
Bol. Soc. Paran. Mat. (3s.) v. 2022 (40) : 1–8.
c©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.46956

Existence of Solutions of a Quasilinear Problem With Neumann Boundary Conditions

Samira Lecheheb, Hakim Lakhal and Messaoud Maouni

abstract: This paper is devoted to study the existence of weak solutions of a quasilinear system of partial
differential equations which are a combination of the Perona-Malik equation and the heat equation. The proof
of the main results are based on the compactness method and the motonocity arguments.
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1. Introduction

In this article, we study the existence of the solutions for the following problem





−div
(
g1(|∇v|)∇u

)
−

1

λ21
∆u = f1(x) − uh1(x) in Ω,

−div
(
g2(|∇u|)∇v

)
−

1

λ22
∆v = f2(x)− vh2(x) in Ω,

(
g1(|∇v|) +

1

λ21

)
∇u · ~η =

(
g2(|∇u|) +

1

λ22

)
∇v · ~η = 0 on ∂Ω,

(1.1)

where Ω ⊆ R
N is a bounded domain with smooth boundary ∂Ω, f = (f1, f2) is function in (L2(Ω))2 and

0 < λ ≤ 1 suth that λ = (λ1, λ2), h = (h1, h2) is function in (L∞(Ω))2 satisfy hi > 0, i = 1, 2.
The function g = (g1, g2) is defined by one of the following expressions:

g(s) =
1

1 + ( s
λ
)2

or g(s) = exp
(
−

s2

2λ2
)
.

It is clear that the function g(s) is a decreasing non-negative function satisfying the following conditions





lim
s→0

g(s) = 1,

lim
s→+∞

g(s) = 0.
(1.2)

We remark that, if gi = 1 for i = 1, 2 we recover the linear diffusion.
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In 2014, A. Atlas et al [1] proved the existence and the uniqueness of solutions of the problem




−div(g(|∇u|)∇u)−
1

λp
div(|∇u|p−2∇u) = f − u in Ω,

(
g(|∇u|) +

1

λ2

)
∇u · ~η = 0 on ∂Ω,

(1.3)

they also studied the asymptotic behavior of the solution as p→ ∞. The solvability of the problem (1.3)
in this setting was proved by S. Lecheheb et al [7] in the case where p = 2 and the right hand side is
f − k(x)u, and they also solved this problem when the right hand side is f(u), p = 2 see [8].

In this work, we extend the results obtained in [7] to the system (1.1). This type of systems has been
extensively studied by several authors. In 2009, A. Moussaoui and B. Khodja [12] studied the existence
of nontrivial solutions of semilinear elliptic systems. In 2013, H. Lakehal et al [5] proved the existence of
solution for a nonlinear elliptic system through the Schauder’s fixed point theorem and an appropriate
choice of homotopy. Far from being complete, we refer readers to [3,6,9,11].

The aim of this work is to investigate the existence of solutions to the quasilinear system (1.1) with
zero Neumann boundary conditions. This existence is obtained by using the compactness method and
the monotonicity arguments. The corresponding method has been first introduced by Vishik and called
the compacteness method by J.L. Lions [10]. Our problem is a combination of the Perona-Malik equation
[1,4,13,14] and the heat equation [2].

The paper is organized as follows. In the next section we present the main result. In the section 3,
we prove the existence of the solution of the problem (1.1) under the condition 1.2, using monotonicity
arguments.

2. Main result

In this section, we discuss the notions of weak solutions and the main result. First, let

U = H1(Ω)×H1(Ω),

which is a Banach space endowed with the norm

‖(u, v)‖2U = ‖u‖2H1(Ω) + ‖v‖2H1(Ω),

and let Ṽ = L2(Ω)×L2(Ω), and Ũ = L∞(Ω)×L∞(Ω). In the sequel, ‖ · ‖L2(Ω), ‖ · ‖H1(Ω) and ‖ · ‖L∞(Ω)

will denote the usual norms of L2(Ω), H1(Ω) and L∞(Ω), respectively.
We give now the:

Definition 2.1. We say that (u, v) ∈ U is a weak solution for the system (1.1) if for any (ϕ, ψ) ∈ U we
have ∫

Ω

(g1(|∇v|) +
1

λ21
)∇u∇ϕdx+

∫

Ω

(g2(|∇u|) +
1

λ22
)∇v∇ψ dx

=

∫

Ω

f1ϕdx+

∫

Ω

f2ψ dx−

∫

Ω

uh1(x)ϕ dx−

∫

Ω

vh2(x)ψ dx.

(2.1)

Our main result is the:

Theorem 2.2. Under condition (1.2), the problem (1.1) has at least one solution.

3. Proof of Theorem 2.2

Let V be a finite-dimensional subspace of U endowed with the U-norm, and V∗ its dual. Define the
mappings H : V × [0, 1] −→ V ∗ by

〈H(u, v, t), (ϕ, ψ)〉U =

∫

Ω

(
g1(t|∇v|) +

1

λ21

)
∇u∇ϕdx+

∫

Ω

(
g2(t|∇u|) +

1

λ22

)
∇v∇ψ dx

−

∫

Ω

f1(x)ϕ dx−

∫

Ω

f2(x)ψ dx+

∫

Ω

uh1(x)ϕ dx+

∫

Ω

vh2(x)ψ dx,
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for all (ϕ, ψ) ∈ V, H is well defined.

3.1. A priori bounds.

Let us show now that
{
(u, v) ∈ V : H(u, v, t) = 0, for some t ∈ [0, 1]

}
⊂ B̄(0, ρ̃) where

ρ̃ =
2

min(c1, c2)
‖(f1, f2)‖Ṽ .

Indeed, if H(u, v, t) = 0 for same (u, v, t) ∈ V × [0, 1], then

0 = 〈H(u, v, t), (u, v)〉U ≥ min(c1, c2)‖(u, v)‖
2
U − 2‖(f1, f2)‖Ṽ ‖(u, v)‖U ,

which implies that

‖(u, v)‖U ≤
2

min(c1, c2)
‖(f1, f2)‖Ṽ .

Consequently, for any R >
2

min(c1, c2)
‖(f1, f2)‖Ṽ , we have

H(u, v, t) 6= 0 if (u, v, t) ∈ ∂BV (R)× [0, 1], (3.1)

where ∂BV (R) is the boundary of the open ball of center 0 and radius R in the space V see [9].

3.2. H is bounded.

Now, if (u, v, t) ∈ B̄V (R)× [0, 1], we have

|〈H(u, v, t), (ϕ, ψ)〉| ≤

(
max

(
1 +

1

λ21
, 1 +

1

λ22
, 2‖(h1, h2)‖Ũ

)
‖(u, v)‖U + 2‖(f1, f2)‖Ṽ

)
‖(ϕ, ψ)‖U

≤

(
max

(
1 +

1

λ21
, 1 +

1

λ22
, 2‖(h1, h2)‖Ũ

)
R+ 2‖(f1, f2)‖Ṽ

︸ ︷︷ ︸
R̃

)
‖(ϕ, ψ)‖U

≤ R̃‖(ϕ, ψ)‖U ,

for all (ϕ, ψ) ∈ U, and hence

H
(
B̄V(R)× [0, 1]

)
⊂ B̄V∗

(R̃). (3.2)

3.3. H is continuous.

Let (un, vn, tn) ∈ B̄V(R)× [0, 1] converge to (u, v, t) in V × [0, 1], i.e in U × [0, 1]. Since (H(un, vn, tn))
is bounded because of (3.2), to prove that

H(un, vn, tn) → H(u, v, t),

it is sufficient to show that H(u, v, t) is the unique cluster point of (H(un, vn, tn)). Let M ∈ V∗ be such
a cluster point, still we denote by (tn), (un) and (vn) a subsequence of (tn), (un) and (vn) respectively
such that

H(un, vn, tn) →M in V∗.

Since (un, vn) → (u, v) in U , it follows that (un, vn) → (u, v) in Ṽ , and hence, going if necessary to a
subsequence, we may assume that (un, vn) → (u, v) a.e in Ω. On the other hand, (∂iun, ∂ivn) → (∂iu, ∂iv)

in Ṽ , therefore (∇un,∇vn) → (∇u,∇v) a.e in Ω. This implies that

g1(tn|∇vn|) → g1(t|∇v|) a.e in Ω,
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g2(tn|∇un|) → g2(t|∇u|) a.e in Ω,

and hence, for any (ϕ, ψ) ∈ V ,

g1(tn|∇vn|)∇ϕ→ g1(t|∇v|)∇ϕ in L2(Ω),

g2(tn|∇un|)∇ψ → g2(t|∇u|)∇ψ in L2(Ω).

We conclude that

〈H(un, vn, tn), (ϕ, ψ)〉U

=

∫

Ω

unh1(x)ϕ dx+

∫

Ω

vnh2(x)ψ dx+

∫

Ω

(
g1(tn|∇vn|) +

1

λ21

)
∇un∇ϕdx

+

∫

Ω

(
g2(tn|∇un|) +

1

λ22

)
∇vn∇ψ dx

→

∫

Ω

uh1(x)ϕ dx+

∫

Ω

vh2(x)ψ dx+

∫

Ω

(
g1(t|∇v|) +

1

λ21

)
∇u∇ϕdx

+

∫

Ω

(
g2(t|∇u|) +

1

λ22

)
∇v∇ψ dx = 〈H(u, v, t), (ϕ, ψ)〉U .

Thus M = H(u, v, t). All those properties allow us to apply the homotopy invariance property to

degB

(
H(·, ·, 1), B(R), 0

)
= degB

(
H(·, ·, 0), B(R), 0

)
. (3.3)

But H(u, v, 0) = 0 is equivalant to the problem

(1 +
1

λ21
)

∫

Ω

∇u∇ϕdx+ (1 +
1

λ22
)

∫

Ω

∇v∇ψ dx

=

∫

Ω

f1(x)ϕ dx+

∫

Ω

f2(x)ψ dx−

∫

Ω

uh1(x)ϕ dx−

∫

Ω

vh2(x)ψ dx,

for all (ϕ, ψ) ∈ V, whose solution is unique because of the boundedness of the set of its possible solutions.
Consequently,

degB

(
H(·, ·, 0), B(R), 0

)
= ±1,

and from (3.3) and the existence property of the degree, there exists (u, v) ∈ BV(R) which satisfies





∫

Ω

(
g1(|∇v|) +

1

λ21

)
∇u∇ϕdx+

∫

Ω

(
g2(|∇u|) +

1

λ22

)
∇v∇ψ dx

=

∫

Ω

f1(x)ϕ dx+

∫

Ω

f2(x)ψ dx−

∫

Ω

uh1(x)ϕ dx−

∫

Ω

vh2(x)ψ dx,

‖(u, v)‖U ≤
2

min(c1, c2)
‖(f1, f2)‖Ṽ ,

(3.4)

for all (ϕ, ψ) ∈ V .
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3.4. Passing to the limit.

We now show the passage to the limit.
Consider the function ai : R

N → R
N defined by

ai(ξi) =
(
gi(ξi) +

1

λ2i

)
ξi for any ξi ∈ R

N and i = 1, 2.

To prove the passage to the limit, we need the following lemma:

Lemma 3.1. [1] Let 0 < λi ≤ 1 , for any ξi, ηi ∈ R
N such that ξi 6= ηi we have

(
ai(ξi)− ai(ηi)

)
(ξi − ηi) > 0 for i = 1, 2.

The proof of the above lemma can be found in [1].

Lemma 3.2. If a ∈ C(RN ,RN ), a(ξ) ≤ (1 + 1
λ2 )ξ for all ξ ∈ R

N and if un → u in H1(Ω) then
a(∇un) → a(∇u) in L2(Ω).

Lemma (3.2) is proved by the dominated convergence theorem of Lebesgue.
Now, it is well known that one can write U =

⋃
n≥1 Vn where Vn ⊂ Vn+1(n ≥ 1) and Vn has dimension n.

Consequently, given any (ϕ, ψ) ∈ U , there exists a sequence (ϕn, ψn) with (ϕn, ψn) ∈ Vn which converges
to (ϕ, ψ). On the other hand, by (3.4) applied to V = Vn, there exists, for each n ≥ 1, some (un, vn) ∈ Vn
such that ∫

Ω

a1(∇un)∇ϕ̃dx+

∫

Ω

a2(∇vn)∇ψ̃ dx

=

∫

Ω

f1(x)ϕ̃ dx+

∫

Ω

f2(x)ψ̃ dx−

∫

Ω

unh1(x)ϕ̃ dx−

∫

Ω

vnh2(x)ψ̃ dx,

‖(un, vn)‖U ≤
2

min(c1, c2)
‖(f1, f2)‖Ṽ ,

for all (ϕ̃, ψ̃) ∈ Vn. In particular, taking (ϕ̃, ψ̃) = (ϕn, ψn) introduced above,

∫

Ω

a1(∇un)∇ϕn dx+

∫

Ω

a2(∇vn)∇ψn dx

=

∫

Ω

f1(x)ϕn dx+

∫

Ω

f2(x)ψn dx−

∫

Ω

unh1(x)ϕn dx−

∫

Ω

vnh2(x)ψn dx,

‖(un, vn)‖U ≤
2

min(c1, c2)
‖(f1, f2)‖Ṽ ,

(3.5)

for all n ≥ 1. The estimate in (3.5) implies that, going if necessary to subsequences, we can assume that

there exists (u, v) ∈ U such that un → u weakly in U , un → u strongly in Ṽ and un → u a.e. in Ω. As(
a1(∇un)

)
n∈N

is bounded in L2(Ω), then there exists ζ1 ∈ L2(Ω) such that

a1(∇un) → ζ1 weakly in L2(Ω).

Similarly, we obtain
a2(∇vn) → ζ2 weakly in L2(Ω),

and (∇ϕn,∇ψn) → (∇ϕ,∇ψ) strongly in Ṽ , one can let n→ ∞ in (3.5) to obtain

∫

Ω

ζ1∇ϕdx+

∫

Ω

ζ2∇ψ dx

=

∫

Ω

f1(x)ϕ dx+

∫

Ω

f2(x)ψ dx−

∫

Ω

uh1(x)ϕ dx−

∫

Ω

vh2(x)ψ dx.

(3.6)
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It remains to show that ∫

Ω

ζ1∇ϕdx =

∫

Ω

a1(∇u)∇ϕdx, (3.7)

and ∫

Ω

ζ2∇ψ dx =

∫

Ω

a2(∇v)∇ψ dx. (3.8)

To prove the two equalities, we use the trick of Minty [7]; we begin by studying the limit of
∫

Ω

a1(∇un)∇un dx,

and ∫

Ω

a2(∇vn)∇vn dx.

Indeed
∫

Ω

a1(∇un)∇un dx =

∫

Ω

f1(x)un dx−

∫

Ω

u2nh1(x) dx→

∫

Ω

f1(x)u dx−

∫

Ω

u2h1(x) dx,

∫

Ω

a2(∇vn)∇vn dx =

∫

Ω

f2(x)vn dx−

∫

Ω

v2nh2(x) dx→

∫

Ω

f2(x)v dx−

∫

Ω

v2h2(x) dx,

because (un, vn) → (u, v) weakly in U . But we know that (u, v) satisfies (3.6), and hence
∫

Ω

f1(x)u dx−

∫

Ω

u2h1(x) dx =

∫

Ω

ζ1∇u dx,

and ∫

Ω

f2(x)v dx−

∫

Ω

v2h2(x) dx =

∫

Ω

ζ2∇v dx.

Therefore

lim
n→+∞

∫

Ω

a1(∇un)∇un dx =

∫

Ω

f1(x)u dx−

∫

Ω

u2h1(x) dx

=

∫

Ω

ζ1∇u dx,

(3.9)

and

lim
n→+∞

∫

Ω

a2(∇vn)∇vn dx =

∫

Ω

f2(x)v dx−

∫

Ω

v2h2(x) dx

=

∫

Ω

ζ2∇v dx.

(3.10)

Let (ϕ, ψ) ∈ U , it exists (ϕn, ψn)n∈N such that (ϕn, ψn) ∈ Vn for all n ∈ N and (ϕn, ψn) → (ϕ, ψ) in U
when n→ +∞. Thanks to Lemma 3.1, we will pass to the limit in the two terms

∫

Ω

a1(∇un)∇ϕn dx,

and ∫

Ω

a2(∇vn)∇ψn dx.

Indeed, for the first equation

0 ≤

∫

Ω

(a1(∇un)− a1(∇ϕn))(∇un −∇ϕn) dx =

∫

Ω

a1(∇un)∇un dx−

∫

Ω

a1(∇un)∇ϕn dx−

∫

Ω

a1(∇ϕn)∇un dx+

∫

Ω

a1(∇ϕn)∇ϕn dx

= F1,n − F2,n − F3,n + F4,n,
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we saw in (3.9) that F1,n →

∫

Ω

ζ1∇u dx when n→ ∞. We have

lim
n→+∞

F2,n =

∫

Ω

ζ1∇ϕdx.

Similarly

lim
n→+∞

F3,n =

∫

Ω

a1(∇ϕ)∇u dx.

Finally, we also have

lim
n→+∞

F4,n =

∫

Ω

a1(∇ϕ)∇ϕdx,

when n→ +∞. The passage to the limit therefore gives:

∫

Ω

(ζ1 − a1(∇ϕ))(∇u−∇ϕ) dx ≥ 0 for all ϕ ∈ H1(Ω).

Similarly, we obtain ∫

Ω

(ζ2 − a2(∇ψ))(∇u−∇ψ) dx ≥ 0 for all ψ ∈ H1(Ω).

We now choose judicious test functions ϕ and ψ. We take

ϕ = u+
1

n
ϕ∗, with ϕ∗ ∈ H1(Ω) and n ∈ N

∗,

and

ψ = v +
1

n
ψ∗, with ψ∗ ∈ H1(Ω) and n ∈ N

∗.

We thus obtain:

−
1

n

∫

Ω

(
ζ1 − a1(∇u+

1

n
∇ϕ∗)

)
∇ϕ∗ dx ≥ 0,

and

−
1

n

∫

Ω

(
ζ2 − a2(∇v +

1

n
∇ψ∗)

)
∇ψ∗ dx ≥ 0,

then

∫

Ω

(
ζ1 − a1(∇u+

1

n
∇ϕ∗)

)
∇ϕ∗ dx ≤ 0,

and ∫

Ω

(
ζ2 − a2(∇v +

1

n
∇ψ∗)

)
∇ψ∗ dx ≤ 0.

But

u+
1

n
ϕ∗ → u in H1(Ω),

v +
1

n
ψ∗ → v in H1(Ω),

thanks to Lemma 3.2, we obtain

a1
(
∇u+

1

n
∇ϕ∗

)
→ a1(∇u) in L

2(Ω),

and

a2
(
∇v +

1

n
∇ψ∗

)
→ a2(∇v) in L

2(Ω).
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Passing to the limit when n→ +∞, we then obtain
∫

Ω

(ζ1 − a1(∇u))∇ϕ
∗ dx ≤ 0, ∀ϕ∗ ∈ H1(Ω),

and ∫

Ω

(ζ2 − a2(∇v))∇ψ
∗ dx ≤ 0, ∀ψ∗ ∈ H1(Ω).

By linearity (can change ϕ∗ into −ϕ∗ and ψ∗ into −ψ∗), we have
∫

Ω

(ζ1 − a1(∇u))∇ϕ
∗ dx = 0, ∀ϕ∗ ∈ H1(Ω),

and ∫

Ω

(ζ2 − a2(∇v))∇ψ
∗ dx = 0, ∀ψ∗ ∈ H1(Ω).

We deduce that ∫

Ω

ζ1∇ϕ
∗ dx =

∫

Ω

a1(∇u)∇ϕ
∗ dx, ∀ϕ∗ ∈ H1(Ω),

∫

Ω

ζ2∇ψ
∗ dx =

∫

Ω

a2(∇v)∇ψ
∗ dx, ∀ψ∗ ∈ H1(Ω).

Hence we have showed that (u, v) is a solution of (1.1).
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Ann. Fac. Sci. de Toulouse Math, 5(3), 201-246, (1981).

4. P. Guidotti, A bakward-forward regularization of the Perona-Malik equation, J.Differential Equations 252(4), 3226-3244,
(2012).

5. H. Lakehal, B. Khodja, W. Gharbi, Existence results of nontrivial solutions for a semi linear elliptic system at reso-
nance, Journal of Advanced Research in Dynamical and Control Systems, 5(3), 1-12, (2013).

6. H. Lakhal, B. Khodja, Elliptic systems at resonance for jumping non- linearities, Electronic Journal of Differential
Equations, ,N 70, 1-13, (2016).

7. S. Lecheheb, M. Maouni, H. Lakhal, Existence of the solution of a quasilinear equation and its application to image
denoising, International Journal of Computer Science, Computer Science, Communication and Information Technology
(CSCIT) 7 (2), 1-6, 2019.

8. S. Lecheheb, M. Maouni, H. Lakhal, Image restoration using nonlinear elliptic Equaion, International Journal of
Computer Science, Computer Science, Communication and Information Technology (CSCIT) 6 (2), 32-37, 2019.

9. S. Lecheheb, H. Lakhal, M. Maouni, K. Slimani, Study of a system of Diffusion-Convection-Reaction, International
Journal of Partial Differential Equations and Applications. 4(2), 32-37, 2016.
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