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abstract: Let S be a (not necessarily unital) commutative inverse semigroup with idempotent set E. In
this paper, we show that for every n ∈ N0, n-th Hochschild cohomology group of semigroup algebra ℓ1(S)
with coefficients in ℓ∞(S) and its n-th ℓ1(E)-module cohomology group, are equal. Indeed, we prove that

H
n(ℓ1(S), ℓ∞(S)) = H

n

ℓ1(E)
(ℓ1(S), ℓ∞(S)),

for all n ≥ 0.
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1. Introduction

The concept of module amenability for Banach algebras which are Banach module over another
Banach algebra with compatible actions, was introduced by Amini in [1]. Immediately after that Amini
and Bagha in [2] introduced and studied the concept of weak module amenability for Banach algebras.
As an example they showed that the semigroup algebra ℓ1(S) of a commutative inverse semigroup S is
always weakly module amenable as a module over the semigroup algebra ℓ1(E) of its subsemigroup E of
idempotents, when ℓ1(S) is a Banach ℓ1(E)-module with actions

δs · δe = δe · δs = δe ∗ δs = δse (s ∈ S, e ∈ E), (1.1)

where δs and δe are the point mass at s ∈ S and e ∈ E, respectively. The author along with Pourabbas in
[11] and [12], after introducing the concept of module cohomology group for Banach algebras extended
this result and showed that the first and second module cohomology groups of ℓ1(S) with coefficients in
ℓ∞(S) (ℓ1(S)(2n−1) (n ∈ N)), are zero and Banach space, respectively.

In this paper, for every n ∈ N0, we show that n-th Hochschild cohomology group of semigroup
algebra ℓ1(S) with coefficient in ℓ∞(S) and its n-th ℓ1(E)-module cohomology group are equal, when S
is a commutative inverse semigroup with idempotent set E. Indeed we prove that

H
n(ℓ1(S), ℓ∞(S)) ≃ H

n
ℓ1(E)(ℓ

1(S), ℓ∞(S)) (n ∈ N0).
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2. Preliminaries

In this section, we remind the concept of n-th Hochschild cohomology group and n-th module coho-
mology group which are introduced by Johnson in [7] and the author of the current article along with
Pourabbas in [12], respectively.

Let A be a Banach algebra and X be a Banach A-bimodule, then so is the dual space X∗, where the
actions of A on X∗ are defined by

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗). (2.1)

The cohomology complex is

C(A,X) : 0 −→ X
δ0

−→ C
1(A,X)

δ1

−→ C
2(A,X)

δ2

−→ · · · , (2.2)

when the map δ0 : X −→ C1(A,X) is given by δ0(x)(a) = a · x− x · a and for n ∈ N, the n-coboundary
operators δn : Cn(A,X) −→ Cn+1(A,X) is given by

δnφ(a1, . . . , an+1) =a1 · φ(a2, . . . , an+1)

+

n∑

i=1

(−1)iφ(a1, . . . , aiai+1, . . . an+1)

+ (−1)n+1φ(a1, . . . , an) · an+1,

(2.3)

where Cn(A,X) is the set of all bounded n-linear maps from A to X that are called n-cochains, φ ∈
Cn(A,X) and a1, a2, . . . , an+1 ∈ A. It is easy to see that δn+1 ◦δn = 0 for every n ∈ Z+. The space ker δn

of all bounded n-cocycles is denoted by Zn(A,X) and the space Im δn−1 of all bounded n-coboundaries
is denoted by Bn(A,X). We also recall that Bn(A,X) is included in Zn(A,X) and the n-th Hochschild
cohomology group H

n(A,X) is defined by the quotient

H
nA,X) =

Zn(A,X)

Bn(A,X)
.

Let A and A be (not necessarily unital) Banach algebras such that A is a Banach A-bimodule with
compatible actions, that is,

α · (ab) = (α · a)b, a(α · b) = (a · α)b (α ∈ A, a, b ∈ A), (2.4)

and the same for the other side action.
Let X be a Banach A-bimodule and a Banach A-bimodule with compatible actions, that is,

α · (a · x) = (α · a) · x, (a · α) · x = a · (α · x), (α · x) · a = α · (x · a), (2.5)

where α ∈ A, a ∈ A and x ∈ X and the same for the other side action. Then X is called a Banach
A-A-module. X is called a commutative Banach A-A-module whenever α · x = x · α for every α ∈ A and
x ∈ X .

Let X be a Banach space with the dual space X∗. Suppose X is a commutative Banach A-A-module,
then so isX∗, where the actions of A and A onX∗ are defined as (2.1). In particular, if A is a commutative
Banach A-bimodule, then it is a commutative Banach A-A-module. In this case, the dual space A∗ is
also a commutative Banach A-A-module.

An n-A-module map is a bounded mapping φ : An = A×A× . . .×A
︸ ︷︷ ︸

n

→ X with the following

properties:

φ(a1, a2, . . . , ai−1, b± c, ai+1, . . . , an) = φ(a1, a2, . . . , ai−1, b, ai+1, . . . , an)

± φ(a1, a2, . . . , ai−1, c, ai+1, . . . , an),

φ(α · a1, a2, . . . , an) = α · φ(a1, a2, . . . , an),

φ(a1, a2, . . . , an · α) = φ(a1, a2, . . . , an) · α,

and

φ(a1, a2, . . . , ai · α, ai+1, . . . , an) = φ(a1, a2, . . . , ai, α · ai+1, . . . , an),

(2.6)
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where a1, . . . , an, b, c ∈ A and α ∈ A. From now on, we remove the dot (sing “·”) for simplicity. Note
that, in case of A is not necessarily unital φ is not necessarily n-linear, but still its boundedness implies its
norm continuity (since φ preserves subtraction). We use the notation Cn

A
(A,X) for the set of all bounded

(continuous) n-A-module maps from A to X that are called n-A-module cochains.
The A-module cohomology complex is

CA(A,X) : 0 −→ X
δ0
A−→ C

1
A(A,X)

δ1
A−→ C

2
A(A,X)

δ2
A−→ · · · , (2.7)

where the n-coboundary operators δnA is given as (2.3) (for more details see [11] and [12]). The space
ker δnA of all bounded n-A-module cocycles is denoted by Zn

A
(A,X) and the space Im δn−1

A
of all bounded

n-A-module coboundaries is denoted by Bn
A
(A,X). From now on, δnA is displayed with the same δn for

simplicity. We know that Bn
A
(A,X) is included in Zn

A
(A,X). The n-th A-module cohomology group

Hn
A
(A,X) is defined by the quotient

H
n
AA,X) =

Zn
A
(A,X)

Bn
A
(A,X)

.

Remark 2.1. In the above definitions all module maps are additive A-n-linear, that is, comparing with
a n-linear map the coefficient α is coming from A instead of C (see (2.6)). So in general case, since
n-A-module maps are not necessarily n-linear, the A-module complex CA(A,X) is not subcomplex of
cohomology complex C(A,X). But if we consider A = C and module actions are scaler multiplication,
the all additive maps will be linear which means that, Cn

A
(A,X) = Cn(A,X), for every n ∈ N0. So the

module cohomology is just the Hochschild cohomology. That is, Hn
C
(A,X) = Hn(A,X).

Definition 2.2. The Banach algebra A is called A-module amenable if H1
A
(A,X∗) = 0 for every com-

mutative Banach A-A-module X. Also A is called weak A-module amenable (Resp. (n)-weak A-module
amenable) if A is a commutative Banach A-A-module and H

1
A
(A,A∗) = 0

(
Resp. H1

A
(A,A(n)) = 0

)
.

Definition 2.3. The Banach algebra A is called amenable if H1(A,X∗) = 0 for every Banach A-bimodule
X and is called weak amenable (Resp. (n)-weak amenable) if H1(A,A∗) = 0

(
Resp. H1(A,A(n)) = 0

)
.

3. n-ℓ1(E)-module cocycles from ℓ1(S) to ℓ∞(S)

Throughout this paper, we assume S is a commutative inverse semigroup with idempotent set E and
semigroup algebra ℓ1(S) is a Banach ℓ1(E)-module with actions (1.1). Also it is assumed that n ∈ N,
unless otherwise stated.

Theorem 3.1 (Theorem 4.1 of [8]). Let B be an amenable closed subalgebra of Banach algebra A, X be
a dual A-bimodule and φ ∈ Zn(A,X). Then there is a ψ ∈ Cn−1(A,X) such that

(φ− δn−1ψ)(a1, a2, . . . , an) = 0,

if any one of a1, a2, . . . , an ∈ B.

Lykova in Theorem 2.6 of [10] by the help of Theorem 3.1, establish a connection between the
Hochschild cohomology group and the relative cohomology group of a Banach algebra A for dual A-
bimodules X , and showed that

H
n(A,X) = H

n
B(A,X) (n ∈ N0),

where B is an amenable closed subalgebra of A.
In Theorem 4.1 of [8], the authors present a method of adjusting cocycles (i.e. perturbing them by

coboundaries) via averaging techniques. While some of the results are stated in terms of continuous
cohomology with coefficients in a dual Banach module, they hold in greater generality. We have replaced
the condition that B be amenable with the weaker condition H1(B,Cn−1(A,X)) = 0. An examination
of the proof of that Theorem 4.1 of [8], shows that this is the only place where the amenability of B was
used. Therefore, in the case that A = ℓ1(S), X = ℓ∞(S) and B = ℓ1(E), since ℓ1(E) is commutative
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and weak amenable closed subalgebra of ℓ1(S) so H1(ℓ1(E),Zn−1(ℓ1(S), ℓ∞(S))) = 0 by Theorem 2.8.63
of [4], where Zn−1(ℓ1(S), ℓ∞(S)) is commutative closed ℓ1(E)-submodule of Cn−1(ℓ1(S), ℓ∞(S)) with the
actions (8) and (10) in [8].

In this section, in the case that A = ℓ1(S), X = ℓ∞(S) and B = ℓ1(E), for a commutative inverse
semigroup S with idempotent set E, first we show that the concepts relative cohomology group introduced
by Lykova in [10] and module cohomology group introduced by the author of the current article and
Pourabbas in [11] and [12], are equal. Then, we use some ideas of [10] and prove

H
n(ℓ1(S), ℓ∞(S)) = H

n
ℓ1(E)(ℓ

1(S), ℓ∞(S)) (n ∈ N0),

while ℓ1(E) is not necessary amenable Banach algebra.

Lemma 3.2. Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)) ⊆ Cn(ℓ1(S), ℓ∞(S)).

Proof. Let s1, s2, ..., sn ∈ S, λ ∈ C and φ ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)). For every 1 ≤ i ≤ n, since δsis∗i , λδsis∗i ∈

ℓ1(E), we have

φ(δs1 , ..., λδsi , ..., δsn) = φ(δs1 , ..., λδsis∗i δsi , ..., δsn)

= λδsis∗i φ(δs1 , ..., δsi , ..., δsn)

= λφ(δs1 , ..., δsis∗i si , ..., δsn)

= λφ(δs1 , ..., δsi , ..., δsn).

But since the set of point mass {δs : s ∈ S} is dens in ℓ1(S), thus the result directly follows from continuity
φ. �

Corollary 3.3. Previous Lemma shows that for A = ℓ1(S) and A = ℓ1(E) where S be a commutative
inverse semigroup with idempotent set E, the concept of relative cohomology group introduced by Lykova
in [10] is equivalent to the concept of module cohomology group introduced by the author of the current
article and Pourabbas in [11] ( [12]).

Before proceeding further we set up our notations. Let φ ∈ Cn(ℓ1(S), ℓ∞(S)) (n ∈ N). Suppose
1 ≤ k ≤ n, we say that φ is zero on ℓ1(E) of degree k, if φ(a1, a2, ..., an) = 0 if any one of a1, a2, ..., ak
lies in ℓ1(E) and we denote it with φ ≈k 0. If φ ≈n 0 we write φ ≈ 0. But φ is a continuous map and
the sets of point masses {δs : s ∈ S} and {δe : e ∈ E} are dens in ℓ1(S) and ℓ1(E), respectively. This fact
leads to the following:

φ ≈k 0 ⇐⇒ φ(δs1 , δs2 , ..., δsk) if any one of s1, s2, ..., sk lies in E. (3.1)

for every k ∈ {1, 2, . . . , n}.
The following Lemma is special case of Lemma 2.2 in [10].

Lemma 3.4. Let φ ∈ Cn(ℓ1(S), ℓ∞(S)) such that (δnφ) ≈ 0 and φ ≈ 0. Then φ ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)).

According to the preliminary discussion of this section, as a Proposition we obtain:

Proposition 3.5. Let φ ∈ Cn(ℓ1(S), ℓ∞(S)) such that (δnφ) ≈ 0. Then there exists

ψ ∈ C
n−1(ℓ1(S), ℓ∞(S))

such that (φ− δn−1ψ) ≈ 0.

Corollary 3.6. Let φ ∈ Zn(ℓ1(S), ℓ∞(S)). Then there exists ψ ∈ Cn−1(ℓ1(S), ℓ∞(S)) such that (φ −
δn−1ψ) ≈ 0. Moreover (φ− δn−1ψ) ∈ Zn

ℓ1(E)(ℓ
1(S), ℓ∞(S)).

Proof. Using the Lemma 3.4 and Proposition 3.5, the proof is clear. �
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Proposition 3.7. Let φ ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)) such that (δnφ) ≈ 0. Then there exists

ψ ∈ C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S))

such that (φ− δn−1ψ) ≈ 0.

Proof. For n = 1, by assumption, for each e ∈ E, since δe ∈ ℓ1(E), we have

0 = (δ1φ)(δe, δe) = δeφ(δe)− φ(δe2) + φ(δe)δe = φ(δe),

and so φ ≈ 0. Hence if we take ψ = 0, then (φ− δ0ψ) ≈ 0.
For n > 1, we construct, inductively on k, ψ1, ψ2, ..., ψk in C

n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) such that

(φ − δn−1ψk) ≈k 0,

for 1 ≤ k ≤ n. The conclusion of the Proposition then follows, with ψ = ψn. To construct ψ1, we define
ψ1 ∈ Cn−1(ℓ1(S), ℓ∞(S)) by

ψ1(δs1 , δs2 , ..., δsn−1
) := φ(δe0

, δs1 , δs2 , ..., δsn−1
),

where e0 = (s1s2...sn−1)(s1s2...sn−1)
∗. It is routine to check that ψ1 ∈ C

n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)).

By assumption, for s1, s2, ..., sn−1 ∈ S and fix e ∈ E, we have

0 = δnφ(δe0
, δe, δs1 , δs2 , ..., δsn−1

)

= δe0
φ(δe, δs1 , δs2 , ..., δsn−1

)

− φ(δe0
δe, δs1 , δs2 , ..., δsn−1

)

+ φ(δe0
, δeδs1 , δs2 , ..., δsn−1

)

+

n−2∑

j=1

(−1)jφ(δe0
, δe, δs1 , ..., δsjsj+1

, ..., δsn−1
)

+ (−1)n−1φ(δe0
, δe, δs1 , ..., δsn−2

)δsn−1

= φ(δe0
, δeδs1 , δs2 , ..., δsn−1

)

+

n−2∑

j=1

(−1)jφ(δe0
, δe, δs1 , ..., δsjsj+1

, ..., δsn−1
)

+ (−1)n−1φ(δe0
, δe, δs1 , ..., δsn−2

)δsn−1
.

(3.2)

Thus

δn−1ψ1(δe, δs1 , δs2 , ..., δsn−1
)

= δeψ1(δs1 , δs2 , ..., δsn−1
)

− ψ1(δeδs1 , δs2 , ..., δsn−1
)

−

n−2∑

j=1

(−1)jψ1(δe, δs1 , ..., δsjsj+1
, ..., δsn−1

)

− (−1)n−1ψ1(δe, δs1 , δs2 , ..., δsn−2
)δsn−1

= δeφ(δe0
, δs1 , δs2 , ..., δsn−1

)

− φ(δee0
, δes1 , δs2 , ..., δsn−1

)

−

n−2∑

j=1

(−1)jφ(δee0
, δe, δs1 , ..., δsjsj+1

, ..., δsn−1
)

− (−1)n−1φ(δee0
, δe, δs2 , δs3 , ..., δsn−2

)δsn−1
.
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Now the sum of the last third terms vanish by (3.2) and we get

δn−1ψ1(δe, δs1 , δs2 , ..., δsn−1
) = δeφ(δe0

, δs1 , δs2 , ..., δsn−1
)

= φ(δeδe0
, δs1 , δs2 , ..., δsn−1

)

= φ(δe, δs1s∗1δs1 , δs2s∗2δs2 , ..., δsn−1
s∗
n−1

δs
n−1

)

= φ(δe, δs1 , δs2 , ..., δsn−1
),

therefore

(φ− δn−1ψ1)(δe, δs2 , δs3 , ..., δsn) = 0.

This shows that (φ − δn−1ψ1) ≈1 0.

Suppose now that 1 ≤ k < n, and a suitable cochain ψk ∈ C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) has been constructed.

With define σ := φ − δn−1ψk ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)) we have σ ≈k 0. In order to continue the inductive

process (and so complete the proof of the Proposition), it suffices to construct ψ′ in C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S))

such that [σ − δn−1ψ′] ≈k+1 0. For then we have φ − δn−1(ψk + ψ′) = σ − δn−1ψ′, and we may take
ψk+1 = ψk + ψ′. Now To construct ψ′, we define ω ∈ Cn−1(ℓ1(S), ℓ∞(S)) by

ω(δs1 , δs2 , ..., δsn−1
) := σ(δs1 , δs2 , ..., δsk , δe0

, δsk+1
, ..., δsn−1

), (3.3)

where e0 = (s1s2...sn−1)(s1s2...sn−1)
∗. It can checked that ω ∈ C

n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) and ω ≈k 0. Since

δnφ = δnσ, so by using the coboundary formula (2.3), for each s1, s2, ..., sn−1 and fix e ∈ E, we have

0 = δnσ(δs1 , δs2 , ..., δsk , δe0
, δe, δsk+1

, ..., δsn−1
)

= δs1σ(δs2 , ..., δsk , δe0
, δe, δsk+1

, ..., δsn−1
)

+

k−1∑

j=1

(−1)jσ(δs1 , ..., δsjsj+1
, ..., δsk , δe0

, δe, δsk+1
, ..., δsn−1

)

+ (−1)kσ(δs1 , ..., δskδe0
, δe, δsk+1

, ..., δsn−1
)

+ (−1)k+1σ(δs1 , ..., δsk , δe0
δe, δsk+1

, ..., δsn−1
)

+ (−1)k+2σ(δs1 , ..., δsk , δe0
, δeδsk+1

, ..., δsn−1
)

+

n−2∑

j=k+1

(−1)j+2σ(δs1 , ..., δsk , δe0
, δe, δsk+1

, ..., δsjsj+1
, ..., δsn−1

)

+ (−1)n+1σ(δs1 , δs2 , ..., δsk , δe0
, δe, δsk+1

, ..., δsn−2
)δsn−1

.

Now since σ ≈k 0, the first and second terms vanish, and since σ is n-ℓ1(E)-module map, the third and
fourth cancel. Thus

0 = (−1)k+2σ(δs1 , ..., δsk , δe0
, δeδsk+1

, ..., δsn−1
)

+

n−2∑

j=k+1

(−1)j+2σ(δs1 , ..., δsk , δe0
, δe, δsk+1

, ..., δsjsj+1
, ..., δsn−1

)

+ (−1)n+1σ(δs1 , δs2 , ..., δsk , δe0
, δe, δsk+1

, ..., δsn−2
)δsn−1

.

(3.4)
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On the other hand, by the coboundary formula (2.3), we have

δn−1ω(δs1 , ..., δsk , δe, δsk+1
, ..., δsn−1

)

= δs1ω(δs2 , ..., δsk , δe, δsk+1
, ..., δsn−1

)

+

k−1∑

j=1

(−1)jω(δs1 , ..., δsjsj+1
, ..., δsk , δeδsk+1

, ..., δsn−1
)

+ (−1)kω(δs1 , ..., δske, δsk+1
, ..., δsn−1

)

+ (−1)k+1ω(δs1 , ..., δsk , δesk+1
, ..., δsn−1

)

+

n−2∑

j=k+1

(−1)j+1ω(δs1 , ..., δsk , δe, δsk+1
, ..., δsjsj+1

, ..., δsn−1
)

+ (−1)nω(δs1 , ..., δsk , δe, δsk+1
, ..., δsn−2

)δsn−1
.

Since ω ≈k 0, the first and second terms vanish. Therefore, we have

δn−1ω(δs1 , ..., δsk , δe, δsk+1
, ..., δsn−1

)

= (−1)kσ(δs1 , ..., δske, δee0
, δsk+1

, ..., δsn−1
)

+ (−1)k+1σ(δs1 , ..., δsk , δee0
, δesk+1

, ..., δsn−1
)

+
n−2∑

j=k+1

(−1)j+1σ(δs1 , ..., δsk , δee0
, δe, δsk+1

, ..., δsjsj+1
, ..., δsn−1

)

+ (−1)nσ(δs1 , ..., δsk , δee0
, δe, δsk+1

, ..., δsn−2
)δsn−1

.

Now the sum of the last third terms vanish by (3.4). Thus

δn−1ω(δs1 , ..., δsk , δe, δsk+1
, ..., δsn−1

)

= (−1)kσ(δs1 , ..., δskδe, δeδe0
, δsk+1

, ..., δsn−1
)

= (−1)kσ(δs1s∗1δs1 , ..., δsks∗kδsk , δe, δsk+1
s∗
k+1

δs
k+1

, ..., δs
n−1

s∗
n−1

δs
n−1

)

= (−1)kσ(δs1 , ..., δsk , δe, δsk+1
, ..., δsn−1

),

and hence
[σ − (−1)kδn−1ω](δs1 , ..., δsk , δe, δsk+1

, ..., δsn−1
) = 0.

This shows that, if ψ′ = (−1)kω, then σ − δn−1ψ′(δs1 , δs2 , . . . , δsn) vanishes when (k + 1)-th argument
lies in {δe : e ∈ E}. Thus we can simply show that

[σ − δn−1ψ′] ≈k+1 0,

and the proof is complete. �

Proposition 3.8. Suppose φ ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S))
⋂

Bn(ℓ1(S), ℓ∞(S)). Then φ∈ Bn
ℓ1(E)(ℓ

1(S), ℓ∞(S)).

Proof. For n = 1, since S is commutative, we have

C
0
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = ℓ∞(S) = C
0(ℓ1(S), ℓ∞(S)),

and therefore,
B

1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = B
1(ℓ1(S), ℓ∞(S)).

For n ≥ 2, by Proposition 3.5, there exists ψ ∈ C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)) such that

(φ− δn−1ψ) ≈ 0. (3.5)
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Now we define
φ′ := φ− δn−1ψ.

Since φ′ ≈ 0 by (3.5) and δnφ′ = δnφ ≈ 0 so φ′ ∈ Cn
ℓ1(E)(ℓ

1(S), ℓ∞(S)) by Lemma 3.4.

On the other hand, by assumption, there exists ψ′ ∈ Cn−1(ℓ1(S), ℓ∞(S)) such that φ = δn−1ψ′. We
have

φ′ = φ− δn−1ψ = δn−1ψ′ − δn−1ψ = δn−1(ψ′ − ψ).

Further, we define φ′′ := ψ′ − ψ. The map φ′′ satisfies the assumption of Proposition 3.5, so there exists
ψ′′ ∈ Cn−2(ℓ1(S), ℓ∞(S)) such that

(φ′′ − δn−2ψ′′) ≈ 0. (3.6)

Therefore
φ′ = δn−1(ψ′ − ψ) = δn−1φ′′ = δn−1(φ′′ − δn−2ψ′′ + δn−2ψ′′) = δn−1ψ̄,

where ψ̄ := φ′′−δn−2ψ′′. But ψ̄ ≈ 0 by (3.6) and δn−1ψ̄ = φ′ ≈ 0 by (3.5), thus ψ̄ ∈ C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S))

by Lemma 3.4. Finally

φ = φ′ + δn−1ψ = δn−1ψ̄ + δn−1ψ = δn−1(ψ̄ + ψ),

where ψ̄ + ψ ∈ C
n−1
ℓ1(E)(ℓ

1(S), ℓ∞(S)). This implies φ ∈ Bn
ℓ1(E)(ℓ

1(S), ℓ∞(S)), and the proof is complete.
�

4. Module Cohomology Group of Inverse Semigroup Algebras

In the final section, we get the our main results and we establish a connection between n-th Hochschild
cohomology group of semigroup algebra ℓ1(S) with coefficients in ℓ∞(S) and its n-th module cohomology
group, for all n ≥ 0.

Theorem 4.1. Let S be a commutative inverse semigroup with idempotent set E. Then

H
n(ℓ1(S), ℓ∞(S)) = H

n
ℓ1(E)(ℓ

1(S), ℓ∞(S)) (n ∈ N0).

Proof. For n = 0, we have

H
0(ℓ1(S), ℓ∞(S)) = H

0
ℓ1(E)(ℓ

1(S), ℓ∞(S)) = ℓ∞(S).

For fix n ≥ 1, we define morphism

Γ : H
n
ℓ1(E)(ℓ

1(S), ℓ∞(S)) → H
n(ℓ1(S), ℓ∞(S))

φ+B
n
ℓ1(E)(ℓ

1(S), ℓ∞(S)) 7→ φ+B
n(ℓ1(S), ℓ∞(S)).

where φ ∈ Zn
ℓ1(E)(ℓ

1(S), ℓ∞(S)). In this case, Γ is well define by Lemma 3.2, surjective by Corollary 3.6

and injective by Proposition 3.8. Hence, the result follows from Lemma 0.5.9 of [9] and Γ is topological
isomorphism. �

Finally, we know that ℓ∞(S)
w∗

= ℓ∞(S)
∗∗

and every n-ℓ1(E)-module maps from ℓ1(S) to ℓ∞(S) are
continuous and n-linear, by Lemma 3.2. This fact leads to the following result:

Corollary 4.2. Let S be a commutative inverse semigroup with idempotent set E. Then

H
n(ℓ1(S), ℓ1(S)(2k+1)) = H

n
ℓ1(E)(ℓ

1(S), ℓ1(S)(2k+1)) (n, k ∈ N0).

Bowling and Duncan in [3] and Gourdeau, Pourabbas and White in [6] show that, the first cohomology
group and second cohomology group of ℓ1(S) with coefficients in ℓ∞(S) are zero and Banach space,
respectively, for every Clifford semigroup (and so commutative inverse semigroup) S. Indeed, their
results are along with our findings, not only confirms the correctness of Theorem 3.1 of [2], Theorem 2.2
of [11] and Theorem 2.3 of [12], but they improve.
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