(3s.) v. 2022 (40) : 1-7.

ISSN-0037-8712 IN PRESS doi: $10.5269 / \mathrm{bspm} .42646$

Some Remarks on Multivalent Functions of Higher-order Derivatives

M. K. Aouf and A. Y. Lashin

Abstract

In this paper we give necessary conditions for a suitably normalized multivalent function $f(z)$ to be in the class $G_{p, q}(\beta)$ of p-valently starlike functions of higher-order derivatives. Also we drive some properties of functions belonging to the class $J_{p, q}(\alpha, \beta, f(z))$ which consisting of multivalent α-convex functions of higher-order derivatives in the unit disc.

Key Words: p-valent functions, Higher-order derivatives, α-convex functions.

Contents

1 Introduction

2 Main Results

1. Introduction

Let $\mathbb{U}=\{z:|z|<1\}$ be the open unit disc of the complex plane \mathbb{C} and let \mathcal{A}_{p} denote the class of analytic and p-valent functions in \mathbb{U} of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

Also let $\mathcal{A}_{1}:=\mathcal{A}$. For two functions f, g, we say that the function f is subordinate to g in \mathbb{U}, written as $f(z) \prec g(z)$, (or simply $f \prec g$) if there exists a Schwarz function ω analytic \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$, such that $f(z)=g(\omega(z))$. If the function g is univalent in \mathbb{U}, the subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see [8]). For $0 \leq \beta<p-q, p>q, p \in \mathbb{N}$ and $q \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, we say that $f(z) \in \mathcal{A}_{p}$ is in the class $S_{p, q}^{*}(\beta)$ if it satisfies the following inequality

$$
\begin{equation*}
\Re\left\{\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}\right\}>\beta \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

Also, for $0 \leq \beta<p-q, p>q, p \in \mathbb{N}$ and $q \in \mathbb{N}_{0}$, we say that $f(z) \in \mathcal{A}_{p}$ is in the class $K_{p, q}(\beta)$ if it satisfies the following inequality

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right\}>\beta \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

It follows from (1.2) and (1.3) that

$$
f(z) \in K_{p, q}(\beta) \Longleftrightarrow F(z) \in S_{p, q}^{*}(\beta),
$$

where $F \in \mathcal{A}_{p}$, such that $F^{(q)}(z)=\frac{z f^{(q+1)}(z)}{p-q}(z \in \mathbb{U})$. The classes $S_{p, q}^{*}(\beta)$ and $K_{p, q}(\beta)$ were introduced and studied by Aouf $[2,3,4]$. We note that $S_{p, 0}^{*}(\beta) \cong S_{p}^{*}(\beta)$ and $K_{p, 0}(\beta) \cong K_{p}(\beta)$ are, respectively, the class of p-valently starlike functions of order β and the class of p-valently convex functions of order β ($0 \leq \beta<p)$ see Owa [12] and Aouf [1].

[^0]Let $G_{p, q}(\beta)$ denote the subclass of \mathcal{A}_{p} consisting of functions $f(z)$ which satisfy

$$
\begin{equation*}
\frac{z f^{(q+1)}(z)}{f^{(q)}(z)} \prec(p-q)+(p-q-\beta) z \quad(0 \leq \beta<p-q, p>q) \tag{1.4}
\end{equation*}
$$

It is clear that (1.4) is equivalent to

$$
\begin{equation*}
\left|\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right|<(p-q-\beta) \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

Therefore $G_{p, q}(\beta)$ is a subclass of the class $S_{p, q}^{*}(\beta)$.
A function $f(z) \in \mathcal{A}_{p}$ is said to be p-valently α-convex functions of higher order derivatives of order β if it satisfies

$$
\begin{equation*}
\Re\left\{(1-\alpha) \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}+\alpha\left(1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right\}>\beta \tag{1.6}
\end{equation*}
$$

for some $\alpha(\alpha \geq 0), \beta(0 \leq \beta<\delta(p, q))$ and for all $(z \in \mathbb{U})$, where

$$
\delta(p, q)=\frac{p!}{(p-q)!} \quad(p>q)
$$

Denoting by $J_{p, q}(\alpha, \beta, f(z))$ the subclass of \mathcal{A}_{p} consisting of all such functions. We note that $J_{p, q}(0, \beta, f(z)) \cong S_{p, q}^{*}(\beta)$ and $J_{p, q}(1, \beta, f(z)) \cong K_{p, q}(\beta)$. Also we note that $J_{p, 1-p}(\alpha, 0, f(z)) \cong A(p, \alpha)$ $(p \in \mathbb{N}, \alpha \geq 1)$ was introduced and studied by Nunokawa [9], Saitoh et al. [14] and Nishimoto and Owa [11] and $J_{p, 0}(\alpha, \beta, f(z)) \cong M(p, 1, \alpha, \beta)$ was introduced and studied by Owa [13].

2. Main Results

In order to prove our results we need the following lemmas.
Lemma 2.1. [6]Let $\omega(z)$ be regular in \mathbb{U} with $\omega(0)=0$. Then if $|\omega(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{U}$, we have $z_{0} \omega\left(z_{0}\right)=m \omega\left(z_{0}\right)$, where $m \geq 1$.

Lemma 2.2. [7]Let $\phi(z)$ be a complex valued function

$$
\phi: D \rightarrow C, D \subset C \times C \quad(C \text { is the complex plane }) .
$$

and let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$. Suppose that the function $\phi(u, v)$ satisfies
(i) $\phi(u, v)$ is continuous in D ;
(ii) $(1,0) \in D$ and $\Re\{\phi(1,0)\}>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{\left(1+u_{2}^{2}\right)}{2}, \Re\left\{\phi\left(i u_{2}, v_{1}\right)\right\} \leq 0$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be regular in the unit disc \mathbb{U}, such that $\left(p(z), z p^{\prime}(z)\right) \in D$ for all $z \in U$. If

$$
\Re\left\{\phi\left(p(z), z p^{\prime}(z)\right)\right\}>0 \quad(z \in \mathbb{U})
$$

then $\Re\{p(z)\}>0 \quad(z \in \mathbb{U})$.

Theorem 2.3. If $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\begin{align*}
& \left|\lambda\left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right)+(1-\lambda)\left(\frac{z^{2} f^{(q+2)}(z)}{f^{(q)}(z)}-(p-q)(p-q-1)\right)\right| \\
< & (p-q-\beta)[\lambda+(1-\lambda)(p-q+\beta)](z \in \mathbb{U}) \tag{2.1}
\end{align*}
$$

for some $\left(0 \leq \beta<p-q, p>q, p \in \mathbb{N}, q \in \mathbb{N}_{0}\right.$ and $\left.0 \leq \lambda<1\right)$, then $f(z) \in G_{p, q}(\beta)$.

Proof: Define the function $\omega(z)$ by

$$
\begin{equation*}
\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}=(p-q)+(p-q-\beta) \omega(z) \tag{2.2}
\end{equation*}
$$

Then, $\omega(z)$ is regular in \mathbb{U} and $\omega(0)=0$.Differentiating (2.2) logarithmically with respect to z, we obtain

$$
\begin{equation*}
1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-(p-q)=(p-q-\beta) \omega(z)+\frac{(p-q-\beta) z \omega^{\prime}(z)}{(p-q)+(p-q-\beta) \omega(z)} \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we have

$$
\begin{align*}
\frac{z^{2} f^{(q+2)}(z)}{f^{(q)}(z)}-(p-q)(p-q-1)= & (p-q-\beta) \omega(z)[2(p-q)-1 \\
& \left.+(p-q-\beta) \omega(z)+\frac{z \omega^{\prime}(z)}{\omega(z)}\right] \tag{2.4}
\end{align*}
$$

From (2.2) and (2.4), we have

$$
\begin{align*}
& \lambda\left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right)+(1-\lambda)\left(\frac{z^{2} f^{(q+2)}(z)}{f^{(q)}(z)}-(p-q)(p-q-1)\right) \\
= & (p-q-\beta) \omega(z) \\
& \times\left\{\lambda+(1-\lambda)\left[2(p-q)-1+(p-q-\beta) \omega(z)+\frac{z \omega^{\prime}(z)}{\omega(z)}\right]\right\} . \tag{2.5}
\end{align*}
$$

Suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1
$$

Then by using Lemma 2.1, and letting $\omega\left(z_{0}\right)=e^{i \theta}$, we get

$$
\begin{aligned}
& \left|\lambda\left(\frac{z f^{(q+1)}\left(z_{0}\right)}{f^{(q)}\left(z_{0}\right)}-(p-q)\right)+(1-\lambda)\left(\frac{z^{2} f^{(q+2)}\left(z_{0}\right)}{f^{(q)}\left(z_{0}\right)}-(p-q)(p-q-1)\right)\right| \\
= & \mid(p-q-\beta) \omega\left(z_{0}\right) \\
& \left\{\left.\lambda+(1-\lambda)\left[2(p-q)-1+\frac{z \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)}\right]+(1-\lambda)(p-q-\beta) \omega\left(z_{0}\right\} \right\rvert\,\right. \\
= & (p-q-\beta)\left|\lambda+(1-\lambda)[2(p-q)-1+k]+(1-\lambda)(p-q-\beta) e^{i \theta}\right| \\
\geq & (p-q-\beta)[\lambda+(1-\lambda)(p-q+\beta)] .
\end{aligned}
$$

This contradicts the condition (2.1). Therefore $|\omega(z)|<1$ for all $z \in \mathbb{U}$. This implies that

$$
\left|\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right|<p-q-\beta \quad(z \in \mathbb{U})
$$

that is $f(z) \in G_{p, q}(\beta)$. This completes the proof of Theorem 2.3
Taking $q=0$ in Theorem 2.3, we have

Corollary 2.4. If $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\begin{aligned}
& \left|\lambda\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)+(1-\lambda)\left(1+\frac{z^{2} f^{\prime \prime}(z)}{f(z)}-p(p-1)\right)\right| \\
< & (p-\beta)[\lambda+(1-\lambda)(p+\beta)](z \in \mathbb{U})
\end{aligned}
$$

then $f(z) \in G_{p}(\beta):=\left\{f(z) \in \mathcal{A}_{p}:\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|<p-\beta \quad(z \in \mathbb{U})\right\}$.
Putting $p=1$ in Corollary 2.4, we have

Corollary 2.5. If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\lambda\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+(1-\lambda) \frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right|<(1-\beta)[\lambda+(1-\lambda)(1+\beta)] \quad(z \in \mathbb{U})
$$

then $f(z) \in G(\beta):=\left\{f(z) \in \mathcal{A}:\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\beta \quad(z \in \mathbb{U})\right\}$.
This corollary is an improvement of the results obtained by Fukui [5, Theorem1] and Nunokawa and Hoshino [10, Theorem 1].

Putting $\lambda=0$ in Theorem 2.3, we have
Corollary 2.6. If $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\left|\frac{z^{2} f^{(q+2)}(z)}{f^{(q)}(z)}-(p-q)(p-q-1)\right|<(p-q-\beta)(p-q+\beta) \quad(z \in \mathbb{U})
$$

for some $\left(0 \leq \beta<p-q, p>q, p \in \mathbb{N}\right.$ and $\left.q \in \mathbb{N}_{0}\right)$, then $f(z) \in G_{p, q}(\beta)$.
Putting $q=0$ in Corollary 2.6, we obtain the following corollary
Corollary 2.7. if $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\left|\frac{z^{2} f^{\prime \prime}(z)}{f(z)}-p(p-1)\right|<\left(p^{2}-\beta^{2}\right) \quad(z \in \mathbb{U})
$$

for some $\left(0 \leq \beta<p\right.$, then $f(z) \in G_{p}(\beta)$.
Remark 2.8. Our result in Corollary 2.7 when $p=1$ is an improvement of the results obtained by Fukui [5, Corollary1] and Nunokawa and Hoshino [10, Corollary 2].

Putting $\lambda=\frac{1}{2}$ in Corollary 2.4, we obtain
Corollary 2.9. If $f(z) \in \mathcal{A}_{p}$ satisfies

$$
\left|\frac{z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{f(z)}-p^{2}\right|<(p-\beta)(p+1+\beta) \quad(z \in U),
$$

for some $\left(0 \leq \beta<p\right.$, then $f(z) \in G_{p}(\beta)$.
Remark 2.10. Our result in Corollary 2.9 when $p=1$ is an improvement of the results obtained by Fukui [5, Corollary2] and Nunokawa and Hoshino [10, Corollary 3].

Theorem 2.11. Let the function $f(z)$ defined by (1.1) belongs to the class $J_{p, q}(\alpha, f(z))$ with $p>q, p \in \mathbb{N}, q \in \mathbb{N}_{0}$ and $\alpha \geq 1$, then

$$
\begin{equation*}
\Re\left\{\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}\right\}>\beta=\frac{-\alpha+\sqrt{\alpha(\alpha+8 \delta(p, q))}}{4} \tag{2.6}
\end{equation*}
$$

Proof: Define the function $g(z)$ by

$$
\begin{equation*}
\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}=\beta+[\delta(p, q)-\beta] g(z), \quad 0 \leq \beta<\delta(p, q) \tag{2.7}
\end{equation*}
$$

for $f(z) \in J_{p, q}(\alpha, f(z))$, where

$$
\begin{equation*}
\beta=\frac{-\alpha+\sqrt{\alpha(\alpha+8 \delta(p, q))}}{4} \tag{2.8}
\end{equation*}
$$

It follows from (2.7) that $g(z)$ is regular in \mathbb{U} and that $g(z)=1+g_{1} z+g_{2} z^{2}+\ldots$. Differentiating (2.7) logarithmically with respect to z, we obtain

$$
\begin{equation*}
1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}=\beta+[\delta(p, q)-\beta] g(z)+\frac{[\delta(p, q)-\beta] z g^{\prime}(z)}{\beta+[\delta(p, q)-\beta] g(z)} \tag{2.9}
\end{equation*}
$$

From (2.7) and (2.9), we have

$$
\begin{align*}
& \Re\left\{(1-\alpha) \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}+\alpha\left(1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right\} \\
= & \Re\left\{\beta+[\delta(p, q)-\beta] g(z)+\frac{\alpha[\delta(p, q)-\beta] z g^{\prime}(z)}{\beta+[\delta(p, q)-\beta] g(z)}\right\}>0 . \tag{2.10}
\end{align*}
$$

Letting $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and

$$
\begin{equation*}
\phi(u, v)=\beta+[\delta(p, q)-\beta] u+\frac{\alpha[\delta(p, q)-\beta] v}{\beta+[\delta(p, q)-\beta] u} \tag{2.11}
\end{equation*}
$$

we know that
(i) $\phi(u, v)$ is continuous in $D=\left(C-\frac{\beta}{\beta-\delta(p, q)}\right) \times C$;
(ii) $(1,0) \in D$ and $\Re\{\phi(1,0)\}=\delta(p, q)>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{\left(1+u_{2}^{2}\right)}{2}$,

$$
\begin{aligned}
\Re\left\{\phi\left(i u_{2}, v_{1}\right)\right\} & =\beta+\frac{\alpha[\delta(p, q)-\beta] v_{1}}{\beta^{2}+[\delta(p, q)-\beta]^{2} u_{2}^{2}} \\
& \leq \beta-\frac{\alpha \beta[\delta(p, q)-\beta]\left(1+u_{2}^{2}\right)}{2\left(\beta^{2}+[\delta(p, q)-\beta]^{2} u_{2}^{2}\right)} \leq 0
\end{aligned}
$$

Therefore, the function $\phi(u, v)$ defined by (2.11) satisfies the conditions of Lemma 2.2. It follows from this fact that $\Re\{g(z)\}>0$, that is that

$$
\Re\left\{\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}\right\}>\beta=\frac{-\alpha+\sqrt{\alpha(\alpha+8 \delta(p, q))}}{4}
$$

This completes the proof of Theorem 2.11.
Putting $q=1-1(p \in \mathbb{N})$ in Theorem 2.11, we obtain the following corollary

Corollary 2.12. Let the function $f(z)$ defined by (1.1) belongs to the class

$$
J_{p, 1-p}(\alpha, f(z))=J_{p}(\alpha, f(z))
$$

with $p \in \mathbb{N}$ and $\alpha \geq 1$, then

$$
\Re\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>\beta=\frac{-\alpha+\sqrt{\alpha(\alpha+8 p!)}}{4}
$$

From the definition of the class $J_{p}(\alpha, f(z))$ and Theorem 2.11, we have
Corollary 2.13. Let the function $f(z)$ defined by (1.1) belongs to the class $J_{p, q}(\alpha, f(z))$ with $p>q, p \in$ $\mathbb{N}, q \in \mathbb{N}_{0}$ and $\alpha \geq 1$, then

$$
\Re\left\{1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right\}>\beta=\frac{(\alpha-1)(-\alpha+\sqrt{\alpha(\alpha+8 \delta(p, q)})}{4 \alpha}
$$

Putting $q=p-1(p \in \mathbb{N})$ in Corollary 2.13, we obtain the following corollary
Corollary 2.14. Let the function $f(z)$ defined by (1.1) belongs to the class $J_{p}(\alpha, f(z))$ with $p \in \mathbb{N}$ and $\alpha \geq 1$, then

$$
\Re\left\{1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right\}>\beta=\frac{(\alpha-1)+\sqrt{\alpha(\alpha+8 p!)}}{4 \alpha}
$$

Remark 2.15. Our result in Corollary 2.14 is an improvement of the result obtained by Saitoh et al. [14, Corollary 1].

Putting $\alpha=1$ in Corollary 2.12, we have
Corollary 2.16. Let the function $f(z)$ defined by (1.1) be in the class K_{p}, then

$$
\Re\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>\beta=\frac{-1+\sqrt{1+8 p!}}{4} .
$$

Remark 2.17. Putting $p=1$ in Corollary 2.16, then if the function $f(z) \in A$ is convex in \mathbb{U}, then $f(z)$ is starlike of order $\frac{1}{2}$ in \mathbb{U} (see also Saitoh et al. [14, Corollary 2]).

References

1. Aouf, M. K., A generalization of mulivalent functions with negative coefficients, J. Korean Math. soc. 25, no. 1, 53-66, (1988).
2. Aouf, M. K., Certain subclasses of p-valent functions defined by using a differential operator, Appl. Math. Comput. 206, 867-875, (2008).
3. Aouf, M. K., Some families of p-valent functions with negative coefficients, Acta Math. Univ. Comenianae 78, no. 1, 121-135, (2009).
4. Aouf, M. K., Bounded p-valent Robertson functions defined by using a differential operator, J. Franklin Institute 347, 1972-141, (2010).
5. Fukui, S., A remark on a class of certain analytic functions, Proc. Japan Acad. Ser. A , 66, 191-192, (1990).
6. Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc. 2, no. 3, 469-474, (1971).
7. Miller, S. S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81, 79-81, (1975).
8. Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65, 289-305, (1978).
9. Nunokawa, M., On the theory of multivalent functions, Tsukuba J. Math. 11, no. 2, 273-286, (1987).
10. Nunokawa, M. and Hoshino, S., On criterion on a class of certain analytic functions, RIMS Kyoto Univ. Kokyuroku, 881, 20-22, (1994).
11. Nishimoto, K. and Owa, S., A remark on p-valently α-convex functions, J. College Engrg. Nihon Univ. Ser. B 30, 107-110, (1989).
12. Owa, S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59, no. 4, 385-402, (1985).
13. owa, S., Some properties of certain multivalently functions, Appl. Math. Lett., 4, no.5, 79-83, (1991).
14. Saitoh, H., Nunokawa, M., Owa, S., Sekine, T. and Fukui, S., A remark on multivalent functions, Bull. Soc. Royale. Sci. Liege 56, no.2, 137-141, (1987).
M. K. Aouf and A. Y. Lashin,

Department of Mathematics,
Faculty of Science Mansoura University Mansoura, 35516, EGYPT.
E-mail address: mkouf127@yahoo.com, aylashin@mans.edu.eg

[^0]: 2010 Mathematics Subject Classification: 30C45.
 Submitted April 29, 2018. Published August 14, 2018

