

(3s.) **v. 2022 (40)** : 1–7. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.42646

Some Remarks on Multivalent Functions of Higher-order Derivatives

M. K. Aouf and A. Y. Lashin

ABSTRACT: In this paper we give necessary conditions for a suitably normalized multivalent function f(z) to be in the class $G_{p,q}(\beta)$ of p-valently starlike functions of higher-order derivatives. Also we drive some properties of functions belonging to the class $J_{p,q}(\alpha, \beta, f(z))$ which consisting of multivalent α -convex functions of higher-order derivatives in the unit disc.

Key Words: p-valent functions, Higher-order derivatives, α -convex functions.

Contents

1 Introduction

2 Main Results

1. Introduction

Let $\mathbb{U} = \{z : |z| < 1\}$ be the open unit disc of the complex plane \mathbb{C} and let \mathcal{A}_p denote the class of analytic and p-valent functions in \mathbb{U} of the form:

$$f(z) = z^{p} + \sum_{k=p+1}^{\infty} a_{k} z^{k} \qquad (p \in \mathbb{N} = \{1, 2, \ldots\})$$
(1.1)

Also let $\mathcal{A}_1 := \mathcal{A}$. For two functions f, g, we say that the function f is subordinate to g in \mathbb{U} , written as $f(z) \prec g(z)$, (or simply $f \prec g$) if there exists a Schwarz function ω analytic \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$, such that $f(z) = g(\omega(z))$. If the function g is univalent in \mathbb{U} , the subordination is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see [8]). For $0 \leq \beta q, p \in \mathbb{N}$ and $q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, we say that $f(z) \in \mathcal{A}_p$ is in the class $S_{p,q}^*(\beta)$ if it satisfies the following inequality

$$\Re\left\{\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}\right\} > \beta \quad (z \in \mathbb{U}).$$

$$(1.2)$$

Also, for $0 \leq \beta q, p \in \mathbb{N}$ and $q \in \mathbb{N}_0$, we say that $f(z) \in \mathcal{A}_p$ is in the class $K_{p,q}(\beta)$ if it satisfies the following inequality

$$\Re\left\{1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right\} > \beta \qquad (z \in \mathbb{U}).$$
(1.3)

It follows from (1.2) and (1.3) that

$$f(z) \in K_{p,q}(\beta) \iff F(z) \in S_{p,q}^*(\beta),$$

where $F \in \mathcal{A}_p$, such that $F^{(q)}(z) = \frac{zf^{(q+1)}(z)}{p-q}$ $(z \in \mathbb{U})$. The classes $S_{p,q}^*(\beta)$ and $K_{p,q}(\beta)$ were introduced and studied by Aouf [2,3,4]. We note that $S_{p,0}^*(\beta) \cong S_p^*(\beta)$ and $K_{p,0}(\beta) \cong K_p(\beta)$ are, respectively, the class of p-valently starlike functions of order β and the class of p-valently convex functions of order $\beta($ $0 \le \beta < p)$ see Owa [12] and Aouf [1].

1

2

²⁰¹⁰ Mathematics Subject Classification: 30C45.

Submitted April 29, 2018. Published August 14, 2018

M. K. AOUF AND A. Y. LASHIN

Let $G_{p,q}(\beta)$ denote the subclass of \mathcal{A}_p consisting of functions f(z) which satisfy

$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} \prec (p-q) + (p-q-\beta)z \qquad (0 \le \beta < p-q, p > q).$$
(1.4)

It is clear that (1.4) is equivalent to

$$\left|\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - (p-q)\right| < (p-q-\beta) \quad (z \in \mathbb{U}).$$
(1.5)

Therefore $G_{p,q}(\beta)$ is a subclass of the class $S_{p,q}^*(\beta)$.

A function $f(z) \in \mathcal{A}_p$ is said to be p-valently α -convex functions of higher order derivatives of order β if it satisfies

$$\Re\left\{(1-\alpha)\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + \alpha(1+\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)})\right\} > \beta$$
(1.6)

for some $\alpha(\alpha \ge 0), \beta(0 \le \beta < \delta(p,q))$ and for all $(z \in \mathbb{U})$, where

$$\delta(p,q) = \frac{p!}{(p-q)!} \quad (p > q).$$

Denoting by $J_{p,q}(\alpha, \beta, f(z))$ the subclass of \mathcal{A}_p consisting of all such functions. We note that $J_{p,q}(0, \beta, f(z)) \cong S_{p,q}^*(\beta)$ and $J_{p,q}(1, \beta, f(z)) \cong K_{p,q}(\beta)$. Also we note that $J_{p,1-p}(\alpha, 0, f(z)) \cong \mathcal{A}(p, \alpha)$ $(p \in \mathbb{N}, \alpha \geq 1)$ was introduced and studied by Nunokawa [9], Saitoh et al. [14] and Nishimoto and Owa [11] and $J_{p,0}(\alpha, \beta, f(z)) \cong \mathcal{M}(p, 1, \alpha, \beta)$ was introduced and studied by Owa [13].

2. Main Results

In order to prove our results we need the following lemmas.

Lemma 2.1. [6]Let $\omega(z)$ be regular in \mathbb{U} with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r at a point $z_0 \in \mathbb{U}$, we have $z_0\omega(z_0) = m\omega(z_0)$, where $m \ge 1$.

Lemma 2.2. [7]Let $\phi(z)$ be a complex valued function

 $\phi: D \to C, D \subset C \times C$ (C is the complex plane).

and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u, v)$ satisfies

(i) $\phi(u, v)$ is continuous in D;

(ii) $(1,0) \in D$ and $\Re\{\phi(1,0)\} > 0;$

(iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -\frac{(1+u_2^2)}{2}, \Re\{\phi(iu_2, v_1)\} \leq 0.$

Let $p(z) = 1 + p_1 z + p_2 z^2 + \dots$ be regular in the unit disc \mathbb{U} , such that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$\Re\{\phi(p(z), zp'(z))\} > 0 \quad (z \in \mathbb{U})$$

then $\Re\{p(z)\} > 0 \quad (z \in \mathbb{U}).$

Theorem 2.3. If $f(z) \in A_p$ satisfies

$$\left| \lambda \left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)} - (p-q) \right) + (1-\lambda) \left(\frac{z^2 f^{(q+2)}(z)}{f^{(q)}(z)} - (p-q)(p-q-1) \right) \right|$$

$$< (p-q-\beta)[\lambda + (1-\lambda)(p-q+\beta)] \quad (z \in \mathbb{U}),$$

$$(2.1)$$

for some $(0 \leq \beta q, p \in \mathbb{N}, q \in \mathbb{N}_0 \text{ and } 0 \leq \lambda < 1)$, then $f(z) \in G_{p,q}(\beta)$.

Proof: Define the function $\omega(z)$ by

$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} = (p-q) + (p-q-\beta)\omega(z).$$
(2.2)

Then, $\omega(z)$ is regular in U and $\omega(0) = 0$. Differentiating (2.2) logarithmically with respect to z, we obtain

$$1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} - (p-q) = (p-q-\beta)\omega(z) + \frac{(p-q-\beta)z\omega'(z)}{(p-q) + (p-q-\beta)\omega(z)}$$
(2.3)

From (2.2) and (2.3), we have

$$\frac{z^2 f^{(q+2)}(z)}{f^{(q)}(z)} - (p-q)(p-q-1) = (p-q-\beta)\omega(z)[2(p-q)-1] + (p-q-\beta)\omega(z) + \frac{z\omega'(z)}{\omega(z)}].$$
(2.4)

From (2.2) and (2.4), we have

$$\lambda \left(\frac{z f^{(q+1)}(z)}{f^{(q)}(z)} - (p-q) \right) + (1-\lambda) \left(\frac{z^2 f^{(q+2)}(z)}{f^{(q)}(z)} - (p-q)(p-q-1) \right)$$

= $(p-q-\beta)\omega(z)$
 $\times \left\{ \lambda + (1-\lambda)[2(p-q) - 1 + (p-q-\beta)\omega(z) + \frac{z\omega'(z)}{\omega(z)}] \right\}.$ (2.5)

Suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1.$$

Then by using Lemma 2.1, and letting $\omega(z_0) = e^{i\theta}$, we get

$$\begin{aligned} \left| \lambda \left(\frac{z f^{(q+1)}(z_0)}{f^{(q)}(z_0)} - (p-q) \right) + (1-\lambda) \left(\frac{z^2 f^{(q+2)}(z_0)}{f^{(q)}(z_0)} - (p-q)(p-q-1) \right) \right| \\ = \left| (p-q-\beta)\omega(z_0) \right| \\ \left\{ \lambda + (1-\lambda)[2(p-q) - 1 + \frac{z\omega'(z_0)}{\omega(z_0)}] + (1-\lambda)(p-q-\beta)\omega(z_0) \right\} \\ = \left| (p-q-\beta) \left| \lambda + (1-\lambda)[2(p-q) - 1 + k] + (1-\lambda)(p-q-\beta)e^{i\theta} \right| \\ \geq (p-q-\beta)[\lambda + (1-\lambda)(p-q+\beta)]. \end{aligned}$$

This contradicts the condition (2.1). Therefore $|\omega(z)| < 1$ for all $z \in \mathbb{U}$. This implies that

$$\left| \frac{z f^{(q+1)}(z)}{f^{(q)}(z)} - (p-q) \right|$$

that is $f(z) \in G_{p,q}(\beta)$. This completes the proof of Theorem 2.3

Taking q = 0 in Theorem 2.3 , we have

Corollary 2.4. If $f(z) \in A_p$ satisfies

$$\left| \lambda \left(\frac{zf'(z)}{f(z)} - p \right) + (1 - \lambda) \left(1 + \frac{z^2 f''(z)}{f(z)} - p(p - 1) \right) \right|$$

$$= (p - \beta) [\lambda + (1 - \lambda)(p + \beta)] \quad (z \in \mathbb{U}),$$

then $f(z) \in G_p(\beta) := \left\{ f(z) \in \mathcal{A}_p : \left| \frac{zf'(z)}{f(z)} - p \right|$

Putting p = 1 in Corollary 2.4, we have

<

Corollary 2.5. If $f(z) \in A$ satisfies

$$\left|\lambda\left(\frac{zf'(z)}{f(z)}-1\right) + (1-\lambda)\frac{z^2f''(z)}{f(z)}\right| < (1-\beta)[\lambda + (1-\lambda)(1+\beta)] \quad (z \in \mathbb{U}),$$

then $f(z) \in G(\beta) := \left\{f(z) \in \mathcal{A} : \left|\frac{zf'(z)}{f(z)}-1\right| < 1-\beta \quad (z \in \mathbb{U})\right\}.$

This corollary is an improvement of the results obtained by Fukui [5, Theorem1] and Nunokawa and Hoshino [10, Theorem 1].

Putting $\lambda = 0$ in Theorem 2.3, we have

Corollary 2.6. If $f(z) \in A_p$ satisfies

$$\left|\frac{z^2 f^{(q+2)}(z)}{f^{(q)}(z)} - (p-q)(p-q-1)\right| < (p-q-\beta)(p-q+\beta) \quad (z \in \mathbb{U}).$$

for some $(0 \leq \beta q, p \in \mathbb{N} \text{ and } q \in \mathbb{N}_0)$, then $f(z) \in G_{p,q}(\beta)$.

Putting q = 0 in Corollary 2.6, we obtain the following corollary

Corollary 2.7. if $f(z) \in A_p$ satisfies

$$\left|\frac{z^2 f''(z)}{f(z)} - p(p-1)\right| < (p^2 - \beta^2) \quad (z \in \mathbb{U}),$$

for some $(0 \leq \beta < p, then f(z) \in G_p(\beta))$.

Remark 2.8. Our result in Corollary 2.7 when p = 1 is an improvement of the results obtained by Fukui [5, Corollary1] and Nunokawa and Hoshino [10, Corollary 2].

Putting $\lambda = \frac{1}{2}$ in Corollary 2.4, we obtain

Corollary 2.9. If $f(z) \in A_p$ satisfies

$$\left|\frac{zf'(z) + z^2 f''(z)}{f(z)} - p^2\right| < (p - \beta) \ (p + 1 + \beta) \ (z \in U),$$

for some $(0 \leq \beta < p, then f(z) \in G_p(\beta))$.

Remark 2.10. Our result in Corollary 2.9 when p = 1 is an improvement of the results obtained by Fukui [5, Corollary2] and Nunokawa and Hoshino [10, Corollary 3].

Theorem 2.11. Let the function f(z) defined by (1.1) belongs to the class $J_{p,q}(\alpha, f(z))$ with $p > q, p \in \mathbb{N}, q \in \mathbb{N}_0$ and $\alpha \ge 1$, then

$$\Re\left\{\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}\right\} > \beta = \frac{-\alpha + \sqrt{\alpha(\alpha + 8\delta(p,q))}}{4}.$$
(2.6)

Proof: Define the function g(z) by

$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} = \beta + [\delta(p,q) - \beta]g(z), \quad 0 \le \beta < \delta(p,q)$$
(2.7)

for $f(z) \in J_{p,q}(\alpha, f(z))$, where

$$\beta = \frac{-\alpha + \sqrt{\alpha(\alpha + 8\delta(p, q))}}{4}.$$
(2.8)

It follows from (2.7) that g(z) is regular in U and that $g(z) = 1 + g_1 z + g_2 z^2 + \dots$. Differentiating (2.7) logarithmically with respect to z, we obtain

$$1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} = \beta + [\delta(p,q) - \beta]g(z) + \frac{[\delta(p,q) - \beta]zg'(z)}{\beta + [\delta(p,q) - \beta]g(z)}.$$
(2.9)

From (2.7) and (2.9), we have

$$\Re\left\{ (1-\alpha)\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + \alpha(1+\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}) \right\}$$

=
$$\Re\left\{\beta + [\delta(p,q) - \beta]g(z) + \frac{\alpha[\delta(p,q) - \beta]zg'(z)}{\beta + [\delta(p,q) - \beta]g(z)} \right\} > 0.$$
(2.10)

Letting $u = u_1 + iu_2, v = v_1 + iv_2$ and

$$\phi(u,v) = \beta + [\delta(p,q) - \beta]u + \frac{\alpha[\delta(p,q) - \beta]v}{\beta + [\delta(p,q) - \beta]u},$$
(2.11)

we know that

(i)
$$\phi(u, v)$$
 is continuous in $D = \left(C - \frac{\beta}{\beta - \delta(p, q)}\right) \times C;$
(ii) $(1, 0) \in D$ and $\Re\{\phi(1, 0)\} = \delta(p, q) > 0;$

(iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -\frac{(1+u_2^2)}{2}$,

$$\begin{aligned} \Re\{\phi(iu_2, v_1)\} &= \beta + \frac{\alpha[\delta(p, q) - \beta]v_1}{\beta^2 + [\delta(p, q) - \beta]^2 u_2^2} \\ &\leq \beta - \frac{\alpha\beta[\delta(p, q) - \beta](1 + u_2^2)}{2\left(\beta^2 + [\delta(p, q) - \beta]^2 u_2^2\right)} \le 0 \end{aligned}$$

Therefore, the function $\phi(u, v)$ defined by (2.11) satisfies the conditions of Lemma 2.2. It follows from this fact that $\Re\{g(z)\} > 0$, that is that

$$\Re\left\{\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}\right\} > \beta = \frac{-\alpha + \sqrt{\alpha(\alpha + 8\delta(p,q))}}{4}.$$

This completes the proof of Theorem 2.11.

Putting $q = 1 - 1 (p \in \mathbb{N})$ in Theorem 2.11, we obtain the following corollary

Corollary 2.12. Let the function f(z) defined by (1.1) belongs to the class

$$J_{p,1-p}(\alpha, f(z)) = J_p(\alpha, f(z))$$

with $p \in \mathbb{N}$ and $\alpha \geq 1$, then

$$\Re\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > \beta = \frac{-\alpha + \sqrt{\alpha(\alpha + 8p!)}}{4}$$

From the definition of the class $J_p(\alpha, f(z))$ and Theorem 2.11, we have

Corollary 2.13. Let the function f(z) defined by (1.1) belongs to the class $J_{p,q}(\alpha, f(z))$ with $p > q, p \in \mathbb{N}$, $q \in \mathbb{N}_0$ and $\alpha \ge 1$, then

$$\Re\left\{1+\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right\} > \beta = \frac{(\alpha-1)(-\alpha+\sqrt{\alpha(\alpha+8\delta(p,q))})}{4\alpha}.$$

Putting $q = p - 1 (p \in \mathbb{N})$ in Corollary 2.13, we obtain the following corollary

Corollary 2.14. Let the function f(z) defined by (1.1) belongs to the class $J_p(\alpha, f(z))$ with $p \in \mathbb{N}$ and $\alpha \ge 1$, then

$$\Re\left\{1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)}\right\} > \beta = \frac{(\alpha - 1) + \sqrt{\alpha(\alpha + 8p!)}}{4\alpha}$$

Remark 2.15. Our result in Corollary 2.14 is an improvement of the result obtained by Saitoh et al. [14, Corollary 1].

Putting $\alpha = 1$ in Corollary 2.12, we have

Corollary 2.16. Let the function f(z) defined by (1.1) be in the class K_p , then

$$\Re\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > \beta = \frac{-1 + \sqrt{1 + 8p!}}{4}.$$

Remark 2.17. Putting p = 1 in Corollary 2.16, then if the function $f(z) \in A$ is convex in \mathbb{U} , then f(z) is starlike of order $\frac{1}{2}$ in \mathbb{U} (see also Saitoh et al. [14, Corollary 2]).

References

1. Aouf, M. K., A generalization of mulivalent functions with negative coefficients, J. Korean Math. soc. 25, no. 1, 53-66,

(1988).

- Aouf, M. K., Certain subclasses of p-valent functions defined by using a differential operator, Appl. Math. Comput. 206, 867-875, (2008).
- 3. Aouf, M. K., Some families of p-valent functions with negative coefficients, Acta Math. Univ. Comenianae 78, no. 1, 121-135, (2009).
- 4. Aouf, M. K., Bounded p-valent Robertson functions defined by using a differential operator, J. Franklin Institute 347, 1972-141, (2010).
- 5. Fukui, S., A remark on a class of certain analytic functions, Proc. Japan Acad. Ser. A, 66, 191-192, (1990).
- 6. Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc. 2, no. 3, 469-474, (1971).
- 7. Miller, S. S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81, 79-81, (1975).
- Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65, 289-305, (1978).
- 9. Nunokawa, M., On the theory of multivalent functions, Tsukuba J. Math. 11, no. 2, 273-286, (1987).
- Nunokawa, M. and Hoshino, S., On criterion on a class of certain analytic functions, RIMS Kyoto Univ. Kokyuroku, 881, 20-22, (1994).

- Nishimoto, K. and Owa, S., A remark on p-valently α-convex functions, J. College Engrg. Nihon Univ. Ser. B 30, 107-110, (1989).
- 12. Owa, S., On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59, no. 4, 385-402, (1985).
- 13. owa, S., Some properties of certain multivalently functions, Appl. Math. Lett., 4, no.5, 79-83, (1991).
- 14. Saitoh, H., Nunokawa, M., Owa, S., Sekine, T. and Fukui, S., A remark on multivalent functions, Bull. Soc. Royale. Sci. Liege 56, no.2, 137-141, (1987).

M. K. Aouf and A. Y. Lashin, Department of Mathematics, Faculty of Science Mansoura University Mansoura, 35516, EGYPT. E-mail address: mkouf127@yahoo.com, aylashin@mans.edu.eg