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Existence of a Renormalized Solution of Nonlinear Parabolic Equations With General

Measure Data

Amine Marah and Hicham Redwane

abstract: In this paper we prove the existence of a renormalized solution for nonlinear parabolic equations
of the type:

∂b(x, u)

∂t
− div

(

a(x, t,∇u)
)

= µ in Ω× (0, T ),

where the right hand side is a general measure, b(x, u) is an unbounded function of u and −div(a(x, t,∇u)) is
a Leray–Lions type operator with growth |∇u|p−1 in ∇u.
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1. Introduction

Let Ω be a bounded open subset of R
N , (N ≥ 1), T is a positive real number, and let Q :=

Ω× (0, T ), p > 1. We will consider the following nonlinear parabolic problem

∂b(x, u)

∂t
− div

(

a(x, t,∇u)
)

= µ in Q, (1.1)

b(x, u)(t = 0) = b(x, u0) in Ω, (1.2)

u = 0 on ∂Ω× (0, T ). (1.3)

In Problem (1.1)-(1.3) the framework is the following: the data µ is a bounded Radon measure on Q,
the function b(x, u0) belongs to L

1(Ω).
The operator −div(a(x, t,∇u)) is a Leray–Lions operator which is coercive and which grows like |∇u|p−1

with respect to ∇u, (see assumptions (3.4), (3.5) and (3.6) of Section 3).
In the case where b(x, u) = u, and the right hand side is a bounded measure, the existence of a

distributional solution was proved in [16], but due the lack of regularity of the solutions, the distributional
formulation is not strong enough to provide uniqueness (see [41] and [35] for a counter example in
the elliptic case). To overcome this difficulty the notion of renormalized solutions firstly introduced
by DiPerna and Lions [23] for the study of Boltzmann equation was adapted to the parabolic and
elliptic equations with L1 data (see [4,6,7,30,31,34]). The equivalent notion of entropy solution has
been developed independently by [3] for the study of nonlinear elliptic problems and by [37] in the
parabolic case. Both renormalized and entropy solutions provide a convenient framework to deal with
elliptic or parabolic equations with L1 data. A large number of papers was then devoted to the study
the existence of renormalized (or entropy) solution of parabolic problems with rough data under various
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assumptions and different contexts: in addition to the references already mentioned see, among others,
[1,2,9,10,11,12,13,18,19,32,40].

Concerning the datum µ, the existence and uniqueness of renormalized solution of (1.1)-(1.3) have
proved in [39] in the case where b(x, u) = u, u0 ∈ L1(Ω) and for every measure µ which does not charge
the sets of zero p-capacity, the so-called diffuse measures or soft measures (see Section 2 for the definitions
of p-capacity and diffuse measure). The importance of the measures not charging sets of null p-capacity
was first observed in the stationary case in [15], and developed in the evolution case in [39].

For µ ∈ M0(Q), b(x, u) = b(u) and u0 ∈ L1(Ω), the existence and uniqueness of renormalized solution
have been proved in [12]. In the case where µ ∈ M0(Q) and with the parabolic term on b(x, u), the
existence of renormalized solution of problem (1.1)-(1.3) was proved in [38]. For µ ∈ M(Q) (the space of
all bounded Radon measures on Q), b(x, u) = u and u0 ∈ L1(Ω), the existence of renormalized solution
was proved in [21] for elliptic case and [33] for parabolic case. Our goal in this paper is to extend the
approach in [7] (see also [12], [38]) to the general measure data.

The paper is organized as follows as follows. In Section 2 we give some preliminaries and, in particular,
we provide the definition of parabolic capacity and some basic properties.
Section 3 is devoted to specify the assumptions on b, a, u0 and µ and to give the definition of renor-
malized solution of (1.1)-(1.3) and see how the definition of renormalized solution does not depend on
the decomposition (not uniquely determined) of the regular part of µ we mentioned above and to the
statement of standard approximation argument we will use later. In Section 4 we establish (Theorem
4.1) the existence of such a solution.

2. Preliminaries on parabolic capacity

We recall the notion of p-capacity associated to our problem. Let Q = Ω× (0, T ) for any fixed T > 0
and let us recall that V =W

1,p
0 (Ω) ∩ L2(Ω), endowed with its natural norm ‖.‖W 1,p

0
(Ω) + ‖.‖L2(Ω) and

W =
{

u ∈ Lp(0, T ;V ), ut ∈ Lp′

(0, T ;V ′)
}

,

endowed with its natural norm ‖.‖Lp(0,T ;V ) + ‖.‖Lp′(0,T ;V ′), remark that W is continuously embedded in

C([0, T ], L2(Ω)), and if 1 < p <∞, then C∞
c (Ω× [0, T ]) is dense in W .

Let U ⊆ Q be an open set, we define the parabolic p-capacity of U as

capp(U) = inf
{

‖u‖W : u ∈ W,u ≥ χU a.e. in Q
}

,

where as usual we set inf{∅} = +∞, then for any Borel set B ⊆ Q we define

capp(B) = inf
{

capp(U) : U open set of Q,B ⊆ U
}

.

We define the space S by

S =
{

u ∈ Lp(0, T ;W 1,p
0 (Ω)), ut ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(Q)
}

,

endowed with its natural norm ‖.‖
Lp(0,T ;W 1,p

0
(Ω)) + ‖.‖Lp′(0,T ;W−1,p′ (Ω))+L1(Q).

We will denote by M(Q) the set of all Radon measures with bounded total variation on Q, while M0(Q) is
the set of all measures with bounded total variation over Q that do not charge the sets of zero p-capacity,
that is if µ ∈ M0(Q), then µ(E) = 0, for all E ⊆ Q such that capp(E) = 0.

Theorem 2.1. Let µ be a bounded measure in Q. If µ ∈ M0(Q) then there exists (f, g1, g2) such that
f ∈ L1(Q), g1 ∈ Lp′

(0, T ;W−1,p′

(Ω)), g2 ∈ Lp(0, T ;V ) and

∫

Q

φ dµ =

∫

Q

fφ dx dt+

∫ T

0

〈g1, φ〉 dt−

∫ T

0

〈φt, g2〉 dt φ ∈ C∞
c (Ω× [0, T ]).

Such a triplet (f, g1, g2) will called the decomposition of µ.
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Proof. See [39]. �

By a well known decomposition result (see for instance [27]), every µ in M(Q), can be written as a
sum (uniquely determined) of its absolutely continuous part µ0 with respect to p-capacity and its singular
part µs concentrated on a set E of zero p-capacity; we will say that µs ⊥ capp. Hence, if µ ∈ M(Q),
thanks to Theorem 2.1, we have

µ = f − div(G) + gt + µ+
s − µ−

s ,

in the sense of distributions, for f ∈ L1(Q), G ∈ (Lp′

(Q))N , g ∈ Lp(0, T ;V ), where µ+
s and µ−

s are
respectively the positive and the negative part of µs; note that the decomposition of the absolutely
continuous part of µ according to Theorem 2.1 is not uniquely determined. Let us state the following
result that will be very useful in the sequel; its proof relies on an easy application of Egorov and Dunford-
Pettis theorems.

Proposition 2.1. Let ρε be a sequence of L1(Q) functions that converges to ρ weakly in L1(Q), and let
σε be sequence of functions in L∞(Q) that is bounded in L∞(Q) and converges to σ almost everywhere
on Q. Then

lim
ε→0

∫

Q

ρε σε dxdt =

∫

Q

ρ σ dxdt.

Here are some notations we will use throughout this paper. For any non negative real number k we
denote by Tk(r) = min(k,max(r,−k)) the truncation function at level k. By 〈., .〉 we mean the duality
between suitable spaces in which functions are involved, in particular we will consider both the duality
between W 1,p

0 (Ω) and W−1,p′

(Ω) and the duality between W 1,p
0 (Ω) ∩ L∞(Ω) and W−1,p′

(Ω) + L1(Ω).

3. Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true: Ω is a bounded open set
on R

N (N ≥ 1), T > 0 is given and we set Q = Ω× (0, T )

b,
∂b

∂s
: Ω× R → R and ∇xb : Ω× R → R

N , are Carathéodory functions (3.1)

such that for almost every x ∈ Ω, b(x, .) is a strictly increasing C1-function with b(x, 0) = 0. For all
s ∈ R, b(., s) is in W 1,p(Ω), and there exist γ, Λ > 0 such that

γ ≤
∂b(x, s)

∂s
≤ Λ, (3.2)

for almost every x ∈ Ω, for every s ∈ R. There exists a function B in Lp(Ω) such that

∣

∣

∣
∇xb(x, s)

∣

∣

∣
≤ B(x), (3.3)

for almost every x ∈ Ω, for every s ∈ R.

a : Q× R
N → R

N is a Carathéodory function (3.4)

a(x, t, ξ).ξ ≥ α|ξ|p, (3.5)

for almost every (x, t) ∈ Q, for every ξ ∈ R
N , where α > 0 given real number.

|a(x, t, ξ)| ≤ β(L(x, t) + |ξ|p−1), (3.6)
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for almost every (x, t) ∈ Q, for every ξ ∈ R
N , where β > 0 given real number, L is a non negative function

in Lp′

(Q).

[a(x, t, ξ)− a(x, t, ξ′)][ξ − ξ′] > 0, (3.7)

for any (ξ, ξ′) ∈ R
2N with ξ 6= ξ′ and for almost every (x, t) ∈ Q.

µ ∈ M(Q), (3.8)

u0 ∈ L1(Ω). (3.9)

To simplify notation, let us also define v = b(x, u) − g, the definition of a renormalized solution for
Problem (1.1)-(1.3) is given below.

Definition 3.1. A measurable function u defined on Q is a renormalized solution of Problem (1.1)-(1.3)
if

Tk(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∀k ≥ 0 , v ∈ L∞(0, T ;L1(Ω)), (3.10)

and, for every function S in W 2,∞(R), which is piecewise C1 and such that S′ has a compact support
and S(0) = 0, we have

S(v)t − div
(

S′(v)a(x, t,∇u)
)

+ S′′(v)a(x, t,∇u)∇v (3.11)

= fS′(v)− div
(

GS′(v)
)

+GS′′(v)∇v in D′(Q),

S(v)(t = 0) = S(b(x, u0)) in L1(Ω). (3.12)

For every ψ ∈ C(Q), we have

lim
n→∞

1

n

∫

{(x,t)∈Q ; n≤v<2n}

a(x, t,∇u)∇v ψ dx dt =

∫

Q

ψ dµ+
s , (3.13)

lim
n→∞

1

n

∫

{(x,t)∈Q ; −2n<v≤−n}

a(x, t,∇u)∇v ψ dx dt =

∫

Q

ψ dµ−
s . (3.14)

Remark 3.2. Note that, all terms in (3.11) are well defined, indeed, let k > 0 such that supp(S′) ⊂
[−k, k], we have ∇S(v) = S′(Tk(v))∇Tk(v) ∈ (Lp(Q))N , then S(v) ∈ Lp(0, T ;W 1,p

0 (Ω)). The term
S′(v)a(x, t,∇u) identifies with

S′(Tk(v))a
(

x, t,
(∂b(x, u)

∂s

)−1(

∇Tk(v) +∇g −∇xb(x, u)
))

a.e. in Q. Using assumptions (3.2) and (3.6) we have

∣

∣

∣
S′(v)a(x, t,∇u)

∣

∣

∣
(3.15)

≤ β ‖S′‖L∞(R)

[

L(x, t) + γ−(p−1)
∣

∣

∣
∇Tk(v) +∇g −∇xb(x, u)

∣

∣

∣

p−1]

a.e. in Q,

and by (3.3) and (3.10) we deduce that S′(v)a(x, t,∇u) ∈ (Lp′

(Q))N .
The term S′′(v)a(x, t,∇u)∇v identifies with

S′′(Tk(v))a
(

x, t,
(∂b(x, u)

∂s

)−1(

∇Tk(v) +∇g −∇xb(x, u)
))

∇Tk(v) a.e. in Q.

In view of (3.2), (3.3), (3.10), (3.15) and by Hölder inequality we conclude that S′′(v)a(x, t,∇u)∇v in
L1(Q).
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Finally, fS′(v), S′′(v)G∇v are in L1(Q) and GS′(v) is in (Lp′

(Q))N . We also have S(v)t ∈
Lp′

(0, T ;W−1,p′

(Ω)) + L1(Q) and S(v) ∈ Lp(0, T ;W 1,p
0 (Ω)), which implies that S(v) ∈ C([0, T ], L1(Ω))

(see [34]) and (3.12) makes a weak sense.
Remark that, since µ0 ∈ M0(Q) and it is defined on the σ-algebra of the borelian of the open set Q,

then µ0 does not charge set at t = 0, which implies, in the weak sense, that g(x, 0) = 0 for any g such
that (f, div(G), g) is a decomposition of µ0, this explains (3.12), (see [39]).

Furthermore, since S(v)t ∈ Lp′

(0, T ;W−1,p′

(Ω)) + L1(Q), we can use, as test functions in (3.11) not
only functions in C∞

c (Q) but also functions in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

Now we give the following property of renormalized solutions; throughout the paper C will indicate
any positive constant whose value may change from line to line.

Proposition 3.1. Let v = b(x, u)− g be a renormalized solution of problem (1.1)-(1.3). Then, for every
k > 0, we have

∫

Q

|∇Tk(v)|
p dxdt ≤ C(k + 1), (3.16)

where C is a positive constant not depending on k.

Proof. Using assumptions (3.2) and (3.3), following the same arguments as in [33], yield (3.16). �

Here, we give two results which show that the renormalized solution does not depend on the decom-
position of the regular part of µ.

Lemma 3.3. Let µ0 ∈ M0(Q), and let (f, g1, g2) and (f, g1, g2) to be two different decomposition of µ
according to Theorem 2.1. Then we have (g2 − g2)t = f − f + g1 − g1 in distribution sense, g2 − g2 ∈
C([0, T ], L1(Ω)) and (g2 − g2)(0) = 0.

Proof. See [39], Lemma 2.29. �

The following result shows that the definition of renormalized solution does not depend on the de-
composition of the absolutely continuous part of µ under the condition of bounded perturbations of time
derivative part of µ0, and thanks to the estimate (3.16).

Proposition 3.2. Let u be a renormalized solution of problem (1.1)-(1.3). Then, u satisfies the definition
3.1 for every decomposition (f, g1, g2) such that g2 − g2 ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q).

Proof. See [33], Proposition 3 and Remark 6. �

4. Existence result

This section is devoted to establish the following existence theorem.

Theorem 4.1. Under assumptions (3.1)-(3.9), there exists at least a renormalized solution u of the
Problem (1.1)-(1.3).

Proof. We will obtain the existence result by an approximation process, we approximate the measure
µ ∈ M(Q) by a sequence defined by

µε = f ε − div(Gε) +
∂gε

∂t
+ λε+ − λε− (4.1)

where f ε ∈ C∞
c (Q) is a sequence of functions which converges to f weakly in L1(Q), Gε ∈ (C∞

c (Q))N is a
sequence of functions which converges to G strongly in (Lp′

(Q))N , gε ∈ C∞
c (Q) is a sequence of functions

which converges to g strongly in Lp(0, T ;W 1,p
0 (Ω)), and λε+ ∈ C∞

c (Q) (respectively λε−) is a sequence
of non negatives functions that converges to µ+

s (respectively µ−
s ) in the narrow topology of measures.

Moreover let uε0 ∈ C∞
c (Ω) such that

uε0 ∈ C∞
c (Ω) : b(x, uε0) → b(x, u0) in L

1(Ω) as ε→ 0. (4.2)
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We also assume

‖µε‖L1(Q) ≤ C|µ|M(Q) and ‖b(x, uε0)‖L1(Q) ≤ C‖b(x, u0)‖L1(Q).

Let us now consider the following regularized problem:

uε ∈ Lp(0, T ;W 1,p
0 (Ω)), (4.3)

∫ T

0

〈
∂vε

∂t
, ϕ〉 dt+

∫

Q

a(x, t,∇uε)∇ϕdxdt =

∫

Q

f εϕdxdt +

∫

Q

Gε∇ϕdxdt+

∫

Q

ϕdλε+ −

∫

Q

ϕdλε− (4.4)

∀ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q),

b(x, uε)(t = 0) = b(x, uε0) in Ω, (4.5)

where vε = b(x, uε)− gε.

As a consequence, proving existence of a weak solution uε ∈ Lp(0, T ;W 1,p
0 (Ω)) of (4.3)-(4.5) is an easy

task (see [5] and [28]).
Now we prove the following proposition which gives some compactness results.

Proposition 4.1. Let uε and vε be defined as before. Then

‖uε‖L∞(0,T ;L1(Ω)) ≤ C, (4.6)

∫

Q

|∇Tk(u
ε)|p dxdt ≤ Ck, (4.7)

uε is bounded in Lq(0, T ;W 1,q
0 (Ω)) ∀ 1 < q < p−

N

N + 1
, (4.8)

‖vε‖L∞(0,T ;L1(Ω)) ≤ C, (4.9)

∫

Q

|∇Tk(v
ε)|p dxdt ≤ C(k + 1), (4.10)

and, up to a subsequence, for any k > 0 we have

uε → u a.e. on Q weakly in Lq(0, T ;W 1,q
0 (Ω)) and strongly in L1(Q), (4.11)

vε → v a.e. on Q weakly in Lq(0, T ;W 1,q
0 (Ω)) and strongly in L1(Q), (4.12)

Tk(u
ε)⇀ Tk(u) weakly in Lp(0, T ;W 1,p

0 (Ω)) and a.e. on Q, (4.13)

a(x, t,∇uε)χ{|vε|≤k} ⇀ σk in (Lp′

(Q))N , (4.14)

Tk(v
ε)⇀ Tk(v) weakly in Lp(0, T ;W 1,p

0 (Ω)) and a.e. on Q, (4.15)

∇xb(x, u
ε) → ∇xb(x, u) strongly in (Lp(Q))N . (4.16)
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Proof. We prove (4.6) and (4.7), using Tk(u
ε) as a test function in (4.4) and we integrate in ]0, t[ we get

∫

Ω

Bk(x, u
ε)(t) dx+

∫ t

0

∫

Ω

a(x, t,∇uε)∇Tk(u
ε) dx ds =

∫ t

0

∫

Ω

µεTk(u
ε) dx ds+

∫

Ω

Bk(x, u
ε
0) dx, (4.17)

for almost every t ∈ (0, T ), and where Bk(x, s) =

∫ s

0

Tk(r)
∂b(x, r)

∂r
dr.

Using assumption (3.5) and since Bk(x, u
ε) ≥ 0, (4.7) derives from (4.17). By (3.2) we have

B1(x, s) ≥ γ

∫ s

0

T1(r) dr ∀s ∈ R,

and since

∫ s

0

T1(r) dr ≥ |s| − 1 ∀s ∈ R, we obtain

∫

Ω

|uε(t)| dx ≤
1

γ
(‖b(x, uε0)‖L1(Ω) + |µ|M(Q)) + meas(Ω).

Hence uε is bounded in L∞(0, T ;L1(Ω)), which yields (4.6). Moreover, the estimate (4.6) and (4.7) imply
also that uε is bounded in Lq(0, T ;W 1,q

0 (Ω)) ∀ 1 < q < p− N
N+1 , according to the results in [14,16,26,24].

Taking Tk(v
ε) as test function in (4.4) and we integrate in ]0, t[, by assumptions (3.3), (3.5), (3.6),

and by means of Young’s inequality one obtains
∫

Ω

Tk(v
ε)(t)dx +

α

2

∫

{|vε|≤k}

∂b(x, uε)

∂s
|∇uε|pdxdt (4.18)

≤ C(‖Gε‖p
′

Lp′(Q)
+ ‖L‖p

′

Lp′(Q)
+ ‖∇gε‖p

Lp(Q) + ‖B‖p
Lp(Ω))

+k(‖f ε‖L1(Q) + ‖b(x, uε0)‖L1(Ω) + ‖λε−‖L1(Q) + ‖λε+‖L1(Q)),

where Tk(s) =

∫ s

0

Tk(r) dr ∀s ∈ R. So that (4.9) and (4.10) hold true.

Now, by (4.38) and since λε+, λ
ε
− are bounded in L1(Q), one obtains that ∂b(x,uε)

∂t
is bounded in

L1(0, T ;W−1,1(Ω)). Moreover, by assumptions (3.2) and (3.3) we have that b(x, uε) is bounded in
Lq(0, T ;W 1,q

0 (Ω)) for every 1 < q < p − N
N+1 , so that using compactness arguments (see [42]) yield

(4.11), and (4.12). Using (4.7) and (4.11) yield (4.13), while (4.14) and (4.15) derives from (4.10) and
(4.12). Finally (3.1), (3.3), (4.11) and Lebesgue’s convergence theorem give (4.16). �

Let us introduce for k ≥ 0 fixed, the time regularization of the function Tk(u) in order to perform the
monotonicity method. This kind of regularization has been first introduced by R. Landes. More recently,
it has been exploited to solve a few nonlinear evolution problems with L1 or measure data. This specific
time regularization of Tk(u) (for fixed k ≥ 0) is defined as follows. Let (vν0 )ν in L∞(Ω) ∩W 1,p

0 (Ω) such
that ‖vν0‖L∞(Ω) ≤ k, for all ν > 0, and vν0 → Tk(u0) a.e. in Ω with 1

ν
‖vν0‖Lp(Ω) → 0 as ν → +∞.

For fixed k ≥ 0 and ν > 0, let us consider the unique solution Tk(u)ν ∈ L∞(Q) ∩ Lp(0, T,W 1,p
0 (Ω)) of

the monotone problem:
∂Tk(u)ν
∂t

+ ν(Tk(u)ν − Tk(u)) = 0 in D′(Q),

Tk(u)ν(t = 0) = vν0 in Ω.

The behavior of Tk(u)ν as ν → +∞ is investigated in [29] (see also [22]) and we just recall here that:

Tk(u)ν → Tk(u) strongly in Lp(0, T,W 1,p
0 (Ω)) a.e. in Q as ν → +∞

with ‖Tk(u)ν‖L∞(Ω) ≤ k for any ν > 0, and ∂Tk(u)ν
∂t

∈ Lp(0, T,W 1,p
0 (Ω)).

Here and in the rest of paper ω(ε, n, δ, µ) will indicate any quantity that vanishes as the parameters go
to their limit point with in the same order in which they appear, that is, for example

lim
ν→∞

lim
δ→0

lim
n→∞

lim
ε→0

|ω(ε, n, δ, ν)| = 0.

Now we give the basic result about approximate capacitary potential.
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Lemma 4.2. Let µs = µ+
s −µ−

s ∈ M(Q) where µ+
s and µ−

s are concentrated respectively, on two disjoint
E+ and E− of zero p-capacity. Then, for every δ > 0, there exist two compact sets K+

δ ⊆ E+ and
K−

δ ⊆ E− such that
µ+
s (E

+\K+
δ ) ≤ δ, µ−

s (E
+\K−

δ ) ≤ δ, (4.19)

and there exist ψ+
δ , ψ

−
δ ∈ C1

0 (Q), such that

ψ+
δ ≡ 1 and ψ−

δ ≡ 1 respectively on K+
δ and K−

δ , (4.20)

0 ≤ ψ+
δ , ψ−

δ ≤ 1, (4.21)

supp(ψ+
δ ) ∩ supp(ψ−

δ ) ≡ ∅. (4.22)

Moreover
‖ψ+

δ ‖S ≤ δ, ‖ψ−
δ ‖S ≤ δ, (4.23)

and in particular, there exists a decomposition of (ψ+
δ )t and a decomposition of (ψ−

δ )t such that

‖(ψ+
δ )

1
t‖Lp′(0,T ;W−1,p′(Ω)) ≤

δ

3
, ‖(ψ+

δ )
2
t ‖L1(Q) ≤

δ

3
, (4.24)

‖(ψ−
δ )

1
t‖Lp′(0,T ;W−1,p′(Ω)) ≤

δ

3
, ‖(ψ−

δ )
2
t ‖L1(Q) ≤

δ

3
. (4.25)

Both ψ+
δ and ψ−

δ converges to zero weakly-* in L∞(Q), in L1(Q), and up to subsequences, almost every-
where as δ vanishes. Moreover, if λε+ and λε− are as in (4.1) we have

∫

Q

ψ−
δ dλ

ε
+ = ω(ε, δ),

∫

Q

ψ−
δ dµ

+
s ≤ δ, (4.26)

∫

Q

ψ+
δ dλ

ε
− = ω(ε, δ),

∫

Q

ψ+
δ dµ

−
s ≤ δ, (4.27)

∫

Q

(1− ψ+
δ ψ

+
η ) dλ

ε
+ = ω(ε, δ, η),

∫

Q

(1− ψ+
δ ψ

+
η ) dµ

+
s ≤ δ + η, (4.28)

∫

Q

(1− ψ−
δ ψ

−
η ) dλ

ε
− = ω(ε, δ, η),

∫

Q

(1− ψ−
δ ψ

−
η ) dµ

−
s ≤ δ + η. (4.29)

Proof. See [33], Lemma 5. �

In what follows we will always refer to subsequences of both ψ+
δ and ψ−

δ that satisfy all the convergence
results stated in Lemma 4.2.
Now we will prove the following theorem

Theorem 4.3. Let vε and v be as before. Then, for every k > 0

Tk(v
ε) → Tk(v) strongly in Lp(0, T ;W 1,p

0 (Ω)).

Proof. Let us first introduce the following function that we will use in the proof of Theorem 4.3.

Hn(s) =



























1 if |s| ≤ n,
2n− s

n
if n < s ≤ 2n,

2n+ s

n
if − 2n < s ≤ −n,

0 if |s| > 2n.

Let also introduce another auxiliary function in terms of Hn by Bn(s) = 1−Hn(s). Our aim is to prove
the following asymptotic estimate:

lim
ε→0

∫

Q

a(x, t,∇uε)∇Tk(v
ε) dxdt ≤

∫

Q

a(x, t,∇u)∇Tk(v) dx dt. (4.30)
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In order to prove (4.30), we shall follow several steps.
⋆ Step 1.
For every δ, η > 0, let ψ+

δ , ψ
+
η , ψ

−
δ and ψ−

η as in lemma 4.2 and let E+ and E− be the sets where,

respectively, µ+
s and µ−

s are concentrated. Setting Φδ,η = ψ+
δ ψ

+
η + ψ−

δ ψ
−
η , we can write

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν)Hn(v

ε) dx dt (4.31)

=

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν)Hn(v

ε)Φδ,η dxdt

+

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν)Hn(v

ε)(1 − Φδ,η) dxdt.

Now, if n > k, since a(x, t,∇uεχ{|vε|≤2n})∇Tk(v)ν is weakly compact in L1(Q) as ε goes to zero, Hn(v
ε)

converges to Hn(v) *-weakly in L∞(Q), and almost everywhere in Q, by proposition 2.1 we have

lim
ε→0

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν)Hn(v

ε)Φδ,η dxdt (4.32)

= lim
ε→0

[

∫

Q

a(x, t,∇uε)∇Tk(v
ε)Φδ,η dxdt

]

−

∫

Q

σ2n∇Tk(v)νHn(v)Φδ,η dxdt

= lim
ε→0

[

∫

Q

a(x, t,∇uε)∇Tk(v
ε)Φδ,η dxdt

]

−

∫

Q

σ2n∇Tk(v)Φδ,η dxdt + ω(ν).

Since Φδ,η converges to zero ∗- weakly in L∞(Q) as δ goes to zero,

∫

Q

σ2n∇Tk(v)Φδ,η dxdt = ω(δ).

Therefore, if we prove that

lim
η→0

lim
δ→0

lim
ε→0

∫

Q

a(x, t,∇uε)∇Tk(v
ε)Φδ,η dxdt ≤ 0, (4.33)

then we can conclude from (4.32) that

lim
η→0

lim
δ→0

lim
ε→0

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν )Hn(v

ε)Φδ,η dxdt ≤ 0. (4.34)

⋆ Step 2. Near to E.
Before proving (4.33), we first show the following result

Lemma 4.4. Let uε be a solution of (4.3)-(4.5). Let η be a positive real number, and let ϕη
+ and ϕη

− be
two non negative functions in C∞

c (Q) such that

0 ≤ ϕ
η
+ ≤ 1, 0 ≤ ϕ

η
− ≤ 1,

and

0 ≤

∫

Q

ϕ
η
− dµ

+
s ≤ η, 0 ≤

∫

Q

ϕ
η
+ dµ

−
s ≤ η, (4.35)

we then have
1

n

∫

{−2n<vε≤−n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεϕη

+ dx dt = ω(ε, n, η), (4.36)

1

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεϕη

− dx dt = ω(ε, n, η). (4.37)
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Proof. Let us prove (4.37); let βn(s) = Bn(s
+), we can choose βn(v

ε)ϕη
− as test function in (4.4) and

rearranging conveniently all terms we have

1

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεϕη

− dx dt+

∫

Q

βn(v
ε)ϕη

− dλ
ε
−

=
1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇gεϕη
− dx dt

−
1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇xb(x, u
ε)ϕη

− dx dt

+

∫

Q

βn(v
ε)
dϕ

η
−

dt
dxdt−

∫

Q

a(x, t,∇uε)∇ϕη
−βn(v

ε) dxdt+

∫

Q

f εβn(v
ε)ϕη

− dxdt

−

∫ T

0

〈div(Gε), βn(v
ε)ϕη

−〉 dt+

∫

Q

βn(v
ε)ϕη

− dλ
ε
+,

where βn(s) =

∫ s

0

βn(r) dr. Using the fact that

∫

Q

βn(v
ε)ϕη

− dλ
ε
− ≥ 0 and by assumptions (3.2), (3.3),

(3.5), (3.6) and Young’s inequality we obtain

1

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεϕ− dx dt

≤
C

n

∫

Q

(

|∇gε|p + |L|p
′

+ |B|p
)

dx dt

+

∫

Q

βn(v
ε)
dϕ

η
−

dt
dx dt−

∫

Q

a(x, t,∇uε).∇ϕη
−βn(v

ε) dx dt

+

∫

Q

f εβn(v
ε)ϕη

− dx dt

−

∫ T

0

〈div(Gε), βn(v
ε)ϕη

−〉 dt+

∫

Q

βn(v
ε)ϕη

− dλ
ε
+.

By (3.6) and (4.8) we have a(x, t,∇uε) converges weakly in (Lq′(Q))N as ε goes to 0 for every q′ <

1 + 1
(N+1)(p−1) , since ϕ

η
− belongs to C∞

c (Q) and βn(v
ε) converges to βn(v) a.e. in Q and ⋆-weakly in

L∞(Q) as ε goes to zero and βn(v) converges to 0 a.e. in Q and ⋆-weakly in L∞(Q) as n goes to +∞,
thanks to proposition 2.1, we obtain

∫

Q

a(x, t,∇uε)∇ϕη
−βn(v

ε) dx dt = ω(ε, n).

Since βn(v
ε) converges to βn(v) in L

1(Q) as ε goes to 0, and βn(v) converges to 0 in L1(Q) as n goes to
+∞, we obtain

∫

Q

βn(v
ε)
dϕ

η
−

dt
dx dt = ω(ε, n).

Moreover, the weak L1(Q) convergence of f ε to f and thanks to proposition 2.1 we obtain
∫

Q

f εβn(v
ε)ϕη

− dxdt = ω(ε, n).

Due the strong convergence of div(Gε) to div(G) in Lp′

(0, T,W−1,p′

(Ω)) and the weak convergence in
Lp(0, T,W 1,p

0 (Ω)) of βn(v
ε) to βn(v) and βn(v) to 0 strongly in Lp(0, T,W 1,p

0 (Ω)) (this facts is an easy
consequence of the estimate on the truncates of uε in Proposition 4.1), we obtain

∫ T

0

〈div(Gε), βn(v
ε)ϕη

−〉 dxdt = ω(ε, n).
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Finally, by (4.35) and since βn(v
ε) is non negative and bounded and ϕη

− is continuous, we have

∫

Q

βn(v
ε)ϕη

− dλ
ε
+ ≤

∫

Q

ϕ
η
− dµ

+
s + ω(ε) = ω(ε, η).

Putting together all these facts lead to (4.37), while (4.36) can be obtained in the same way choosing
βn(s) = Bn(s

−) and βn(v
ε)ϕη

+ as test function in (4.4). �

Now let us check (4.33). For fixed k > 0 , we choose (k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η as test function in

(4.4), defining Γn,k(s) =

∫ s

0

(k − Tk(r))Hn(r) dr, and integrating by parts, we obtain

−

∫

Q

Γn,k(v
ε)
d

dt
(ψ+

δ ψ
+
η ) dxdt (4.38)

+

∫

Q

(k − Tk(v
ε))Hn(v

ε)a(x, t,∇uε)∇(ψ+
δ ψ

+
η ) dxdt

+

∫

Q

a(x, t,∇uε)∇Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dxdt

−

∫

Q

a(x, t,∇uε)∇Tk(v
ε)Hn(v

ε)ψ+
δ ψ

+
η dxdt

=

∫

Q

f εHn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dxdt −

∫ T

0

〈div(Gε), Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η 〉 dt

+

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
+ −

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
−.

For n > k, we have

Hn(v
ε)a(x, t,∇uε)χ{|vε|≤k} = a(x, t,∇uε)χ{|vε|≤k} a.e. in Q,

then rearranging all terms of (4.38), we obtain

∫

Q

a(x, t,∇uε)∇Tk(v
ε)ψ+

δ ψ
+
η dxdt +

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
+

= −

∫

Q

Γn,k(v
ε)
d

dt
(ψ+

δ ψ
+
η ) dxdt +

2k

n

∫

{−2n<v≤−n}

a(x, t,∇uε)∇vεψ+
δ ψ

+
η dx dt

+

∫

Q

(k − Tk(v
ε))Hn(v

ε)a(x, t,∇uε)∇(ψ+
δ ψ

+
η ) dxdt

−

∫

Q

f ε(k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η dxdt

−

∫ T

0

〈div(Gε), Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η 〉 dt+

∫

Q

(k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η dλ

ε
−. (4.39)

Let us analyze term by term the right hand side of (4.39). Due to Proposition 4.1 we have Γn,k(v
ε)

converges to Γn,k(v) weakly in Lp(0, T ;W 1,p
0 (Ω)), and since Γn,k(v) ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q), we
deduce

∫

Q

Γn,k(v
ε)
d

dt
(ψ+

δ ψ
+
η ) dxdt

=

∫

Q

Γn,k(v)
dψ+

δ

dt
ψ+
η dxdt+

∫

Q

Γn,k(v)
dψ+

η

dt
ψ+
δ dxdt+ ω(ε) = ω(ε, δ).
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Since (k − Tk(v
ε))Hn(v

ε) converges to (k − Tk(v))Hn(v) a.e. and ∗- weakly in L∞(Q), thanks to Propo-
sition 2.1, Proposition 4.1 and Lemma 4.2, we deduce

∫

Q

(k − Tk(v
ε))Hn(v

ε)a(x, t,∇uε)∇(ψ+
δ ψ

+
η ) dxdt

=

∫

Q

(k − Tk(v))Hn(v)σ2n∇(ψ+
δ ψ

+
η ) dxdt + ω(ε) = ω(ε, δ).

Moreover, (k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η weakly converges to (k − Tk(v))Hn(v)ψ

+
δ ψ

+
η in Lp(0, T ;W 1,p

0 (Ω)),
and *- weakly in L∞(Q), thanks again to Lemma 4.2, we have

∫ T

0

〈div(Gε), (k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η 〉 dt = ω(ε, δ),

and
∫

Q

f ε(k − Tk(v
ε))Hn(v

ε)ψ+
δ ψ

+
η dxdt = ω(ε, δ).

Using assumptions (3.2), (3.3), (3.6), Young’s inequality, and since 0 ≤ ψ+
δ ≤ 1 we obtain

∣

∣

∣

1

n

∫

{−2n<vε≤−n}

a(x, t,∇uε)∇vεψ+
δ ψ

+
η dx dt

∣

∣

∣

≤
1

n

∫

{−2n<vε≤−n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεψ+

η dx dt

+
C

n

∫

Q

(

|∇gε|p + |L|p
′

+ |B|p
)

dxdt,

applying Lemma 4.4 for ϕη
+ = ψ+

η , we obtain

1

n

∫

{−2n<vε≤−n}

a(x, t,∇uε)∇vεψ+
η dx dt = ω(ε, n, η).

Using (4.27) in Lemma 4.2, we have

∣

∣

∣

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
−

∣

∣

∣
≤ 2k

∫

Q

ψ+
δ ψ

+
η dλ

ε
−

= 2k

∫

Q

ψ+
δ ψ

+
η dµ

−
s + ω(ε) = ω(ε, δ).

Collecting all we have shown above, we get
∫
Q

Hn(v
ε)(k − Tk(v

ε))ψ+

δ ψ
+

η dλ
ε
+ +

∫
Q

a(x, t,∇uε)∇Tk(v
ε)ψ+

δ ψ
+

η dxdt = ω(ε, δ, n, η).

Since

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
+ ≥ 0, we obtain

∫

Q

a(x, t,∇uε)∇Tk(v
ε)ψ+

δ ψ
+
η dxdt ≤ ω(ε, δ, η).

On the other hand, reasoning as before with (k + Tk(v
ε))Hn(v

ε)ψ−
δ ψ

−
η as test function we can obtain

∫

Q

a(x, t,∇uε)∇Tk(v
ε)ψ−

δ ψ
−
η dxdt ≤ ω(ε, δ, η).

Therefore, we obtain (4.33) which yields (4.34).
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Remark 4.5. As we have shown above we have
∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
+ +

∫

Q

∂b(x, uε)

∂s
a(x, t,∇uε)χ{|vε|≤k}∇u

εψ+
δ ψ

+
η dxdt

+

∫

Q

a(x, t,∇uε)χ{|vε|≤k}∇xb(x, u
ε)ψ+

δ ψ
+
η dxdt

−

∫

Q

a(x, t,∇uε)χ{|vε|≤k}∇g
εψ+

δ ψ
+
η dxdt = ω(ε, δ, n, η),

by assumptions (3.2), (3.5), thanks to proposition 4.1 and Lemma 4.2 one obtains

∫

Q

Hn(v
ε)(k − Tk(v

ε))ψ+
δ ψ

+
η dλ

ε
+ = ω(ε, δ, n, η).

Analogously we obtain
∫

Q

Hn(v
ε)(k + Tk(v

ε))ψ−
δ ψ

−
η dλ

ε
− = ω(ε, δ, n, η).

The two last results above show an interesting property of approximating renormalized, they expresse the
fact that vε (and so the solution uε) is very large (greater than any k > 0 ) on the set where the singular
measure µ+

s is concentrated, and small (smaller than any k < 0) on the set where the singular measure
µ−
s is concentrated.

⋆ Step 3. Far from E.
We first prove a result that will be essential to deal with the second term on the right hand side of (4.31).

Lemma 4.6. Let k ≥ 0 be fixed. Let S be an increasing C∞(R)-function such that S(r) = r for |r| ≤ k

and supp S′ is compact. Then

∫ T

0

∫ t

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν)(1− Φδ,η)〉 dsdt ≥ ω(ε, ν).

Proof. The proof of the above Lemma follows the arguments in [8], Lemma 1 and we just sketch the
proof of it.
Let k ≥ 0 be fixed. Since S is increasing and S(r) = r for |r| ≤ k,

Tk(S(v
ε)) = Tk(v

ε) and Tk(S(v)) = Tk(v) a.e. in Q.

As a consequence Tk(S(v))ν = Tk(v)ν a.e. in Q, for any ν > 0.
It follows that under the notation zε = S(vε) and z = S(v), and thanks to properties of Tk(z)ν we have

∫ T

0

∫ t

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν)(1 − Φδ,η)〉 dsdt (4.40)

=

∫ T

0

∫ t

0

〈
∂zε

∂t
, (Tk(z

ε)− Tk(z)ν)(1 − Φδ,η)〉 dsdt

=

∫ T

0

∫ t

0

〈
∂(zε − Tk(z)ν)

∂t
, (zε − Tk(z)ν)(1 − Φδ,η)〉 dsdt

−

∫ T

0

∫ t

0

〈
∂zε

∂t
, (zε − Tk(z

ε))(1− Φδ,η)〉 dsdt

+

∫ T

0

∫ t

0

〈
∂Tk(z)ν
∂t

, (zε − Tk(z)ν)(1 − Φδ,η)〉 dsdt,
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integrating by parts we have

∫ T

0

∫ t

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν)(1 − Φδ,η)〉 dsdt (4.41)

=
1

2

∫ T

0

∫ t

0

∫

Ω

(zε − Tk(z)ν)
2 dΦδ,η

dt
dxdsdt −

1

2

∫ T

0

∫

Ω

(zε − Tk(z
ε))2

dΦδ,η

dt
dxdsdt

+
1

2

∫ T

0

∫

Ω

(zε − Tk(z)ν)
2 dxdt −

T

2

∫

Ω

(zε − Tk(z)ν)
2(t = 0) dx

−
1

2

∫ T

0

∫

Ω

(zε − Tk(z
ε))2 dxdt+

T

2

∫

Ω

(zε − Tk(z
ε))2(t = 0) dx

+

∫ T

0

∫ t

0

∫

Ω

∂Tk(z)ν
∂t

(zε − Tk(z)ν)(1 − Φδ,η) dx ds dt,

since

∫ r

0

(s− Tk(s)) ds =
1

2
(r − Tk(r))

2.

Using the definition of zε and z, the fact that S is bounded and vε converges to v a.e. on Q, we have zε

converges to z strongly in L2(Q) and in L∞(Q) ∗− weakly, the strong convergence of b(x, uε0) to b(x, u0)
in L1(Ω) implies that zε(t = 0) converges to S(b(x, u0)) strongly in L2(Ω).
Passing to the limit as ε tends to zero in (4.41) leads to

∫ T

0

∫ t

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν)(1 − Φδ,η)〉 dsdt (4.42)

=
1

2

∫ T

0

∫

Ω

(z − Tk(z)ν)
2 dΦδ,η

dt
dxdt −

1

2

∫ T

0

∫

Ω

(z − Tk(z))
2 dΦδ,η

dt
dxdt

+
1

2

∫ T

0

∫

Ω

(z − Tk(z)ν)
2 dxdt −

T

2

∫

Ω

(z − Tk(z)ν)
2(t = 0) dx

−
1

2

∫ T

0

∫

Ω

(z − Tk(z))
2 dxdt+

T

2

∫

Ω

(z − Tk(z))
2(t = 0) dx

+

∫ T

0

∫ t

0

∫

Ω

∂Tk(z)ν
∂t

(z − Tk(z)ν)(1− Φδ,η) dx ds dt+ ω(ε),

by rewriting the definition of Tk(u)ν in terms of Tk(z) we have

∂Tk(z)ν
∂t

+ ν(Tk(z)ν − Tk(z)) = 0 in D′(Q),

Tk(z)ν(t = 0) = vν0 in Ω.

By properties of Tk(z)ν we obtain that Tk(z)ν converges to Tk(z) strongly in L2(Q) and Tk(z)ν(t = 0)
converges to Tk(S(b(x, u0))) strongly in L2(Ω) as ν tends to ∞. Passing to the limit-inf as ν tends to ∞
in (4.42) leads to

lim
ν→∞

lim
ε→0

∫ T

0

∫ T

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν )(1− Φδ,η)〉 dsdt

= ν

∫ T

0

∫ t

0

∫

Ω

(Tk(z)− Tk(z)ν)(z − Tk(z)ν)(1− Φδ,η) dxdsdt.

Thanks to definition of Tk(z)ν we have

∫ T

0

∫ t

0

∫

Ω

(Tk(z)− Tk(z)ν)(z − Tk(z)ν)(1 − Φδ,η) dxdsdt
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=

∫

{|z|≤k}

(z − Tk(z)ν)(z − Tk(z)ν)(1 − Φδ,η) dxdsdt

+

∫

{z>k}

(k − Tk(z)ν)(z − Tk(z)ν)(1− Φδ,η) dxdsdt

+

∫

{z<−k}

(−k − Tk(z)ν)(z − Tk(z)ν)(1 − Φδ,η) dxdsdt,

and the three terms are all non negatives, then

∫ T

0

∫ t

0

〈
∂S(vε)

∂t
, (Tk(v

ε)− Tk(v)ν)(1 − Φδ,η)〉 dt ≥ ω(ε, ν)

�

Now, let us multiply by Hn(v
ε)(Tk(v

ε) − Tk(v)ν)(1 − Φδ,η) the equation solved by uε and integrate
to obtain

∫ T

0

〈∂vε

∂t
,Hn(v

ε)(Tk(v
ε)− Tk(v)ν)(1− Φδ,η)

〉

dt (4.43)

+

∫

Q

a(x, t,∇uε).∇(Tk(v
ε)− Tk(v)ν )Hn(v

ε)(1 − Φδ,η) dxdt

+

∫

Q

a(x, t,∇uε).∇Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η) dxdt

−

∫

Q

a(x, t,∇uε).∇Φδ,ηHn(v
ε)(Tk(v

ε)− Tk(v)ν) dxdt

=

∫

Q

f εHn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η) dxdt

−

∫ T

0

〈div(Gε), Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1− Φδ,η)〉 dt

+

∫

Q

Hn(v
ε)(Tk(v

ε)− Tk(v)ν )(1− Φδ,η) dλ
ε
+

−

∫

Q

Hn(v
ε)(Tk(v

ε)− Tk(v)ν )(1− Φδ,η) dλ
ε
−.

Let us analyze term by term the identity (4.43), by Lemma 4.6 we have

∫ T

0

〈∂vε

∂t
,Hn(v

ε)(Tk(v
ε)− Tk(v)ν)(1 − Φδ,η)

〉

dt ≥ ω(ε, ν).

The almost everywhere and *-weak convergence of Hn(v
ε)(Tk(v

ε)− Tk(v)ν) to Hn(v)(Tk(v)− Tk(v)ν) in
L∞(Q), the properties of Tk(v)ν and thanks to Propositions 2.1 and 4.1 we have

∫

Q

a(x, t,∇uε).∇Φδ,ηHn(v
ε)(Tk(v

ε)− Tk(v)ν ) dxdt = ω(ε, ν).

Due the strong convergence of div(Gε) to div(G) in Lp′

(0, T,W−1,p′

(Ω)), Proposition 4.1 and the prop-
erties of Tk(v)ν one obtains

∫ T

0

〈div(Gε), Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η)〉 dt = ω(ε, ν).
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The weak convergence of f ε to f in L1(Q), the almost everywhere and ∗− weak convergence of
Hn(v

ε)(Tk(v
ε)− Tk(v)ν) to Hn(v)(Tk(v)− Tk(v)ν) in L

∞(Q), Propositions 2.1, the properties of Tk(v)ν
and the Lebesgue’s dominated convergence theorem leads to

∫

Q

f εHn(v
ε)(Tk(v

ε)− Tk(v)ν)(1− Φδ,η) dxdt = ω(ε, ν).

By Lemma 4.2 and the fact that |Hn(v
ε)(Tk(v

ε)− Tk(v)ν)| ≤ 2k we obtain

∣

∣

∣

∫

Q

Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η) dλ
ε
+

∣

∣

∣

≤ 2k

∫

Q

(1− ψ+
δ ψ

+
η )dλ

ε
+ + 2k

∫

Q

ψ−
δ ψ

−
η dλ

ε
+,

and
∫

Q

Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η) dλ
ε
+ = ω(ε, δ, η),

and similarly we get

∫

Q

Hn(v
ε)(Tk(v

ε)− Tk(v)ν)(1 − Φδ,η) dλ
ε
− = ω(ε, δ, η).

It remains to prove that

∫

Q

a(x, t,∇uε).∇Hn(v
ε)(Tk(v

ε)− Tk(v)ν )(1− Φδ,η) dxdt = ω(ε, n, δ, η).

We have
∣

∣

∣

1

n

∫

{n≤|vε|<2n}

a(x, t,∇uε)∇vε(Tk(v
ε)− Tk(v)ν )(1− Φδ,η) dx dt

∣

∣

∣

≤
2k

n

∫

{n≤|vε|<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uε(1− Φδ,η) dx dt

+
C

n

∫

Q

(

|∇gε|p + |L|p
′

+ |B|p
)

dxdt = I1 + I2,

we have I2 = ω(n), and we rewrite I1 as follows:

I1 =
2k

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uε(1 − ψ+

δ ψ
+
η ) dx dt,

−
2k

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεψ−

δ ψ
−
η dx dt,

+
2k

n

∫

{−2n<vε≤−n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uε(1 − ψ−

δ ψ
−
η ) dx dt,

−
2k

n

∫

{−2n<vε≤−n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεψ+

δ ψ
+
η dx dt.

We can apply Lemma 4.4 for every term above. Indeed, if we define ϕδ,η
− = 1−ψ+

δ ψ
+
η , we have by Lemma

4.2,
∫

Q

ϕ
δ,η
− dµ+

s ≤ η + δ,



Existence of a Renormalized Solution 17

then ϕδ,η
− satisfies (4.33), thanks to Lemma 4.4 we obtain

2k

n

∫

{n≤vε<2n}

∂b(x, uε)

∂s
a(x, t,∇uε)∇uε(1 − ψ+

δ ψ
+
η ) dx dt ≤ ω(ε, n) + δ + η

= ω(ε, n, δ, η).

In analogous way we obtain the same result for the others terms. Therefore, we obtain our estimate far
from E

∫

Q

a(x, t,∇uε)∇(Tk(v
ε)− Tk(v)ν)Hn(v

ε)(1 − Φδ,η) dxdt ≤ ω(ε, ν, n, δ, η). (4.44)

�

⋆ Step 4. Strong convergence of truncates.
Collecting together (4.31), (4.34) and (4.44), we have by taking again n > k,

lim
ε→0

∫

Q

a(x, t,∇uε)∇Tk(v
ε) dxdt ≤

∫

Q

σk∇Tk(v) dxdt. (4.45)

Now, we prove that

lim
ε→0

∫

Q

∂b(x, uε)

∂s

[

a(x, t,∇uεχ{|vε|≤k})− a(x, t,∇uχ{|v|≤k})
]

(4.46)

×
[

∇uεχ{|vε|≤k} −∇uχ{|v|≤k}

]

dx dt = 0.

We set

Aε =

∫

Q

∂b(x, uε)

∂s

[

a(x, t,∇uε)χ{|vε|≤k} − a(x, t,∇u)χ{|v|≤k}

]

×[∇uεχ{|vε|≤k} −∇uχ{|v|≤k}] dxdt.

We split (4.38), into Aε = Aε
1 +Aε

2 +Aε
3, where

Aε
1 =

∫

Q

∂b(x, uε)

∂s
a(x, t,∇uε)∇uεχ{|vε|≤k} dxdt,

Aε
2 = −

∫

Q

∂b(x, uε)

∂s
a(x, t,∇uε)∇uχ{|vε|≤k}χ{|v|≤k} dxdt,

Aε
3 = −

∫

Q

∂b(x, uε)

∂s
a(x, t,∇u)(∇uεχ{|vε|≤k})−∇uχ{|v|≤k})) dxdt.

We pass to the limit as ε tends to 0 in Aε
1, A

ε
2 and A

ε
3. Let us remark that we have

∂b(x, uε)

∂s
∇uεχ{|vε|≤k} =

∇Tk(v
ε) − ∇xb(x, u

ε)χ{|vε|≤k} + ∇gεχ{|vε|≤k} a.e in Q, and we have also χ{|vε|≤k} almost everywhere
converges to χ{|v|≤k} in Q (see [14]), we obtain:

lim
ε→0

Aε
1 (4.47)

= lim
ε→0

∫

Q

a(x, t,∇uε)∇Tk(v
ε) dxdt+ lim

ε→0

∫

Q

a(x, t,∇uε)χ{|vε|≤k}∇g
ε dx dt

≤

∫

Q

σk∇Tk(v) dx dt−

∫

Q

σk∇xb(x, u)χ{|v|≤k} dx dt+

∫

Q

σk∇gχ{|v|≤k} dx dt.
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As a consequence of Proposition 4.1, we deduce that

lim
ε→0

Aε
2 = −

∫

Q

σk(∇Tk(v)−∇xb(x, u) +∇g) dx dt, (4.48)

and

lim
ε→0

Aε
3 = − lim

ε→0

∫

Q

a(x, t,∇u)
(

∇Tk(v
ε)− (∇xb(x, u

ε) +∇gε)χ{|vε|≤k} (4.49)

−
∂b(x, uε)

∂s

(∂b(x, u)

∂s

)−1(

∇Tk(v) − (∇xb(x, u) +∇g)χ{|v|≤k}

))

dx dt = 0.

Therefore collecting (4.47), (4.48) and (4.49) yield (4.46). Using (4.45), (4.46) and the usual Minty’s
argument we deduce that, σk = a(x, t,∇u)χ{|v|≤k}. Through the monotonicity argument which relies on
(3.7) (see [17], Lemma 5), we can deduce from (4.46) that

∇uεχ{|vε|≤k} → ∇uχ{|v|≤k} a.e. in Q,

and since a(x, t,∇uε)∇uεχ{|vε|≤k} converges to a(x, t,∇u)∇uχ{|v|≤k} weakly in L1(Q), by coercivity
argument we have that |∇uε|pχ{|vε|≤k} is equi-integrable, as a consequence of Vitali’s theorem and since

gε strongly converges in Lp(0, T ;W 1,p
0 (Ω)) yields

Tk(v
ε) → Tk(v) strongly in Lp(0, T ;W 1,p

0 (Ω)),

the proof of Theorem 4.3, is complete. �

Proof. (Proof of Theorem 4.1). Now we are able to prove that Problem (1.1)-(1.3) has a renormalized
solutions.
Let S in W 2,∞(R), such that S′ has a compact support as in Definition 3.1, and let ϕ ∈ C∞

c (Q), then
the approximating solutions uε (and vε) satisfy

−

∫ T

0

〈ϕt, S(v
ε)〉 dt+

∫
Q

S
′(vε)a(x, t,∇uε)∇ϕdxdt+

∫
Q

S
′′(vε)a(x, t,∇uε)∇vεϕdxdt (4.50)

=

∫
Q

f
ε
S

′(vε)ϕdxdt+

∫
Q

G
ε
S

′(vε)∇ϕdxdt+

∫
Q

S
′′(vε)Gε∇vεϕdxdt

+

∫
Q

S
′(vε)ϕdλε

+ −

∫
Q

S
′(vε)ϕdλε

−.

Thanks to Theorem 4.3, all terms in (4.50) easily pass to the limit on ε except the last two terms that
give some problem. We can write following the arguments in [33] we have

∫

Q

S′(vε)ϕdλε+ =

∫

Q

S′(vε)ϕψ+
δ dλ

ε
+ +

∫

Q

S′(vε)ϕ(1− ψ+
δ ) dλ

ε
+. (4.51)

Let ψ+
δ be defined as in Lemma 4.2, then we have

∣

∣

∣

∫

Q

S′(vε)ϕ(1− ψ+
δ ) dλ

ε
+

∣

∣

∣
≤ C

∫

Q

(1 − ψ+
δ ) dλ

ε
+ = ω(ε, δ),

while choosing S′(vε)ϕψ+
δ in (4.4) one gets,

∫

Q

S′(vε)ϕψ+
δ dλ

ε
+ = −

∫

Q

f εS′(vε)ϕψ+
δ dxdt −

∫

Q

GεS′(vε)∇(ϕψ+
δ ) dxdt (4.52)

−

∫

Q

GεS′′(vε)∇vεϕψ+
δ dxdt+

∫

Q

S′(vε)ϕψ+
δ dλ

ε
− −

∫

Q

S(vε)(ϕψ+
δ )t dxdt
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+

∫

Q

S′(vε)a(x, t,∇uε)∇(ψ+
δ ϕ) dxdt+

∫

Q

S′′(vε)a(x, t,∇uε)∇vεψ+
δ ϕdxdt.

Now, thanks to Proposition 4.1 and the properties of ψ+
δ , we have

∫

Q

f εS′(vε)ϕψ+
δ dxdt = ω(ε, δ) and

∫

Q

GεS′(vε)∇(ϕψ+
δ ) dxdt = ω(ε, δ).

By Lemma 4.2, we deduce

∣

∣

∣

∫

Q

S′(vε)ϕψ+
δ dλ

ε
−

∣

∣

∣
≤ C

∫

Q

ψ+
δ dλ

ε
− = ω(ε, δ).

Again by Lemma 4.2, and since S(v) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q),

∫

Q

S(vε)(ϕψ+
δ )t dxdt = ω(ε, δ).

By Theorem 4.3 and Lemma 4.2, we have
∫

Q

S′(vε)a(x, t,∇uε)∇(ψ+
δ ϕ) dxdt = ω(ε, δ),

and
∫

Q

S′′(vε)a(x, t,∇uε)∇vεψ+
δ ϕdxdt = ω(ε, δ).

Therefore, from (4.52) we deduce
∫

Q

S′(vε)ϕdλε+ = ω(ε). (4.53)

Similarly, we can prove that
∫

Q

S′(vε)ϕdλε− = ω(ε). (4.54)

As a consequence of the above convergence results, we are in a position to pass to the limit as ε tends to
0 in (4.50) and to conclude that u satisfies (3.11).

It remains to show that S(v) satisfies the initial condition (3.12). To this end, firstly remark that
S(vε) being bounded in L∞(Q), secondly, (4.50) and the above considerations on the behavior of the

terms of this equation show that
∂S(vε)

∂t
is bounded in L1(Q) + Lp′

(0, T ;W−1,p′

(Ω)).

As a consequence, an Aubin’s type lemma (see e.g., [42], Corollary 4) implies that S(vε) lies in a
compact set of C([0, T ];W−1,s(Ω)) for any s < inf(p′, N

N−1). It follows that, on one hand, S(vε)(t = 0)

converges to S(v)(t = 0) strongly in W−1,s(Ω), On the other hand, the smoothness of S imply that
S(vε)(t = 0) converges to S(b(x, u))(t = 0) strongly in Lq(Ω) for all q < ∞. Due to (4.2), we conclude
that S(vε)(t = 0) = S(b(x, uε0)) converges to S(b(x, u)(t = 0) strongly in Lq(Ω). Then v satisfies (3.12).

Now choosing βn(v
ε) as test function in (4.4) where ϕ ∈ C∞

c (Q), we obtain

−

∫ T

0

〈ϕt, βn(v
ε)〉 dt+

∫

Q

βn(v
ε)a(x, t,∇uε)∇ϕdxdt (4.55)

+
1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇vεϕdxdt

=

∫

Q

f εβn(v
ε)ϕdxdt−

∫ T

0

〈div(Gε), βn(v
ε)ϕ〉 dxdt

+

∫

Q

βn(v
ε)ϕdλε+ −

∫

Q

βn(v
ε)ϕ dλε−.
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Reasoning as before (in particular as in the proof of Lemma 4.4) we obtain

∫ T

0

〈ϕt, βn(v
ε)〉 dt = ω(ε, n),

∫

Q

βn(v
ε)a(x, t,∇uε).∇ϕdxdt = ω(ε, n),

∫

Q

f εβn(v
ε)ϕ dxdt = ω(ε, n),

∫ T

0

〈div(Gε), βn(v
ε)ϕ〉 dxdt = ω(ε, n).

Thanks to Theorem 4.3 we have

1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇vεϕ dxdt =
1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕ dxdt+ ω(ε).

Now we deal with the two last terms in the right hand side of (4.55) we can write
∫

Q

βn(v
ε)ϕ dλε+ = −

∫

Q

hn(v
ε)ϕ dλε+ +

∫

Q

ϕdλε+,

where hn(s) = Hn(s
+). By construction of λε+ we have

∫

Q

ϕdλε+ =

∫

Q

ϕdµ+
s + ω(ε).

Following the same argument as in (4.50) and (4.51) by taking hn(v
ε) = S′(vε) we obtain

∫

Q

hn(v
ε)ϕ dλε+ = ω(ε).

If we prove that
∫

Q

βn(v
ε)ϕ dλε− = ω(ε), (4.56)

then, we obtain for every ϕ ∈ C∞
c (Q)

lim
n→∞

1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕ dxdt =

∫

Q

ϕ dµ+
s (4.57)

We can write
∫

Q

βn(v
ε)ϕdλε− =

∫

Q

βn(v
ε)ϕψ−

δ dλ
ε
− +

∫

Q

βn(v
ε)ϕ(1− ψ−

δ ) dλ
ε
−,

by Lemma 4.2, we obtain
∫

Q

βn(v
ε)ϕ(1− ψ−

δ ) dλ
ε
− = ω(ε, δ).

Choosing βn(v
ε)ϕψ−

δ as a test function in the formulation of uε

∫

Q

βn(v
ε)ϕψ−

δ dλ
ε
− =

∫ T

0

〈(ϕψ−
δ )t, βn(v

ε)〉 dt−

∫

Q

βn(v
ε)a(x, t,∇uε)∇(ϕψ−

δ ) dxdt

−
1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇vεϕψ−
δ dxdt +

∫

Q

f εβn(v
ε)ϕψ−

δ dxdt

+

∫

Q

Gεβn(v
ε)∇(ϕψ−

δ ) dxdt +
1

n

∫

{n≤vε<2n}

Gε∇vεϕψ−
δ dxdt+

∫

Q

βn(v
ε)ϕψ−

δ dλ
ε
+.

Using again Proposition 2.1, Proposition 4.1, Lemma 4.2 and Lemma 4.4 yields (4.56), and therefore we
obtain (4.57) for every ϕ ∈ C∞

c (Q). Now if ϕ ∈ C∞(Q), we can split

1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕ dxdt =
1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕψ+
δ dxdt (4.58)
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+
1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕ(1 − ψ+
δ ) dxdt, .

Thanks to (4.57), we have

lim
n→∞

1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕψ+
δ dxdt =

∫

Q

ϕdµ+
s + ω(δ),

By Lemma 4.4, we obtain

1

n

∫

{n≤vε<2n}

a(x, t,∇uε)∇vε ϕ(1− ψ+
δ ) dxdt = ω(ε, n, δ).

Thanks to Theorem 4.3, we deduce

1

n

∫

{n≤v<2n}

a(x, t,∇u)∇v ϕ(1− ψ+
δ ) dxdt = ω(n, δ).

Putting together all these facts above, we get (3.13) for every ϕ ∈ C∞(Q), and by density argument
(3.13) holds for every ϕ ∈ C(Q). To obtain (3.14) we can reason as before using ψ+

δ in the place of ψ−
δ

and viceversa, and this conclude the proof of Theorem 4.1. �
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(1969).

29. Landes, R., On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy.
Soc. Edinburgh Sect., A89, 217-237, (1981).

30. Murat, F., Soluciones renormalizadas de EDP elipticas non lineales, Technical Report R93023, Laboratoire d’Analyse
Numérique, Paris VI, Cours à l’Université de Séville, (1993).
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