, and $\sigma_p(T)$ respectively the range, the hyper range, the kernel, the resolvent and the spectrum of T, where $\sigma(T) = \{\lambda \in \mathbb{C} \setminus \lambda - T \text{ is not bijective}\}$.

For a closed operator T we define the point spectrum, the approximate point spectrum and the residual spectrum by

- $\sigma_p(T) = \{ \lambda \in \mathbb{C} \setminus \lambda T \text{ is not injective } \},$
- $\sigma_{ap}(T) = \{\lambda \in \mathbb{C} \setminus \lambda T \text{ is not injective or } Rg(\lambda T) \text{ is not closed in } X\},$
- $\sigma_r(T) = \{ \lambda \in \mathbb{C} \setminus Rq(\lambda T) \text{ is not dense in } X \}.$

From [1, p.79], we have $\lambda \in \sigma_{ap}(T)$ if and only if there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset D(T)$, such that $||x_n|| = 1$ and $\lim_{n \to \infty} ||(T - \lambda)x_n|| = 0$.

A closed operator T is called Fredholm if $\alpha(T) = \dim N(T)$ and $\beta(T) = \operatorname{codim} Rg(T)$ are finite. The essential spectrum is defined by,

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : \lambda - T \text{ is not Fredholm} \}.$$

The family $\{T(t)\}_{t\geq 0}\subseteq \mathcal{B}(X)$ is a C_0 -semigroup if it has the following properties :

- 1. T(0) = I,
- 2. T(t)T(s) = T(t+s),
- 3. The map $t \to T(t)x$ from $[0, +\infty[$ into X is continuous for all $x \in X$.

2010 Mathematics Subject Classification: 47A10, 47D06. Submitted December 24, 2018. Published April 05, 2019 In this case, its generator A is defined by

$$\mathcal{D}(\mathcal{A}) = \{ x \in X / \lim_{t \to 0^+} \frac{T(t)x - x}{t} exists \},\$$

with

$$Ax = \lim_{t \to 0^+} \frac{T(t)x - x}{t}.$$

The theory of quasi-semigroups of bounded linear operators, as a generalization of semigroups of operators, was introduced by H. Leiva and D. Barcenas [2], [3], [4]. Recall that a two parameter commutative family $\{R(t,s)\}_{t,s\geq 0} \subseteq \mathcal{B}(X)$ is called a strongly continuous quasi-semigroup (or C_0 -quasi-semigroup) of operators [9] if for every $t,s,r\geq 0$ and $x\in X$, we have

- 1. R(t,0) = I, the identity operator on X,
- 2. R(t, s + r) = R(t + r, s)R(t, r),
- 3. $\lim_{s \to 0} ||R(t,s)x x|| = 0$,
- 4. there exists a continuous increasing mapping $M:[0,+\infty[\longrightarrow [0,+\infty[$ such that,

$$||R(t,s)|| < M(t+s).$$

For a C_0 -quasi-semigroup $\{R(t,s)\}_{t,s\geq 0}$ on a Banach space X, let \mathcal{D} be the set of all $x\in X$ for which the following limits exist,

$$\lim_{s \to 0^+} \frac{R(0,s)x - x}{s}$$
, $\lim_{s \to 0^+} \frac{R(t,s)x - x}{s}$ and $\lim_{s \to 0^+} \frac{R(t-s,s)x - x}{s}$

and

$$\lim_{s \to 0^+} \frac{R(t,s)x - x}{s} = \lim_{s \to 0^+} \frac{R(t-s,s)x - x}{s}.$$

In this case, for $t \geq 0$, we define an operator A(t) on \mathcal{D} as

$$A(t)x = \lim_{s \to 0^+} \frac{R(t,s)x - x}{s}.$$

The family $\{A(t)\}_{t\geq 0}$ is called infinitesimal generator of the C_0 -quasi-semigroups $\{R(t,s)\}_{t.s>0}$.

Let $\{T(t)\}_{t\geq 0}$ be a C_0 -semigroup on a Banach space X with its generator A. Through this family, Sutrima and all built concrete examples of C_0 -quasi-semigroup.

Example 1.1. [9, Examples 2.2, 2.4 and 2.5]

1. Let for $t, s \geq 0$,

$$R(t,s) = T(s).$$

Then $\{R(t,s)\}_{t,s\geq 0}$ is a C_0 -quasi-semigroup with $\mathbb{D}=\mathbb{D}(\mathcal{A})$ and its generator for all $t\geq 0$

$$A(t) = A$$
.

2. Let for $t, s \geq 0$,

$$R(t,s) = T(g(t+s) - g(t)).$$

where $g(t) = \int_0^t a(u)du$ and $a \in \mathcal{C}([0, +\infty[)$ where $\mathcal{C}([0, +\infty[)$ is the set of all continuous functions defined on $[0, +\infty[\to [0, +\infty[$. Then $\{R(t, s)\}_{t, s \geq 0}$ is a C_0 -quasi-semigroup with $\mathcal{D} = \mathcal{D}(\mathcal{A})$ and its generator for all $t \geq 0$

$$A(t) = a(t)A.$$

3. Let for $t, s \geq 0$,

$$R(t,s) = e^{T(s+t)-T(t)}.$$

Then $\{R(t,s)\}_{t,s\geq 0}$ is a C_0 -quasi-semigroup with $\mathbb{D}=\mathbb{D}(\mathcal{A})$ and its generator for all $t\geq 0$

$$A(t) = AT(t)$$
.

Theorem 1.2. [9, Theorems 3.1 and 3.2] Let $\{R(t,s)\}_{t,s\geq 0}$ be a C_0 -quasi-semigroup on X with generator A(t). Then we have

- 1. For each t > 0, R(t, .) is strongly continuous on $[0, +\infty[$.
- 2. For each t > 0 and $x \in X$,

$$\lim_{s \to 0^+} \frac{1}{s} \int_0^s R(t, h) x dh = x.$$

3. If $x \in \mathcal{D}$, $t \geq 0$ and $t_0, s_0 \geq 0$, then $R(t_0, s_0)x \in \mathcal{D}$ and

$$R(t_0, s_0)A(t)x = A(t)R(t_0, s_0)x.$$

4. For each s > 0 and $x \in \mathcal{D}$,

$$\frac{\partial}{\partial s}(R(t,s)x) = A(t+s)R(t,s)x = R(t,s)A(t+s)x.$$

5. If A(.) is locally integrable, then for every $x \in \mathcal{D}$ and $s \geq 0$,

$$R(t,s)x = x + \int_0^s A(t+h)R(t,h)xdh.$$

6. If $f:[0,+\infty[\longrightarrow X \text{ is a continuous, then for every }t\in[0,+\infty[$

$$\lim_{r \to 0^+} \frac{1}{h} \int_{s}^{s+r} R(t,h) f(h) dh = R(t,s) f(s).$$

Contrary to C_0 -semigroup, the generator A(t) of C_0 -quasi-semigroup is not necessary closed or densely defined [9, Examples 2.3 and 3.3].

Theorem 1.3. [9, Theorem 3.4] Let A(t) be a closed and densely defined generator of a C_0 -quasi $semigroup\ \{R(t,s)\}_{t,s\geq 0}\ such\ that\ the\ resolvent\ \mathcal{R}(\lambda,A(t))=(\lambda-A(t))^{-1}\ exists\ in\ S=\{\lambda\in\mathbb{C},\ -\theta\leq 1\}$ $\arg(\lambda) \leq \theta$ with $\theta \in]\frac{\pi}{2}, \pi[\}$. If $\lambda \in \rho(A(t))$, then for all s > 0 we have

$$\Re(\lambda, A(t))R(t, s) = R(t, s)\Re(\lambda, A(t)).$$

For all $t \geq s \geq 0$, $\lambda \in \mathbb{C}$ and $\{R(t,s)\}_{t,s\geq 0} \in \mathcal{B}(X)$, we define in this paper an integral giving by for all $x \in X$

$$D_{\lambda}(t,s)x = \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)xdh,$$

where the integral is understood in the sense of Bochner [5].

It's clear that for each $t, \geq s \geq 0$, we have $D_{\lambda}(t,s) \in \mathcal{B}(X)$. Indeed, there exists a continuous increasing $\text{mapping } M: [0,+\infty[\longrightarrow [0,+\infty[\text{ satisfying } \|R(t,s)\| \leq M(t+s) \text{ if } \lambda=0, \text{ then } \|D_0(t,s)x\| \leq M(t+s)s\|x\|$ and if $\lambda \neq 0$, then $\|D_{\lambda}(t,s)x\| \leq \frac{M(t+s)\|x\|\|1-e^{\lambda s}\|}{|\lambda|}$. Inspired by the spectral study of C_0 -semigroup, in this work, we show that the spectral inclusion of

different spectra for C_0 -quasi-semigroup and its generator.

2. Main results

We start with the important result.

Theorem 2.1. Let A(t) be the generator of the C_0 -quasi-semigroup $\{R(t,s)\}_{t,s\geq 0}$ such that A(t) is closed and densely defined.

Then for all $t \geq s \geq 0$ and all $\lambda \in \mathbb{C}$, we have

1. For all $x \in \mathcal{D}$,

$$D_{\lambda}(t,s)(\lambda - A(t))x = [e^{\lambda s} - R(t-s,s)]x,$$

where $D_{\lambda}(t,s)x = \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)xdh$.

2. For all $x \in X$, we have $D_{\lambda}(t,s)x \in \mathcal{D}$ and

$$(\lambda - A(t))D_{\lambda}(t,s)x = [e^{\lambda s} - R(t-s,s)]x.$$

Proof. 1. By Theorem 1.2, we know for all h > 0 and for all $x \in \mathcal{D}$,

$$\frac{\partial}{\partial h}(R(t-h,h)x) = A(t)R(t-h,h)x = R(t-h,h)A(t)x.$$

Therefore, we conclude that

$$D_{\lambda}(t,s)[A(t)x] = \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)[A(t)x]dh$$

$$= \int_{0}^{s} e^{\lambda(s-h)} \left[\frac{\partial}{\partial h}(R(t-h,h))\right]xdh$$

$$= \left[e^{\lambda(s-h)}R(t-h,h)x\right]_{0}^{s} + \lambda \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)xdh$$

$$= R(t-s,s)x - e^{\lambda s}x + \lambda D_{\lambda}(t,s)x.$$
(*)

Finally, we obtain for all $x \in \mathcal{D}$

$$D_{\lambda}(t,s)(\lambda - A(t))x = [e^{\lambda s} - R(t-s,s)]x.$$

2. Let $\mu \in \rho(A(t))$. From Theorem 1.3, we have for all $x \in X$

$$R(\mu,A(t))R(t,s)x=R(t,s)R(\mu,A(t))x.$$

Hence, for all $x \in X$ we conclude

$$\begin{array}{lcl} \Re(\mu,A(t))D_{\lambda}(t,s)x & = & \Re(\mu,A(t))\int_{0}^{s}e^{\lambda(s-h)}R(t-h,h)xdh \\ \\ & = & \int_{0}^{s}e^{\lambda(s-h)}\Re(\mu,A(t))R(t-h,h)xdh \\ \\ & = & \int_{0}^{s}e^{\lambda(s-h)}R(t-h,h)\Re(\mu,A(t))xdh \\ \\ & = & D_{\lambda}(t,s)\Re(\mu,A(t))x. \end{array}$$

Therefore, we obtain for all $x \in X$

$$\begin{split} D_{\lambda}(t,s)x &= \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)xdh \\ &= \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)(\mu-A(t))\Re(\mu,A(t))xdh \\ &= \mu \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)\Re(\mu,A(t))xdh - \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)A(t)\Re(\mu,A(t))xdh \\ &= \mu \int_{0}^{s} e^{\lambda(s-h)}\Re(\mu,A(t))R(t-h,h)xdh - \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)A(t)\Re(\mu,A(t))xdh \\ &= \mu R(\mu,A(t))\int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)xdh - \int_{0}^{s} e^{\lambda(s-h)}R(t-h,h)[A(t)\Re(\mu,A(t))x]dh \\ &= \mu \Re(\mu,A(t))D_{\lambda}(t,s)x - D_{\lambda}(t,s)[A(t)\Re(\mu,A(t))x] \\ &\stackrel{(*)}{=} \mu \Re(\mu,A(t))D_{\lambda}(t,s)x - \left[R(t-s,s)\Re(\mu,A(t))x - e^{\lambda s}\Re(\mu,A(t))x + \lambda D_{\lambda}(t,s)\Re(\mu,A(t))x\right] \\ &= \mu \Re(\mu,A(t))D_{\lambda}(t,s)x - \Re(\mu,A(t))R(t-s,s)x + e^{\lambda s}\Re(\mu,A(t))x - \lambda \Re(\mu,A(t))D_{\lambda}(t,s)x \\ &= \Re(\mu,A(t))\left[\mu D_{\lambda}(t,s)x - R(t-s,s)x + e^{\lambda s}x - \lambda D_{\lambda}(t,s)x\right]. \end{split}$$

Therefore, for all $x \in X$ we deduce $D_{\lambda}(t,s)x \in \mathcal{D}$ and we have

$$(\mu - A(t))D_{\lambda}(t,s)x = \mu D_{\lambda}(t,s)x - R(t-s,s)x + e^{\lambda s}x - \lambda D_{\lambda}(t,s)x.$$

Finally, we obtain for all $x \in X$,

$$(\lambda - A(t))D_{\lambda}(t,s)x = [e^{\lambda s} - R(t-s,s)]x.$$

Corollary 2.2. Let A(t) be the generator of the C_0 -quasi-semigroup $\{R(t,s)\}_{t,s\geq 0}$ such that A(t) is closed and densely defined. Then for all $t\geq s\geq 0$ and all $\lambda\in\mathbb{C}$, we obtain

1. For all $x \in X$,

$$(\lambda - A(t))^n [D_{\lambda}(t,s)]^n x = [e^{\lambda s} - R(t-s,s)]^n x.$$

2. For all $x \in \mathbb{D}^n$,

$$[D_{\lambda}(t,s)]^{n}(\lambda - [A(t)]^{n})x = [e^{\lambda s} - R(t-s,s)]^{n}x.$$

- 3. $N[\lambda A(t)] \subseteq N[e^{\lambda s} R(t s, s)].$
- 4. $Rg[e^{\lambda s} R(t-s,s)] \subseteq Rg[\lambda A(t)].$
- 5. $N[\lambda A(t)]^n \subseteq N[e^{\lambda s} R(t s, s)]^n$.
- 6. $Rq[e^{\lambda s} R(t-s,s)]^n \subset Rq[\lambda A(t)]^n$.
- 7. $Rg^{\infty}[e^{\lambda s} R(t-s,s)] \subseteq Rg^{\infty}[\lambda A(t)].$

Proof. It's automatic by Theorem 2.1.

The following theorem characterizes the ordinary, point, approximate point, essential and residual spectra of a C_0 -quasi-semigroup.

Theorem 2.3. Let A(t) be the generator of the C_0 -quasi-semigroup $\{R(t,s)\}_{t,s\geq 0}$ such that A(t) is closed and densely defined. Then for all $t\geq s\geq 0$, we get

1.
$$e^{\sigma(A(t))s} \subset \sigma(R(t-s,s))$$

2.
$$e^{\sigma_p(A(t))s} \subset \sigma_p(R(t-s,s))$$

3.
$$e^{\sigma_{ap}(A(t))s} \subset \sigma_{ap}(R(t-s,s))$$

4.
$$e^{\sigma_e(A(t))s} \subset \sigma_e(R(t-s,s))$$

5.
$$e^{\sigma_r(A(t))s} \subset \sigma_r(R(t-s,s))$$
.

Proof. 1. Let $\lambda \in \mathbb{C}$ such that for all $t \geq s \geq 0$, $e^{\lambda s} \notin \sigma(R(t-s,s))$. Then there exists $F_{\lambda}(t,s) \in \mathcal{B}(X)$ satisfying

$$F_{\lambda}(t,s)[e^{\lambda s} - R(t-s,s)] = [e^{\lambda s} - R(t-s,s)]F_{\lambda}(t,s) = I.$$

Hence, by Theorem 2.1, we obtain for every $x \in \mathcal{D}$

$$x = F_{\lambda}(t,s)[e^{\lambda s} - R(t-s,s)]x$$

= $F_{\lambda}(t,s)[D_{\lambda}(t,s)(\lambda - A(t))]x$
= $[F_{\lambda}(t,s)D_{\lambda}(t,s)](\lambda - A(t))x$.

On the other hand, also from Theorem 2.1, we obtain for every $x \in X$

$$\begin{array}{lcl} x & = & [e^{\lambda s} - R(t-s,s)]F_{\lambda}(t,s)x \\ & = & [(\lambda - A(t))D_{\lambda}(s)]F_{\lambda}(t,s)x \\ & = & (\lambda - A(t))[D_{\lambda}(t,s)F_{\lambda}(t,s)]x. \end{array}$$

Since we know that $R(t-s,s)F_{\lambda}(t,s)=F_{\lambda}(t,s)R(t-s,s)$, then

$$F_{\lambda}(t,s)D_{\lambda}(t,s) = D_{\lambda}(t,s)F_{\lambda}(t,s).$$

Consequently, we obtain

$$F_{\lambda}(t,s)[e^{\lambda s} - R(t-s,s)] = [e^{\lambda s} - R(t-s,s)]F_{\lambda}(t,s).$$

Finally, we conclude that $\lambda - A(t)$ is invertible and hence $\lambda \notin \sigma(A(t))$.

2. Let $\lambda \in \sigma_p(A(t))$, then there exists $x \neq 0$ such that

$$x \in N(\lambda - A(t)).$$

From Corollary 2.2, we deduce that

$$x \in N[e^{\lambda s} - R(t - s, s)].$$

Therefore, we conclude that $e^{\lambda s} \in \sigma_p(R(t-s,s))$.

3. Let $\lambda \in \sigma_{ap}(A(t))$, then there exists $(x_n)_{n \in \mathbb{N}} \subset \mathcal{D}$ satisfying $||x_n|| = 1$ and

$$\|(\lambda - A(t))x_n\| \to 0 \text{ as } n \to \infty.$$

By Theorem 2.1, we obtain

$$\|[e^{\lambda s} - R(t - s, s)]x_n\| = \|D_{\lambda}(t, s)(\lambda - A(t))x_n\|$$

$$= \|\int_0^s e^{\lambda(s - h)}R(t - h, h)(\lambda - A(t))x_ndh\|$$

$$\leq \int_0^s \|e^{\lambda(s - h)}R(t - h, h)(\lambda - A(t))x_n\|dh$$

$$\leq \left[\int_0^s e^{\lambda(s - h)}dh\right]M(t + s)\|(\lambda - A(t))x_n\|$$

$$\to 0 \text{ as } n \to \infty.$$

Then $||[e^{\lambda s} - R(t-s,s)]x_n|| \to 0$, and hence we conclude that

$$e^{\lambda s} \in \sigma_{ap}[R(t-s,s)].$$

4. Let $\lambda \in \mathbb{C}$ such that

$$e^{\lambda s} \notin \sigma_e(R(t-s,s)).$$

Then we have $\alpha[e^{\lambda s}-R(t-s,s)]<+\infty$ and $\beta[e^{\lambda s}-R(t-s,s)]<+\infty$. Therefore, by Corollary 2.2, we conclude that $\alpha[\lambda-A(t)]<+\infty$ and $\beta[\lambda-A(t)]<+\infty$. Hence, we deduce that

$$\lambda \notin \sigma_e(A)$$
.

5. Let $\lambda \in \sigma_r(A(t))$, then $Rg[\lambda - A(t)]$ is not dense in X. We now by Corollary 2.2 that

$$Rg[e^{\lambda s} - R(t - s, s)] \subseteq Rg[\lambda - A(t)].$$

Therefore, we deduce that $Rg[e^{\lambda s} - R(t - s, s)]$ is not dense in X. Finally, we obtain

$$e^{\lambda s} \in \sigma_r(R(t-s,s)).$$

Acknowledgments

The authors are thankful to the referees for his valuable comments and suggestions.

References

- 1. P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
- 2. D. Barcenas and H. Leiva, *Quasisemigroups, Evolutions E quation and Controllability*, Notas de Matematicas no. 109, Universidad de Los Andes, Merida, Venezuela, 1991.
- 3. D. Barcenas and H. Leiva, Quasisemigroups and evolution equations, International Journal of Evolution Equations, vol. 1, no. 2, pp. 161-177, 2005.
- 4. D. Barcenas, H. Leiva and A.T. Moya, *The Dual Quasi-Semigroup and Controllability of Evolution Equations*, Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 691-702, 2006.
- 5. J. Diestel and J.J.Jr. Uhl, Vector Measures, Mathematical Surveys and Monographs, 1977.
- 6. V. KORDULA AND V. MÜLLER, The distance from the Apostol spectrum, Proc. Amer. Math. Soc. 124 (1996) 3055-3061.
- 7. V. MÜLLER, Spectral theory of linear operators and spectral systems in Banach algebras 2nd edition, Oper.Theo.Adva.Appl, 139 (2007).
- 8. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York 1983.
- 9. Sutrima, Ch. Rini Indrati, L. Aryati and Mardiyana, *The fundamental properties of quasi-semigroups*, Journal of Physics: Conf. Series 855 (2017) 012052.
- 10. A.E. TAYLAR AND D.C. LAY, Introduction to Functional Analysis, 2nd ed. New York: John Wiley and Sons, 1980.

 $A.\ Tajmouati,\ Y.\ Zahouan\ and\ M.\ A.\ Ould\ Mohamed\ Baba$

 $Laboratory\ of\ Mathematical\ Analysis\ and\ Applications\ (LAMA),$

 $Sidi\ Mohamed\ Ben\ Abdellah\ University,$

Faculty of Sciences Dhar Al Mahraz,

Fez. Morocco.

 $E ext{-}mail\ address: abdelaziz.tajmouati@usmba.ac.ma$

 $E ext{-}mail\ address: }$ zahouanyouness1@gmail.com

 $E ext{-}mail\ address: }$ bbaba2012@gmail.com