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Three Nontrivial Solutions of Boundary Value Problems for Semilinear ∆γ−Laplace

Equation ∗

Duong Trong Luyen and Le Thi Hong Hanh

abstract: In this paper, we study the multiplicity of weak solutions to the boundary value problem

∆γu+ f(x, u) = 0 in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain with smooth boundary in RN (N ≥ 2) and ∆γ is the subelliptic operator of the
type

∆γ :=
N
∑

j=1

∂xj

(

γ2

j∂xj

)

, ∂xj :=
∂

∂xj

, γ = (γ
1
, γ

2
, ..., γN ),

the nonlinearity f(x, ξ) is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition.
We establish the existence of three nontrivial solutions by using Morse theory.

Key Words: Semilinear degenerate elliptic equations, Morse theory, Three solutions, Multiple solu-
tions.
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1. Introduction

In the last decades, the boundary value problem for semilinear elliptic equations

−∆u = f(x, u), x ∈ Ω, u ∈ H1
0 (Ω),

has been studied by many authors, see, for example [1,20] and the references therein. The following (AR)
condition introduced in [1]

(AR) For some θ > 2 and R > 0, we have

θF (x, ξ) ≤ f(x, ξ)ξ, ∀ |ξ| ≥ R, ∀ x ∈ Ω,

where F (x, ξ) =
∫ ξ

0
f(x, τ ) dτ , plays an important role in their studies. Boundary value problems for

nonlinear degenerate elliptic differential equations were treated in [10] and then subsequently in [8,5].
In [25,26], the critical exponent phenomenon was observed for a model of the Grushin type operators.
The results were then generalized in [23] to a large class of semilinear degenerate elliptic differential
equations. Recently, in [23,24] the second author of this paper and his colaborator have extended the
research to a more complicated class of nonlinear degenerate elliptic differential operators. Very recently,
the authors of [11] investigated the ∆γ−Laplace operator under the additional assumption that the
operator is homogeneous of degree two with respect to a semigroup of dilations in R

N . Many aspects of
the theory of degenerate elliptic differential operators are presented in monographs [27,28] (see also some
recent results in [2,3,11,12,13,14,15,16,17,18,19,22,24,26]).
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In this paper, we study multiplicity of weak solutions to the following problem

∆γu+ f(x, u) =0 in Ω, (1.1)

u =0 on ∂Ω, (1.2)

where Ω is a bounded domain with smooth boundary in R
N ,∆γ (see the definition of this function space

below) and f(x, ξ) : Ω× R −→ R such that f(x, 0) = 0.

Let F (x, ξ) =
∫ ξ

0
f(x, τ )dτ and suppose that the non-linearity f satisfies the following conditions:

(A1) f ∈ C(Ω̄×R,R) with f(x, 0) = 0 and satisfies the improved subcritical polynomial growth condition,
i.e.

lim
ξ→∞

f(x, ξ)

|ξ|2∗γ−1 = 0 uniformly for x ∈ Ω̄,

where 2∗γ := 2Ñ/(Ñ − 2);

(A2) lim
|ξ|→0

f(x,ξ)
ξ = p(x), uniformly for x ∈ Ω, where p ∈ L∞(Ω) satisfies p(x) ≤ λ1 for all x ∈ Ω and

p(x) < λ1 on some Ω0 ⊂ Ω1 with |Ω0| > 0, where Ω1 := {x ∈ Ω : φ1(x) 6= 0} and λ1 > 0 that has
an associated eigenfunction φ1 is the first eigenvalue of −∆γ with homogeneous Dirichlet boundary
data;

(A3) f(x, ξ) is superlinear at infinity, i.e. lim
|ξ|→+∞

f(x, ξ)/ξ = +∞ uniformly for all x ∈ Ω;

(A4) There exist θ ≥ 1 and C(x) ∈ L1
+(Ω) such that θF(x, ξ) ≥ F(x, sξ) − C(x) for (x, ξ) ∈ Ω × R and

s ∈ [0, 1], where F(x, ξ) = f(x, ξ)− 2F (x, ξ).

The condition (A4) was first introduced by L. Jeanjean [7], there are many functions which satisfy
(A4), but do not satisfy the (AR) condition. An example of such function is

f(x, ξ) = ξ ln(1 + |ξ|).

Our main result is given by the following theorem.

Theorem 1.1. Assume conditions (A1)-(A4) hold. Then the problem (1.1)–(1.2) has at least three
nontrivial solutions.

The structure of our note is as follows: In Section 2, we give some preliminary results. In Section 3,
we proved Theorem 1.1.

2. Preliminary results

First of all, let us collect some concepts and results of Morse theory that will be used below. For the
details, we refer to [4]. Let X be a real Banach space and Φ ∈ C1(X,R). K = {u ∈ X|Φ′(u) = 0} is the
critical set of Φ. Let u ∈ K be an isolated critical point of Φ with Φ(u) = c ∈ R, and U be an isolated
neighborhood of u, i.e. K ∩ U = {u}. The group

Cm(Φ, u) = Hm(Φc ∩ U,Φc ∩ U\{u}), m = 0, 1, 2, . . . ,

is called the m-th critical group of Φ at u, where Φc = {u ∈ X|Φ(u) ≤ c}.
Hm(·, ·) is the singular relative homology group of Φ at infinity is defined by

Cm(Φ,∞) = Hm(X,Φa), m = 0, 1, 2, . . . .

We denote

P (u, t) =
∑

i

rankCi(Φ, u)t
i, P (∞, t) =

∑

i

rankCi(Φ,∞)ti.
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Let α < β be the regular values of Φ and set

P (α, β, t) =
∑

i

rankCi(Φ,∞)ti.

If K = {u1, u2, . . . , uk}, then there is a polynomial Q(t) with nonnegative integer as its coefficients such
that

∑

j

P (uj, t) = P (∞, t) + (1 + t)Q(t), (2.1)

∑

α<Φ(uj)<β

P (uj , t) = P (α, β, t) + (1 + t)Q(t). (2.2)

Throughout the paper Ω denotes a bounded domain with smooth boundary in R
N , N ≥ 2. As in [11],

we consider the operators of the form

∆γ :=

N∑

j=1

∂xj

(
γ2
j∂xj

)
, ∂xj

:=
∂

∂xj
, j = 1, 2, . . . , N.

Here, the functions γj : RN −→ R are assumed to be continuous, different from zero and of class C1 in

R
N\Π, where

Π :=



x = (x1, x2, . . . , xN ) ∈ R

N :

N∏

j=1

xj = 0



 .

Moreover, we assume the following properties:
i) There exists a semigroup of dilations {δt}t>0 such that

δt : R
N −→ R

N , δt (x1, . . . , xN ) = (tε1x1, . . . , t
εNxN ) , 1 = ε1 ≤ ε2 ≤ · · · ≤ εN ,

such that γj is δt−homogeneous of degree εj − 1, i.e.,

γj (δt (x)) = tεj−1γj (x) , ∀x ∈ R
N , ∀t > 0, j = 1, . . . , N.

The number

Ñ :=

N∑

j=1

εj

is called the homogeneous dimension of RN with respect to {δt}t>0.
ii)

γ1 = 1, γj (x) = γj (x1, x2, . . . , xj−1) , j = 2, . . . , N.

iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
γj (x) ≤ ργj (x) , ∀k ∈ {1, 2, . . . , j − 1} , ∀j = 2, . . . , N,

and for every x ∈ R
N

+ :=
{
(x1, . . . , xN ) ∈ R

N : xj ≥ 0, ∀j = 1, 2, . . . , N
}
.

iv) Equalities γj (x) = γj (x
∗) (j = 1, 2, . . . , N) are satisfied for every x ∈ R

N , where

x∗ = (|x1| , . . . , |xN |) if x = (x1, x2, . . . , xN ).

Definition 2.1. By Sp
γ(Ω) (1 ≤ p < +∞) we will denote the set of all functions u ∈ Lp(Ω) such that

γj∂xj
u ∈ Lp(Ω) for all j = 1, . . . , N . We define the norm in this space as follows

‖u‖Sp
γ(Ω) =






∫

Ω


|u|p +

N∑

j=1

∣∣γj∂xj
u
∣∣p

 dx






1
p

.



4 D. T. Luyen and L. T. H. Hanh

If p = 2 we can also define the scalar product in S2
γ(Ω) as follows

(u, v)S2
γ(Ω) = (u, v)L2(Ω) +

N∑

j=1

(γj∂xj
u, γj∂xj

v)L2(Ω).

The space Sp
γ,0(Ω) is defined as the closure of C1

0 (Ω) in the space Sp
γ(Ω).

Set

∇γu := (γ1∂x1u, γ2∂x2u, . . . , γN∂xN
u) , |∇γu| :=

( N∑

j=1

∣∣γj∂xj
u
∣∣2
) 1

2

.

From Proposition 3.2 and Theorem 3.3 in [11], we have the following embedding result.

Proposition 2.1. Assume that Ñ > 2. Then S2
γ,0(Ω) →֒ Lp(Ω), where 1 ≤ p ≤ 2Ñ

Ñ − 2
. Moreover,

the number 2∗γ =
2Ñ

Ñ − 2
is the critical Sobolev exponent of the embedding S2

γ,0(Ω) →֒ Lp(Ω) and when

1 ≤ p < 2∗γ , the embedding is compact.

We now give some examples of the ∆γ−Laplace operator. We use the following notations: we split
R

N into

R
N = R

N1 × R
N2 × R

N3 ,

and write

x =
(
x(1), x(2), x(3)

)
, x(i) =

(
x
(i)
1 , x

(i)
2 , . . . , x

(i)
Ni

)
∈ R

Ni ,

|x(i)|2 =

Ni∑

j=1

|x(i)
j |2, i = 1, 2, 3.

We denote the classical Laplace operator in R
Ni by

∆x(i) :=

Ni∑

j=1

∂2

x
(i)
j

.

Example 2.2. Let α be a real positive number. The operator

∆γ := ∆x(1) + |x(1)|2α(∆x(2) +∆x(3)),

where

γ = (1, 1, . . . , 1︸ ︷︷ ︸
N1−times

, |x(1)|α, . . . , |x(1)|α︸ ︷︷ ︸
(N2+N3)−times

),

is called the Grushin operator (see [6]).

Example 2.3. Let α, β be nonnegative real numbers. The operator

∆γ := ∆x(1) +∆x(2) + |x(1)|2α|x(2)|2β∆x(3) ,

where

γ = ( 1, 1, . . . , 1︸ ︷︷ ︸
(N1+N2)−times

, |x(1)|α|x(2)|β , . . . , |x(1)|α|x(2)|β︸ ︷︷ ︸
N3−times

),

is called the strongly degenerate elliptic operators (see [24,28]).
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Definition 2.4. A function u ∈ S2
γ,0(Ω) is called a weak solution of the problem (1.1)–(1.2) if the identity

∫

Ω

∇γu · ∇γϕdx−
∫

Ω

f (x, u)ϕdx = 0,

holds for every ϕ ∈ C∞
0 (Ω).

Definition 2.5. Let X be a real Banach space with its dual space X
∗ and Φ ∈ C1(X,R). The functional

Φ is said to satisfy Cerami condition at level c ∈ R ((C)c condition for short) if for any sequence
{xm}∞m=1 ⊂ X with

Φ(xm) → c and (1 + ‖xm‖
X
) ‖Φ′(xm)‖

X∗ → 0,

then there exists a subsequence {xmk
}∞k=1 that converges strongly in X. Φ satisfies the (C) condition if Φ

satisfies (C)c condition at every c ∈ R.

3. Proof of the main result

First, we observe that the problem (1.1)–(1.2) has a variational structure. Indeed it is the Euler-
Lagrange equation of the functional Φ : S2

γ,0(Ω) → R defined as follows:

Φ(u) =
1

2

∫

Ω

|∇γu|2dx−
∫

Ω

F (x, u) dx,

By the hypotheses on f , we can see that the functional Φ is Frechét differentiable in S2
γ,0(Ω) and for any

ϕ ∈ S2
γ,0(Ω),

〈Φ′(u), ϕ〉 =
∫

Ω

∇γu · ∇γϕdx−
∫

Ω

f(x, u)ϕdx.

Thus, critical points of Φ are solutions of problem (1.1)–(1.2).
Let

f+(x, ξ) =

{
f(x, ξ), ξ > 0,

0, ξ ≤ 0;

Φ±(u) =
1

2

∫

Ω

|∇γu|2dx−
∫

Ω

F± (x, u) dx,

where F±(x, ξ) =
∫ ξ

0 f±(x, τ )dτ . Now, we prove the following compactness condition for Φ and Φ±.

Lemma 3.1. Let (A1)-(A4) be satisfied. Then the functionals Φ and Φ± satisfies the (C) condition on
S2
γ,0(Ω).

Proof. We only give the proof for Φ+, the cases of Φ and Φ− are similar. Let {un}∞n=1 ⊂ S2
γ,0(Ω) be a

sequence such that

Φ+(un) → c,
(
1 + ‖un‖S2

γ,0(Ω)

)
‖Φ′

+(un)‖(S2
γ,0(Ω))∗ → 0, as n → ∞. (3.1)

The proof of this lemma, we divide two steps:

Step 1. We first prove that {un}∞n=1 is bounded in S2
γ,0(Ω). Let u+

n = max{un, 0}, u−
n = min{un, 0}.

From (3.1), we obtain

|〈Φ′
+(un), ϕ〉| ≤ ǫn‖ϕ‖S2

γ,0(Ω) for any ϕ ∈ S2
γ,0(Ω), (3.2)

where ǫn → 0 as n → ∞, then the boundedness of u−
n can be directly obtained. For the case of

u+
n , by contradiction, we assume that ‖u+

n ‖S2
γ,0(Ω) → ∞ as n → ∞. Let vn = ‖u+

n ‖−1
S2
γ,0(Ω)

u+
n , then
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‖vn‖S2
γ,0(Ω) = 1. By Proposition 2.1, up to a subsequence, we have

vn ⇀ v weakly in S2
γ,0(Ω) as n → ∞,

vn → v strongly in Lq(Ω) as n → ∞,

vn → v a.e. in Ω as n → ∞.

Case 1. If v 6= 0 then the Lebesgue measure of Ω0 = {x ∈ Ω : v(x) 6= 0} is positive. Using (3.1), we

obtain
〈Φ′

+(un), u
+
n 〉 = o(1),

which implies that ∫

Ω

f+(x, u
+
n )u

+
n

‖u+
n ‖2S2

γ,0(Ω)

dx =

∫

Ω

f+(x, u
+
n )u

+
n

|u+
n |2

|vn|2dx = 1 + o(1). (3.3)

By (A3), there is a constant M > 0 such that

f+(x, u
+
n )u

+
n > 0, as |un| > M,

then we have ∫

Ω\Ω0

f+(x, u
+
n )u

+
n

(u+
n )2

|vn|2dx ≥ −C. (3.4)

On the other hand, for x ∈ Ω0, u
+
n → ∞ as n → ∞. Then by the Fatou’s lemma and (A3) we have

∫

Ω0

f+(x, u
+
n )u

+
n

(u+
n )2

|vn|2dx → ∞, as n → ∞.

Combining this with (3.4) gives

∫

Ω

f+(x, u
+
n )u

+
n

(u+
n )2

|vn|2dx → ∞, as n → ∞. (3.5)

This contradicts (3.3). Then this case is impossible.

Case 2. If v ≡ 0 then for any n ∈ N there exists tn ∈ [0, 1] such that

Φ+(tnu
+
n ) = max

t∈[0,1]
Φ+(tu

+
n ).

For any R > 0, we assume that wn = 2
√
Rvn. Then wn → 0 in Lq(RN ). So from conditions (A1) and

(A2), for every ǫ > 0, we can find a constant C(ǫ) > 0 such that

F (x,wn) ≤ C(ǫ)(wn)
2 + ǫ(wn)

2∗γ , (3.6)

which implies

lim
n→∞

∫

Ω

F+(x,wn)dx = 0. (3.7)

Since 2
√
R‖u+

n ‖−1
S2
γ,0(Ω)

∈ (0, 1) for n large enough, by (3.7) we obtain

Φ+(tnu
+
n ) ≥ Φ+(wn) = 2R−

∫

Ω

F+(x,wn)dx ≥ R,

which implies
Φ+(tnu

+
n ) → ∞, as n → ∞. (3.8)
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From Φ+(0) = 0 and Φ+(u
+
n ) → c we have tn ∈ (0, 1), then

〈Φ′
+(tnu

+
n ), tnu

+
n 〉 = tn

d

dt

∣∣
t=tn

Φ+(tun) = 0.

Then, from (A4) it follows that

1

θ
Φ+(tnu

+
n ) =

1

θ

(
Φ+(tnu

+
n )−

1

2
〈Φ′

+(tnu
+
n ), tnu

+
n 〉

)

=
1

2θ

∫

Ω

F(x, tnu
+
n )dx

≤ 1

2

∫

Ω

F(x, u+
n )dx+

1

2θ

∫

Ω

C(x)dx

= Φ+(u
+
n )−

1

2
〈Φ′

+(u
+
n ), u

+
n 〉+ c → C.

This contradicts that Φ+(tnu
+
n ) → ∞. Hence {un}∞n=1 is bounded; that is, there exists a positive constant

M such that
‖un‖S2

γ,0(Ω) ≤ M, for all n ∈ N.

Step 2. We prove {un}∞n=1 has a convergent subsequence. In fact, we can suppose that

un ⇀ u weakly in S2
γ,0(Ω) as n → ∞,

un → u strongly in Lq(Ω) as n → ∞,

un → u a.e. in Ω as n → ∞.

Now, since Ω is a bounded set, for every ǫ > 0, we can find a constant C(ǫ) > 0 such that

f+(x, s) ≤ C(ǫ) + ǫ|s|2∗γ−1, ∀(x, s) ∈ Ω× R,

then ∣∣∣∣∣

∫

Ω

f+(x, un)(un − u)dx

∣∣∣∣∣

≤ C(ǫ)

∫

Ω

|un − u|dx+ ǫ

∫

Ω

|un − u‖un|2
∗

γ−1dx

≤ C(ǫ)

∫

Ω

|un − u|dx+ ǫ
( ∫

Ω

(
|un|2

∗

γ−1
) 2∗γ

2∗γ−1 dx
) 2∗γ−1

2∗γ

(∫

Ω

|un − u|2∗γdx
)1/2∗γ

≤ C(ǫ)

∫

Ω

|un − u|dx+ ǫC(Ω).

Similarly, since un ⇀ u in S2
γ,0(Ω), it follows that

∫
Ω

|un − u|dx → 0. Since ǫ > 0 is arbitrary, we can

conclude that ∫

Ω

(f+(x, un)− f+(x, u))(un − u)dx → 0 as n → ∞. (3.9)

By (3.9), we have
〈Φ′

+(un)− Φ′
+(u), (un − u)〉 → 0 as n → ∞. (3.10)

From (3.9) and (3.10), we obtain ‖un‖S2
γ,0(Ω) → ‖u‖S2

γ,0(Ω), as n → ∞. Thus we have

‖un − u‖S2
γ,0(Ω) → 0, as n → ∞,

which means that Φ+ satisfies condition (C). �
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Lemma 3.2. Assume that conditions (A1), (A3), (A4) hold. Then we have

Cm(Φ,∞) = Cm(Φ±,∞) = {0}, m = 0, 1, 2, . . . .

Proof. We only give the proof of Φ+; the others are similar. Let S = {u ∈ S2
γ,0(Ω) : ‖u‖S2

γ,0(Ω) = 1, u+ 6=
0} and B∞ = {u ∈ S2

γ,0(Ω) : ‖u‖S2
γ,0(Ω) ≤ 1}. By (A3), for any M > 0 there exists c > 0, such that

F (x, t) ≥ Mt2 − c, for (x, t) ∈ Ω × R, which implies Φ+(tu) → −∞, as t → +∞, for any u ∈ S. Using
(A4), we have

f+(x, t)t − 2F+(x, t) ≥ −C(x)

θ
, for (x, t) ∈ Ω× R. (3.11)

Choose

a < min
{

inf
u∈B∞

Φ+(u), −
C∗

2θ

}
,

where C∗ =
∫
Ω

C(x)dx. Then for any u ∈ S, there exists t > 1 such that Φ+(tu) ≤ a, that is

Φ+(tu) =
t2

2
−
∫

Ω

F+(x, tu)dx ≤ a,

which (3.11) implies
d

dt
Φ+(tu) = t−

∫

Ω

f+(x, tu)u ≤ 1

t

(
2a+

C∗

θ

)
< 0 .

Therefore, by the implicit function theorem, there exists a unique T ∈ C(S,R) such that

Φ+(T (u)u) = a, for u ∈ S.

Let S1 = {u ∈ S2
γ,0(Ω) : ‖u‖S2

γ,0(Ω) ≥ 1, u+ 6= 0}. We construct a strong deformation retract τ :

[0, 1]× S1 → S1 which satisfies τ (s, u) = (1− s)u+ sT
(

u
‖u‖

S2
γ,0

(Ω)

)
u

‖u‖
S2
γ,0

(Ω)
if Φ+(u) ≥ a and τ (s, u) = u

if Φ+(u) < a. Hence, It follows from the construction of τ that Φa
+ is a strong deformation retract of S1,

which is homotopy equivalent to the set S. By the homotopy invariance of homology group, we have

Cm(Φ+,∞) =Hm(S2
γ,0(Ω),Φ

a
+)

∼=Hm(S2
γ,0(Ω), S)

∼=Hm(S2
γ,0(Ω), S

2
γ,0(Ω) \ {0})

=0.

�

Proof of Theorem 1.1. By Lemma 3.1, we know that Φ and Φ± satisfy the (C) condition. By
conditions (A1) and (A2), we can easily prove that 0 is a local minimum of Φ and Φ±. So, we have

Cm(Φ, 0) = Cm(Φ±, 0) = δm,0G. (3.12)

Using the mountain pass theorem in [21], we obtain Φ+ (Φ−) has a critical point u+ > 0 (u− < 0),
and u± are also the nontrivial critical points of the functional Φ. Without loss of generality, we assume
that u± are isolated and the only nontrivial critical points of the functional Φ. Now we claim that

Cm(Φ±, u±) = δm,1G. (3.13)

Indeed, using the methods of [9], we let Φ+(u+) = c > 0. It follows from the homology exact sequence

of the triple ΦA
+ ⊂ Φ

c
2
+ ⊂ S2

γ,0(Ω), we have

· · · → Hm(S2
γ,0(Ω),Φ

A
+) → Hm(S2

γ,0(Ω),Φ
c
2
+) → Hm−1(Φ

c
2
+,Φ

A
+) →

→ Hm−1(S
2
γ,0(Ω),Φ

A
+) → . . . , (3.14)
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where A < 0 is a constant. Since 0 is the only critical point of Φ+ in the set Φ
c
2
+, by (3.12), we obtain

Hm(Φ
c
2
+,Φ

A
+) = Cm(Φ+, 0) = δm,0G. (3.15)

Similarly, since u+ is the only critical point of Φ+ in the set {u ∈ S2
γ,0(Ω)|Φ+(u) ≥ c

2}, we have

Hm(S2
γ,0(Ω),Φ

c
2
+) = Cm(Φ+, u1), m = 0, 1, 2, . . . . (3.16)

From Lemma 3.2, we have

Hm(S2
γ,0(Ω),Φ

A
+) = Cm(Φ+,∞) = 0, m = 0, 1, 2, . . . . (3.17)

From (3.14) to (3.17), we deduce that

Cm(Φ+, u+) = Cm−1(Φ+, 0) = δm,1G.

The case for u− is similar, that is

Cm(Φ−, u−) = Cm−1(Φ−, 0) = δm,1G.

Hence
Cm(Φ, u±) = δm,1G.

The Morse equality (2.1) with t = −1 implies that

(−1)0 + (−1)1 + (−1)1 = 0,

which is a contradiction. Then the problem (1.1)–(1.2) has at least three nontrivial solutions.
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