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The Equality of Hochschild Cohomology Group and Module Cohomology Group for
Semigroup Algebras

Ebrahim Nasrabadi

ABSTRACT: Let S be a (not necessarily unital) commutative inverse semigroup with idempotent set F. In
this paper, we show that for every n € Ng, n-th Hochschild cohomology group of semigroup algebra £!(S)
with coefficients in £°°(S) and its n-th £!(E)-module cohomology group, are equal. Indeed, we prove that

GOEH(S), £°(8)) = a5, (€(S), £(9),
for all n > 0.
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1. Introduction

The concept of module amenability for Banach algebras which are Banach module over another
Banach algebra with compatible actions, was introduced by Amini in [1]. Immediately after that Amini
and Bagha in [2] introduced and studied the concept of weak module amenability for Banach algebras.
As an example they showed that the semigroup algebra ¢1(.S) of a commutative inverse semigroup S is
always weakly module amenable as a module over the semigroup algebra ¢! (E) of its subsemigroup F of
idempotents, when ¢1(.9) is a Banach ¢!(E)-module with actions

0g0c =0¢ 05 =0¢%0s =0 (s€ S,e€ E), (1.1)

where 5 and J. are the point mass at s € S and e € E, respectively. The author along with Pourabbas in
[11] and [12], after introducing the concept of module cohomology group for Banach algebras extended
this result and showed that the first and second module cohomology groups of £1(S) with coefficients in
02(8) (£*(S)?»=1 (n € N)), are zero and Banach space, respectively.

In this paper, for every n € Ny, we show that n-th Hochschild cohomology group of semigroup
algebra ¢1(S) with coefficient in £°°(S) and its n-th ¢!(E)-module cohomology group are equal, when S
is a commutative inverse semigroup with idempotent set F. Indeed we prove that

T (E1(S),6°(8)) = 3 ) (€1(5), €(S))  (n € No).
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2. Preliminaries

In this section, we remind the concept of n-th Hochschild cohomology group and n-th module coho-
mology group which are introduced by Johnson in [7] and the author of the current article along with
Pourabbas in [12], respectively.

Let A be a Banach algebra and X be a Banach A-bimodule, then so is the dual space X*, where the
actions of A on X* are defined by

(@-f)(x) =f(z-a), (f-a)(@)=fla-z) (acAzeX feX) (2.1)
The cohomology complex is
e x):  0-—xDeax) Lerax) S (2.2)

when the map 6° : X — €'(A, X) is given by 6°(z)(a) = a-x — x - a and for n € N, the n-coboundary
operators 6" : C"(A, X) — C"1(A, X) is given by

5"¢(a1, . ,an+1) =aq - ¢(a2, . ,an+1)
+ Z(—l)%(al, ey Qi e Gy 1) (2.3)
i=1

+ (—1)"+1¢(a1, ey CLn) *Ap41,

where C"(A, X) is the set of all bounded n-linear maps from A to X that are called n-cochains, ¢ €
C"(A,X) and a1, as, ..., a1 € A. It is easy to see that 6" 06™ = 0 for every n € Z*t. The space ker "
of all bounded n-cocycles is denoted by 2"(A, X) and the space Im 6™~ ! of all bounded n-coboundaries
is denoted by B™(A, X). We also recall that B™(A, X) is included in Z™(A, X) and the n-th Hochschild
cohomology group H"(A, X) is defined by the quotient
Z"(A, X)
HYA, X) = ———~.
%) Br(A, X)

Let 2l and A be (not necessarily unital) Banach algebras such that A is a Banach 2-bimodule with

compatible actions, that is,

a-(ab) = (a-a)b, ala-b)=(a-a)b (veU, a,be A, (2.4)

and the same for the other side action.
Let X be a Banach A-bimodule and a Banach 2(-bimodule with compatible actions, that is,

a-(a-z)=(a-a)-z, (a-a)-z=a (a-2), (0v-z)-a=a-(r-a), (2.5)

where o € 2, a € A and x € X and the same for the other side action. Then X is called a Banach
A-2-module. X is called a commutative Banach A-2l-module whenever o -2 = z - « for every a € 2l and
reX.

Let X be a Banach space with the dual space X*. Suppose X is a commutative Banach A-2-module,
then so is X*, where the actions of A and 2l on X* are defined as (2.1). In particular, if A is a commutative
Banach Q-bimodule, then it is a commutative Banach A-2-module. In this case, the dual space A* is
also a commutative Banach A-2(-module.

An n-2-module map is a bounded mapping ¢ : A" = Ax Ax...x A — X with the following

n

properties:
olar,as,...,a;_1,bxc,aq1,...,a,) = dlar,aa,...,a;—1,b,ai41,...,a,)
t (a1, a0, ..., 0i-1,CQi11,...,0n),
dla-ay,ag,...,an) =a-Plar,as, ..., a,), (2.6)
dlar,as, ... an @) = Plar,as,...,a,) -,
and

(b(alva'Qv"'aai'aaai+17"'aan):¢(a1aa2a'"aaiaa'ai+1a"'aan)a
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where ay,...,an,b,c € A and « € 2. From now on, we remove the dot (sing “-”) for simplicity. Note
that, in case of 2l is not necessarily unital ¢ is not necessarily n-linear, but still its boundedness implies its
norm continuity (since ¢ preserves subtraction). We use the notation €} (A, X) for the set of all bounded
(continuous) n-A-module maps from A to X that are called n-2-module cochains.

The 2-module cohomology complex is

CalA,X): 00— X 2 el(a,x) e, x) . (2.7)

where the n-coboundary operators dgy is given as (2.3) (for more details see [11] and [12]). The space
ker 8 of all bounded n-2l-module cocycles is denoted by 2 (A, X) and the space Im 85 ' of all bounded
n-2-module coboundaries is denoted by By (A, X). From now on, dy is displayed with the same 6" for
simplicity. We know that Bj (A, X) is included in Z} (A, X). The n-th A-module cohomology group
Ky (A, X) is defined by the quotient

2y (A, X)

Remark 2.1. In the above definitions all module maps are additive A-n-linear, that is, comparing with
a n-linear map the coefficient « is coming from 2 instead of C (see (2.6)). So in general case, since
n-2-module maps are not necessarily n-linear, the A-module complexr Cy (A, X) is not subcomplezx of
cohomology complex C(A, X). But if we consider 2 = C and module actions are scaler multiplication,
the all additive maps will be linear which means that, Cj (A, X) = C"(A, X), for every n € Ng. So the
module cohomology is just the Hochschild cohomology. That is, HE (A, X) = H" (A4, X).

Definition 2.2. The Banach algebra A is called 2A-module amenable if Hy (A, X*) = 0 for every com-
mutative Banach A-A-module X. Also A is called weak A-module amenable (Resp. (n)-weak 2A-module
amenable) if A is a commutative Banach A-A-module and H} (A, A*) =0 (Resp. Hy (A, A™) =0).

Definition 2.3. The Banach algebra A is called amenable if H'(A, X*) = 0 for every Banach A-bimodule
X and is called weak amenable (Resp. (n)-weak amenable) if H'(A, A*) =0 (Resp. H'(A, AM) =0).

3. n-{'(E)-module cocycles from ('(S) to ¢>°(S)

Throughout this paper, we assume S is a commutative inverse semigroup with idempotent set £ and
semigroup algebra ¢1(S) is a Banach ¢*(FE)-module with actions (1.1). Also it is assumed that n € N,
unless otherwise stated.

Theorem 3.1 (Theorem 4.1 of [8]). Let B be an amenable closed subalgebra of Banach algebra A, X be
a dual A-bimodule and ¢ € Z"(A, X). Then there is a 1 € C"~1(A, X) such that

(¢ - (Sn_lw)(alva@v o 'aan) - 07
if any one of a1,as,...,a, € B.

Lykova in Theorem 2.6 of [10] by the help of Theorem 3.1, establish a connection between the
Hochschild cohomology group and the relative cohomology group of a Banach algebra A for dual A-
bimodules X, and showed that

H"(A, X) =HE(A X) (n € Np),

where B is an amenable closed subalgebra of A.

In Theorem 4.1 of [8], the authors present a method of adjusting cocycles (i.e. perturbing them by
coboundaries) via averaging techniques. While some of the results are stated in terms of continuous
cohomology with coefficients in a dual Banach module, they hold in greater generality. We have replaced
the condition that B be amenable with the weaker condition H*!(B,€" 1(A, X)) = 0. An examination
of the proof of that Theorem 4.1 of [8], shows that this is the only place where the amenability of B was
used. Therefore, in the case that A = ¢1(S), X = ¢>°(S) and B = (}(E), since (}(E) is commutative
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and weak amenable closed subalgebra of /1(S) so H(¢*(E), 2"~ 1(¢£1(S),£>°(S))) = 0 by Theorem 2.8.63
of [4], where Z"~1(£1(S),¢°°(S)) is commutative closed ¢! (E)-submodule of €"~(¢1(S), ¢>°(S)) with the
actions (8) and (10) in [8].

In this section, in the case that A = ¢1(S), X = ¢>°(S) and B = (!(E), for a commutative inverse
semigroup S with idempotent set F, first we show that the concepts relative cohomology group introduced
by Lykova in [10] and module cohomology group introduced by the author of the current article and
Pourabbas in [11] and [12], are equal. Then, we use some ideas of [10] and prove

H(C(9), £°(S)) = Fs (1 (€1 (S), £°(S)) (n € No),
while ¢1(E) is not necessary amenable Banach algebra.
Lemma 3.2. C} p, (€1(S), 2°(S)) C € (L1(S9),£°(9)).

Proof. Let s1,82,...,8, € S, € Cand ¢ € C?l(E)(él(S),éoo(S)). For every 1 < i < n, since 0,5+, Mg, s+ €
(1(E), we have

B(Gays oo ABsys ooy 65, ) = DGy ey Ay Oy ooy B,
= Aarsr (6ys s Gy ooy O, )
= A8y, ooy Osiotisss o s )
VYU IR Y

But since the set of point mass {Js : s € S} is dens in £1(S), thus the result directly follows from continuity
¢. 0

Corollary 3.3. Previous Lemma shows that for A = (}(S) and A = (*(E) where S be a commutative
inverse semigroup with idempotent set E, the concept of relative cohomology group introduced by Lykova
in [10] is equivalent to the concept of module cohomology group introduced by the author of the current
article and Pourabbas in [11] ([12]).

Before proceeding further we set up our notations. Let ¢ € € (¢1(S),¢>(S)) (n € N). Suppose
1 < k < n, we say that ¢ is zero on (1(E) of degree k, if ¢(ay,as,...,a,) = 0 if any one of a1, az, ..., ax
lies in /(E) and we denote it with ¢ ~ 0. If ¢ ~,, 0 we write ¢ ~ 0. But ¢ is a continuous map and
the sets of point masses {5 : s € S} and {J. : e € E} are dens in £1(S) and ¢! (E), respectively. This fact
leads to the following:

P~ 0 <= ¢(0s,,05y,...,05,) if any one of sy, S, ..., 55, lies in E. (3.1)

for every k € {1,2,...,n}.
The following Lemma is special case of Lemma 2.2 in [10].

Lemma 3.4. Let ¢ € C*(¢1(S),£>°(S)) such that (6"¢) ~ 0 and ¢ ~ 0. Then ¢ € Clh(m) (01(S),£>(S)).
According to the preliminary discussion of this section, as a Proposition we obtain:
Proposition 3.5. Let ¢ € C*(£1(S),0°°(S)) such that (6" ¢) ~ 0. Then there exists
¥ € EMTH(EN(S), £°(9))
such that (¢ — 6" 11p) ~ 0.

Corollary 3.6. Let ¢ € Z"(¢*(S),0°°(S)). Then there exists ¢ € C"~1(¢1(S),£>(S)) such that (¢ —
6" ) = 0. Moreover (¢ — 6" 14p) € ZZI(E)(él(S),éoo(S)).

Proof. Using the Lemma 3.4 and Proposition 3.5, the proof is clear. O
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Proposition 3.7. Let ¢ € €} ) (01(9),£2°(S)) such that (6"¢) ~ 0. Then there exists
W € Gl g (£1(5),£7(8))

such that (¢ — 6" ') ~ 0.

Proof. For n = 1, by assumption, for each e € E, since §. € /}(E), we have

0= (51¢)(5e7 56) = 56¢(56) - ¢(562) + ¢(56)5e = ¢(5e)a

and so ¢ ~ 0. Hence if we take 1) = 0, then (¢ — 6°) ~
For n > 1, we construct, inductively on k, ¥, %s,, .. ,wk in Gel(E) (£1(S9), £°°(S)) such that

(¢ — 0" 19y) ~ 0,

for 1 < k < n. The conclusion of the Proposition then follows, with ¢ = 1,,. To construct ¢;, we define
by € € 1(E1(S), () by

w1(651’5527"' Sn— 1) = (b( €0 51’ 527"'765n—1)’

where eg = (5182...5,-1)(5152...5,—1)*. It is routine to check that 1, € Ggl(E)(él(S),éoo(S)).
By assumption, for s, s3,...,$,—1 € S and fix e € E, we have

0=0"0(0eq,de, Osy s Osysnns 05, y)
= Oeq®(0e, 0sy, Osyyonns s, y)
= A(0egles 0y 05555 05,y )
+ &(Geqs 005y, Ogs ey O,y )

n—2

+Z( )J¢( 607 91;---555_7‘5_7‘+17---758n_1)
P (3.2)

—|— (—1)n_1¢(5607 567 581) ot 5Sn—2)55n—1
= ¢(5607 56551 ’ 582a 55n71)

+ E 607 581)"')55_j5_j+17"'75877.—1)

+ (_l)n 1¢( 6075675815 "')5Sn_2)5sn_1-
Thus

5n_1¢1(567 551 ’ 5827 A 65n71)
=01 (01,055,530, 1)
— 1)1 (805,505, s 0s,, 1)

n—2

_Z( ) 1#1( 517"'755j5j+1""’55n71)

j=1
_( l)n 1¢1( [2) 551’5527"'75877.—2)5877.—1
- 5e¢(5607581)5927 5977. 1)
_¢(5660766817 CPRIRERE) 5571,1)

- E 6607 5817"'768j8j+1a"'adsnfl)

- (_1)n 1¢( 660756758255537 "'75877.—2)5877.—1'
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Now the sum of the last third terms vanish by (3.2) and we get

5n_1w1(5€7 581)5525 oty 5Sn—1) = 56¢(5607 581;5527 ceey 5Sn_1)
= ¢(5 560759155927 ---75(71_1)

- ¢(56758181681a582826827 76 — 182_155n_1)
= ¢(5e7531’5527"'753n—1)7

therefore

(6 — 6" 1) (B Gum g s Bs,) = 0.

This shows that (¢ — 6" *¢,) = 0.

Suppose now that 1 < k < n, and a suitable cochain v, € Gzﬁ(}g) (€*(S),£>(S)) has been constructed.
With define o := ¢ — 6" 14, € GZI(E)(Zl (5),£(S5)) we have o =, 0. In order to continue the inductive
process (and so complete the proof of the Proposition), it suffices to construct 1" in €7, o E) (01(9),£2°(9))

such that [0 — 6" '] <41 0. For then we have ¢ — 6" (¢, +¢') = 0 — 6" ¢/, and we may take
VYpyr = ¥, + ' Now To construct ¢, we define w € €"~(£1(S),£>(S)) by

W(0s;,0s55 0,05, 1) = (0515050, -5 0515 Oegs Ospyys s Osr1),s (3.3)

where eg = (5152...5n—1)(5152...8p—1)*. It can checked that w € Gzl(E)(él(S),éoo(S)) and w ~y 0. Since
0"¢ = 0", so by using the coboundary formula (2.3), for each sy, s9, ..., $,—1 and fix ¢ € E, we have

0= (5”0((551,552, ceey 55k,5e07 667 5Sk+1v ) 68n—1)
= 5810(5527 ey 5Sk)5307 567 5Sk+17 ey 5877.—1)

+ Z(_l)j0(581a (3] 5Sjsj+17 ] 65k’5907 567 58k+17 e 65"%1)

+(=1)ke (s 519 05.0e05 065 0,1y s Os_y)
( 1) . ( 917"'753k)53056753k+1’"')5571,—1)
+( 1)k+20(591a"' 59k75€055€55k+17'--755n_1)

E +2
+ J 817"'768ka560766768k+17"'768]'83'4,1’""587171)
J= k+1

+ (=1)" 0 (S5, 8sysvoes Osys Gy Oes Oy oes Oy )0y -

Now since o =, 0, the first and second terms vanish, and since o is n-¢*(E)-module map, the third and
fourth cancel. Thus

0= (_1)k+2 (Bsys s Osps s OcBsg s ys s O 1)
+ Z J+2 817"'768ka560766768k+17"'768]'83'4,1’""587171) (34)

j=k+1
+ (—1)"“0(551 105y 0sy50e0s 0y sy ys s Osp_5) 05,y
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On the other hand, by the coboundary formula (2.3), we have

5’”71{"'](581) oty 5Sk75€7 5Sk+17 ceey 5871-1)
= 05,W(0sy, s 055,05 Oy 15 ey 05y )

k—1
+ Z(_l)]w(é‘?l) oty 5Sj8j+17 A 5Sk ) 5655k+17 ceey 5871-1)
Jj=1

+ (_l)kw(d‘?lv ) 581&7 5Sk+17 EEES) 5sn_1)
+ (=)W (s, oo Gy Oespprs s Osp 1)
2

+ (1) W (sy s cvey O Gy Gy ooos Oy gnswoes sy )

J
+ (=1)"w(0sys ey Ogy,0e, 0 vy O 5 )0 4.

» Y Sk410
Since w =, 0, the first and second terms vanish. Therefore, we have
n—1
0" W(0sy s ey Oy s Oy Oy gy vy O,y )

= (=1)* 005y, s Ospes Deens Ospsrs s 05y 1)
+ (= 1) (854 ey 05y s Oceos Despys s Oy )
2

S
|

_|_

(=1)7H (85, ovy Gy, Ocens Oes Oy s wes § o

Y V8585410 Snfl)
+1

J
+ (_1)n0(581a R 55k ) 5660 ) 567 5sk+17 sty 5sn_2)5sn_1 .

Il
>

Now the sum of the last third terms vanish by (3.4). Thus

B I O, DU S O P

) YV Sk410

= (_1)k0(5517 A 5Sk 56) 56560 ) 5Sk+1) LA 5Sn_1)
(_l)ka(dsls’l‘dsla ceny 05 5205 s 53, s

k+15k+1 5Sk+1 LA 5Sn715:171 557171)

(=1)F (s, oevs sy Oy Oy gy woes Osy 1)

and hence
[0 = (=1)%6™ 7 W] (85, oovy Gy Oy Oy g5 wees Os, 1) = 0.

This shows that, if ¢/ = (—1)*w, then o — 6" '¢'(ds,,0s,,...,ds, ) vanishes when (k + 1)-th argument
lies in {0, : e € E}. Thus we can simply show that

[0 — 6" '] R4 0,
and the proof is complete. O
Proposition 3.8. Suppose ¢ € G?l(E)(él (9),£>°(S)) N B™(£1(S),£>°(S)). Then ¢€ 3?1(]5)(81 (8),£°°(9)).
Proof. For n =1, since S is commutative, we have
Cor () (€1 (), £°(8)) = £(S) = €°(£1(8), (),

and therefore,

B () (€1(5), £(5)) = BI(E1(8), £(5))-

For n > 2, by Proposition 3.5, there exists ¢ € G?l_(g) (€1(S), £°°(S)) such that

(¢ — 0" ") ~0. (3.5)
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Now we define
¢ = — 5" 1.
Since ¢ ~ 0 by (3.5) and §"¢" = §"¢ ~ 0 50 ¢’ € Cp ) (£'(5), €(5)) by Lemma 3.4.
On the other hand, by assumption, there exists ¢’ € C*~1(¢1(S), £°°(S)) such that ¢ = " '¢)'. We
have
¢/ _ (b_(sn_ld} _ 5n—1,¢}/ _5n—1,¢} _ 5n—1(,¢}/ _¢)
Further, we define ¢” := 1’ — 1. The map ¢” satisfies the assumption of Proposition 3.5, so there exists
" € Cnm2(01(S), £°°(S)) such that
(¢// o 5n—2¢//) ~ 0 (36)
Therefore -
¢/ _ (5”71(@[/ _ '@ZJ) _ 5n71¢1/ _ 5n71(¢l/ _ 5n72w// +5n72¢1/) _ 5n71w7
where ¢ := ¢ —§"7*". But ¢ & 0 by (3.6) and 6"~ ') = ¢’ = 0 by (3.5), thus ¢ € €} 5 (£1(S), €(5))
by Lemma 3.4. Finally

¢: ¢l+5n71¢ _ 5n71{b+5n71¢ _ 5n71({b+w)7
where ¢ + 1 € €1 g (€(S),£°(S)). This implies ¢ € By 5 (€1(S),£2°(S)), and the proof is complete.
O

4. Module Cohomology Group of Inverse Semigroup Algebras

In the final section, we get the our main results and we establish a connection between n-th Hochschild
cohomology group of semigroup algebra ¢1(S) with coefficients in £°°(S) and its n-th module cohomology
group, for all n > 0.

Theorem 4.1. Let S be a commutative inverse semigroup with idempotent set E. Then

H(E1(S),€2(5)) = 3G () (€1(5),€2(S))  (n € No).
Proof. For n =0, we have

HO(LH(S), () = Hpn () (£1(S), £°(S)) = £2(S).

For fix n > 1, we define morphism

I I () (£1(8), £7(8)) = F"(£1(S5), £2(8))

¢+ B () (L1(5), £2(5)) = & + B"(£(S), £°(9)).

where ¢ € Zj} 5 (£1(S),£°°(S)). In this case, I' is well define by Lemma 3.2, surjective by Corollary 3.6

and injective by Proposition 3.8. Hence, the result follows from Lemma 0.5.9 of [9] and T is topological
isomorphism. 0

Finally, we know that £=(S5)" = ¢>°(S)™ and every n-¢1(E)-module maps from ¢1(S) to £°(S) are
continuous and n-linear, by Lemma 3.2. This fact leads to the following result:

Corollary 4.2. Let S be a commutative inverse semigroup with idempotent set F. Then
TC(C1(S), €1(S)PHHD) = 3 1y (1(S), () D) (m,k € No).

Bowling and Duncan in [3] and Gourdeau, Pourabbas and White in [6] show that, the first cohomology
group and second cohomology group of ¢!(S) with coefficients in £>°(S) are zero and Banach space,
respectively, for every Clifford semigroup (and so commutative inverse semigroup) S. Indeed, their
results are along with our findings, not only confirms the correctness of Theorem 3.1 of [2], Theorem 2.2
of [11] and Theorem 2.3 of [12], but they improve.
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