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Three Robust Edges Stopping Functions For Image Denoising
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abstract: In this paper, we present three strong edge stopping functions for image enhancement. These
edge stopping functions have the advantage of effectively removing the image noise while preserving the true
edges and other important features. The obtained results show an improved quality for the restored images
compared to existing restoration models.
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1. Introduction

Given the importance of the images taken in our daily life, their quality became so important in
many engineering applications. Images are subject to different kinds of distortions resulting in different
levels of degradations. The noise is obtained either from the equipment used in the imaging or during
transmission. In the past 30 years, researchers have relied on second-order partial differential equations
to find ways to eliminate the image noise while preserving their original structure and fine details. One of
these methods is ”linear filtering”. The basic idea behind this method is to eliminate noise in all directions
with the same rate of diffusion. As a consequence, it is not possible to maintain image structures such
as edges and fine structures. The researchers then resorted to the nonlinear anisotropic method that was
first identified by Perona and Malik in 1990 [9] in which the diffusion process is stopped before reaching
the edges, resulting in a better preservation of the edges. Perona and Malik obtained these results by
introducing a key point: using an edge stopping function to control the diffusion process so that the form
of the linear filter was modified as described below:

∂u

∂t
= div(g(‖∇u‖)∇u),

The suggested nonlinear model is said to able to preserve and enhance image edges while simultaneously
removing noise. A lot of work has been done since then. In 1990, Rudin and Osher tried to improve the
time-reverse heat equation using a shock filter [11]. Catté et al. [1] proposed a modified version of PM
model in 1992 in which the diffusion is guided by the intensity of the gradients. Black et al., proposed an
edge stopping function based on Tukey’s biweight robust estimator [8]. Later on in 2011 Tian et al. [2]
proposed a new denoising method by performing an iterative texture-based eigenvalue analysis approach.
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A directional Laplacian-based PM filter was proposed by Wang et al. in 2013. It is claimed to be able
to remove gradient impact and can maintain acute edges [17]. Chen et al., proposed in 2013 an edge
preserving image denoising with a closed form solution [12]. Liu et al. suggested in 2014 an adaptative
anisotropic diffusion filter based on a frame tensor while a time-dependent anisotropic diffusion image
smoothing method was proposed in [6]. Barbu proposed in 2014 a robust anisotropic diffusion scheme for
removing image noise [13]. Finally, Kamalaveni et al. suggested in 2015 an image denoising technique
using a variation of PM model with different edge stopping functions [15].
This paper is organized as follows. In section 2, a review of recent work based on edge stopping functions
for image restoration is presented. In section 3, three new edges stopping functions based on the convo-
lution of a two-dimensional Gaussian filter with the local gradient of the image are detailed. Numerical
approximation of the proposed models is presented in section 4. The comparison approach is presented
with the main results of the present work in section 5 along with an evaluation of the proposed filters
using a set of original images. Finally, a conclusion is given with the references in the last section.

2. Edges Stopping Functions

The two following edge stopping functions were first suggested by Perona and Malik: g1(‖∇u‖) =
1

(

1+( ‖∇u‖
k )

2
) and g2(‖∇u‖) = e−(

‖∇u‖
k )

2

, where k is the gradient magnitude threshold parameter .

Perona and Malik imposed that each of the functions g1 and g2 satisfies the two following conditions:
lim

‖∇u‖→∞
gi (‖∇u‖) = 0 and lim

‖∇u‖→0
gi (‖∇u‖) = 1 for i = 1, 2.

This kind of functions has a central role in the anisotropic diffusion model. It must be a monotonous
decreasing function. If the image gradient is greater than the threshold coefficient, the edge stopping
function slowly tends to zero, thereby protecting the image edges while eliminating the noise. If the
image gradient is smaller than the threshold parameter, the edge stopping function tends to 1. Thus, an
anisotropic filter transforms into a linear filter called the heat equation, resulting in erosion of the image
edges and smoothing the fine structures. For this reason, the performance of the anisotropic diffusion
is based on the judicious choice of a threshold parameter and an edge stopping function is therefore
of great importance in image processing. Variations of the original model proposed by Perona and
Malik were suggested later on new edge stopping functions were used in literature for image restoration.
Edge stopping functions for image restoration will be presented in this section. Based on the previously
mentioned work of Catté et al., Whitaker and Pizer [10] used a decreasing scaling function of time t instead
of the scaling parameter σ (t) is given by the following expression: σ (t) = σ0−αt or σ (t) =

√

σ2
0 − 2αt,

where σ0 is a constant and α is a constant that controls the decrease of the scaling parameter. Li and
Chen [16] focused on the magnitude of the local gradient k of the same work of Catté et al., they suggested
k as a decreasing function of the number of iterations t.
Black et al. [8] proposed a new edge stopping function defined by:

c (‖∇u‖) =







1
2

[

1−
(

‖∇u‖
s

)2
]2

, if ‖∇u‖ ≤ s

1, otherwise,

where s =
√
2k.

Monteil and Beghdadi presented a new interpretation and improvement of the nonlinear anisotropic
diffusion for image enhancement [3], proposing a new edge stopping function:
c (‖∇u‖) = 1

2 [tanh (γ (k −∇u (x, y, t))) + 1],
where γ controls the steepness of the min-max transition region and k is the gradient magnitude threshold
parameter.
Weickert [4] proposed a novel edge stopping function defined by:

c (‖∇u‖) =
{

1− e
−3,31488×( k

‖∇u‖)
8

, if ‖∇u‖ 6= 0
1, otherwise,
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Guo et al. [19] proposed an adaptive PM model based on a new edge stopping function given by:

c(‖∇u‖) = 1
(

1 +
(

‖∇u‖
k

)α(‖∇u‖)
) ,

where

α(‖∇u‖) = 2− 2
(

1 + k ‖∇Gσ ∗ u‖2
) .

Barbu [13] suggested a robust anisotropic diffusion scheme given by:

gk(u) (‖∇u‖) =
{

α

√

k(u)
β×s2+γ

, if s > 0

1, if s 6= 0,

where α, β ∈ [0.5; 0.8], γ ∈ [0.5; 5) and k (u) = median(u)
εη(u) ‖u‖F , ε ∈ (0; 1] and ‖u‖F is the Frobenius

norm of image u, median(u) represents its median value and η (u) is the number of its pixels. Barbu
and Moroşanu [14] proposed a novel nonlinear second-order parabolic PDE based on an edge stopping
function ζu given by the following expression:

ζu (s) = ξ

√

γ (u)

β ln (s+ γ (u))3 + δ
,

where γ (u) = α.µ (‖u‖) + η.pos (u), whereas α, β, δ, η, ξ ∈ (0; 3], µ returns the average value and pos(u)
gets the position of u in the evolving sequence.

3. The proposed edge stopping functions

In this section, our three edge stopping functions are presented. The essential goal of this work is
to allow an efficient processing of images that successfully removes noise while preserving image edges
and fine features. The proposed edge stopping functions satisfy both conditions: they are positive and
non-increasing. The diffusion rate of those functions is high in homogenous regions, ie., if the norm of the
image edge tends to zero, the diffusion rate is the highest possible but it is low within textured regions.
Furthermore, the magnitude of the diffusion parameter has an important role in adjusting the diffusion
rate; in other words, it plays a key role in preserving the correct edges of the image.
The improved nonlinear problem of PM is defined as follows:

∂I

∂t
= div(Hm(‖Gσ ∗ ∇I‖)∇I), for m = 1, 2, 3

where Gσ is a two-dimensional Gaussian filter while σ is the scale parameter.

3.1. Description of the proposed edge stopping functions

The edge stopping functions have an important role in image denoising, as the performance of each
function differs from one to another. Our edge stopping functions are denoted respectively as follows: H1

denotes the first edge stopping function, it is given by:

H1 (‖Gσ ∗ ∇I‖) =
(

3

2
− 3

2 + 4e−(
‖Gσ∗∇I‖

R )
2

)

,
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where R is the gradient magnitude threshold parameter.
We notice that H1 tends to zero when the gradient is high and the performance is very high in homoge-
neous regions. In a mathematical sense, lim

s→+∞
H1 (s) = 0 and lim

s→0
H1 (s) = 1. It can be clearly seen

the better denoising results of H1 in Figures 1, 2, 3, 4, 5 and 8 below.
The second edge stopping function H2 is defined as follows:

H2 (‖Gσ ∗ ∇I‖) = 1−






1− log






1 +

(‖Gσ ∗ ∇I‖+ 1)
1
4

1 +
(

‖Gσ∗∇I‖
R

)4
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1+
‖Gσ∗∇I‖

R

,

this function could be used for processing textured and medical images, where it showed a greater potential
to eliminate the noise of images and to enhance the true image edges while maintaining the small features.
The effectiveness of H2 is also proved by the accurate noise discrimination on the true image edges. The
results are shown below in Figure 1, 2, 3, 4, 6 and 8 .
The third edge stopping function H3 is defined as follows:

H3 (‖Gσ ∗ ∇I‖) =
(

1− tanh

(‖Gσ ∗ ∇I‖
R

)2
)4

.

By applying the function H3, we obtained better denoising results which are reflected in Figure 1, 2, 3
, 4, 7 and 8 below. Furthermore, function H3 reduces the staircasing effect in the resulting image and
discriminises the noise on true edges without removing them.

4. Numerical Approximation

The implementation of our edge stopping functions passes through solving a nonlinear diffusion prob-
lem using the Euler forward finite difference scheme. The method is described in what follows:

In+1
i,j = Ini,j +∆t×









Hm

(∥

∥∇NIni,j
∥

∥

)

∇NIni,j +Hm

(∥

∥∇SIni,j
∥

∥

)

∇SIni,j+

Hm

(∥

∥∇EIni,j
∥

∥

)

∇EIni,j +Hm

(∥

∥∇W Ini,j
∥

∥

)

∇W Ini,j+

Hm

(∥

∥∇NEIni,j
∥

∥

)

∇NEIni,j +Hm

(∥

∥∇NW Ini,j
∥

∥

)

∇NW Ini,j+

Hm

(∥

∥∇SEIni,j
∥

∥

)

∇SEIni,j +Hm

(∥

∥∇SW Ini,j
∥

∥

)

∇SW Ini,j









form = 1, 2, 3, where n is the number of iterations, ‖.‖ is the Euclidean norm and ∆t is time step, whereas
N , S, E, W , NE, NW , SE and SW ( North, South, East, West, NorthEast, NorthWest, SouthEast and
SouthWest) represent local gradient directions. The local gradient is accounted using eight neighboring
directions as follows:

∇NIni,j = Ini−1,j − Ini,j ∇EIni,j = Ini,j+1 − Ini,j

∇SIni,j = Ini+1,j − Ini,j ∇wIni,j = Ini,j−1 − Ini,j

∇NW Ini,j =
Ini−1,j−1 − Ini,j

2
∇NEIni,j =

Ini−1,j+1 − Ini,j

2

∇SEIni,j =
Ini+1,j+1 − Ini,j

2
∇SW Ini,j =

Ini+1,j−1 − Ini,j

2

The implementation results of the proposed functions are compared using different performance metrics.
The detailed description is presented in what follows.

4.1. Criterias of Performance

Several performance metrics are available to measure the quality of denoised images. Three widely
used metrics were investigated in the present study. These are: Mean Absolute Error (MAE), Peak
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Signal-to-Noise Ratio (PSNR) and Structural Similarity Image Metric (SSIM) [18]. MAE measures the
dispersion derived from the average deviation

MAE =
1

w × h

w
∑

i=1

h
∑

j=1

∣

∣I0i,j − Ini,j
∣

∣ .

The SSIM index is a multiplication of three terms indicating different characteristics of patches within the
original and the distorted images: the luminance of the patch, the similarity of the local patch contrasts
and the similarity of the local patch structures. The PSNR expresses the ratio between the maximum
possible value of a signal and the power of the distorting noise. It is defined by:

PSNR = 10 log10











w × h× 2552

w
∑

i=1

h
∑

j=1

(

I0i,j − Ini,j
)2











,

where I0i,j and Ini,j represent respectively the original images and the reconstructed images and w, h are
respectively the width and height of the image.

5. Results and Comparison Approach

The proposed functions have been tested on different types of images. Images were affected by two
different types of noise: salt & pepper noise and Gaussian noise then a discrete form of the nonlinear
diffusion was applied. The results of the applied filters are shown in Figures 1, 3, 5, 6, 7 and 8. The
obtained results prove that the proposed edge stopping functions preserve the true image edges and other
important features while considerably reduce the noise. These results were compared with the following
denoising methods: nonlinear second order parabolic PDE based scheme [14], the new Perona-Malik
model (SLPM) proposed by Yuan and Wang [5], the two function proposed by Perona and Malik in their
original paper [9] and the Total Variation (TV) approach [7]. The results of comparison of the proposed
functions H1, H2 and H3 with the above denoising techniques using the PSNR and MAE as a metrics of
quality are presented in Table 1 below.

(a) (c)

(c) (d)

Figure 1: Performance comparison for σ = 0, 14. Resulting denoised images with the our edge stopping
functions after 28 iterations. (a) Noisy image with Gaussian noise (µ = 0, 04; var = 0, 05), (b) Results
using H1, (c) Results using H2, (d) Results using H3.
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Figure 2: The measured PSNR value for each itration. Using our edge stopping functions.

In Figures 1 and 3, we tested our proposed functions on two different images affected by Gaussian
noise. We used this type of noise at varying density to conform the efficiency of these functions. The
performed denoising shows clearly that our edge stopping functions reduce the noise while image edges
and the important features remain untouched. In it avoids undesirable effects, such as staircasing effect.
We measured the performance of our functions by PSNR and SSIM, the results are displayed in Figures
2 and 4, respectively. From Figures 2 and 4, PSNR and SSIM values for H3 are higher than H2 and
H1, indicating that the performance of function H3 is better than H1 and H2. This result can also be
confirmed by observing the quality of images recovered by H1, H2 and H3 are shown in Figures 1 and 2.

Table 1: Values of PSNR and MAE calculated from denoising approaches for Elaine image after 20
iterations.

Different denoising approaches PSNR MAE
First edge stopping function 38.4535 0.0418
Second edge stopping function 38.4538 0.0417
Third edge stopping function 38.4581 0.0416

2nd-order PDE scheme 37.8458 0.0427
SLPM 38.0604 0.0424

Perona-Malik1 37.2312 0.0451
Perona-Malik2 37.2677 0.0447

TV 37.3739 0.0440

According to Table 1, one can see clearly that the PSNR and MAE values of our functions are greater
than PSNR and MAE values for the other different methods. Figure 8 confirms the superiority of the
results of our edge stopping functions, which we obtained through denoising Elaine image using our edges
stopping functions after 20 iterations. The image is affected by a Gaussian noise with µ = 0.04 and a
variance σ = 0.05.
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1 3 5 7 9 11 13 15 17 19

t

0.9995

0.99955

0.9996
S

S
IM

H1
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H3

Figure 3: The measured SSIM value for each iteration t. Result between the corrupted and the filtered
images for a noisy medical image, using our different functions.

(a) (b)

(c) (d)

Figure 4: Performance comparison for σ = 0, 76. Resulting denoised images with the our edge stopping
functions after 20 iterations. (a) Noisy image with Gaussian noise (µ = 0, 04; var = 0, 05), (b) Results
using H1, (c) Results using H2, (d) Results using H3.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: The obtained results using H1. (a), (c), (e) and (g) are the noisy images with salt & pepper
noise equal to 0.1, (b), (d), (f) and (h) are the restored images.



Three Robust Edges Stopping Functions For Image Denoising 9

Figure 6: The restoration results using H2. In the first column: the noisy images with salt & pepper
noise with a density equal to 0.1. The second column: the restored images after.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: The denoising results using H3. (a), (c), (e) and (g) are the noisy images with salt & pepper
noise with a density equals to 0.1. (b), (d), (f) and (h) are the denoising images.
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Figure 8: The restored images using our edge stopping functions and the existing approaches. The first
row: left image is a noisy image, the middle is restored image using H1, the right is restored image
using H2, the second row: left image is restored image using H3, the middle is restored image using
Perona-Malik1, the right is restored image using Perona-Malik 2. The third row: left image is restored
image using TV approach, the middle is restored image using the 2nd− order PDE scheme and the right
image is restored image using SLPM model.

6. Conclusion

In this article, we proposed three novel edge stopping functions for image denoising. These edge
stopping functions produced better results by removing the image noise without touching the true image
edges and other important features compared to existing approaches. In addition the numerical results
show that the performance of the diffusion process is significantly improved.
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