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Existence of a Renormalized Solution of Nonlinear Parabolic Equations With General
Measure Data

Amine Marah and Hicham Redwane

ABSTRACT: In this paper we prove the existence of a renormalized solution for nonlinear parabolic equations
of the type:
Ob(z,u)
ot
where the right hand side is a general measure, b(z, u) is an unbounded function of u and —div(a(z, ¢, Vu)) is
a Leray—Lions type operator with growth |Vu|P~! in Vu.

— div(a(:c,t,Vu)) =u in Q x (0,7),
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1. Introduction

Let Q be a bounded open subset of RY, (N > 1), T is a positive real number, and let @ :
Q x (0,7), p> 1. We will consider the following nonlinear parabolic problem

% — div(a(x,t, Vu)) =pu in Q, (1.1)
b(x,u)(t =0) = b(z,up) in €Q, (1.2)
u=0 ondQx (0,T). (1.3)

In Problem (1.1)-(1.3) the framework is the following: the data p is a bounded Radon measure on @,
the function b(x,ug) belongs to L ().

The operator —div(a(z,t, Vu)) is a Leray-Lions operator which is coercive and which grows like |Vu[P~!
with respect to Vu, (see assumptions (3.4), (3.5) and (3.6) of Section 3).

In the case where b(x,u) = u, and the right hand side is a bounded measure, the existence of a
distributional solution was proved in [16], but due the lack of regularity of the solutions, the distributional
formulation is not strong enough to provide uniqueness (see [41] and [35] for a counter example in
the elliptic case). To overcome this difficulty the notion of renormalized solutions firstly introduced
by DiPerna and Lions [23] for the study of Boltzmann equation was adapted to the parabolic and
elliptic equations with L' data (see [4,6,7,30,31,34]). The equivalent notion of entropy solution has
been developed independently by [3] for the study of nonlinear elliptic problems and by [37] in the
parabolic case. Both renormalized and entropy solutions provide a convenient framework to deal with
elliptic or parabolic equations with L' data. A large number of papers was then devoted to the study
the existence of renormalized (or entropy) solution of parabolic problems with rough data under various
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assumptions and different contexts: in addition to the references already mentioned see, among others,
[1,2,9,10,11,12,13,18,19,32,40].

Concerning the datum g, the existence and uniqueness of renormalized solution of (1.1)-(1.3) have
proved in [39] in the case where b(z,u) = u, ug € L'(2) and for every measure p which does not charge
the sets of zero p-capacity, the so-called diffuse measures or soft measures (see Section 2 for the definitions
of p-capacity and diffuse measure). The importance of the measures not charging sets of null p-capacity
was first observed in the stationary case in [15], and developed in the evolution case in [39)].

For € Mo(Q), b(z,u) = b(u) and ug € L*(Q), the existence and uniqueness of renormalized solution
have been proved in [12]. In the case where u € My(Q) and with the parabolic term on b(z,u), the
existence of renormalized solution of problem (1.1)-(1.3) was proved in [38]. For u € M(Q) (the space of
all bounded Radon measures on Q), b(z,u) = u and ug € L'(Q), the existence of renormalized solution
was proved in [21] for elliptic case and [33] for parabolic case. Our goal in this paper is to extend the
approach in [7] (see also [12], [38]) to the general measure data.

The paper is organized as follows as follows. In Section 2 we give some preliminaries and, in particular,

we provide the definition of parabolic capacity and some basic properties.
Section 3 is devoted to specify the assumptions on b, a, ug and p and to give the definition of renor-
malized solution of (1.1)-(1.3) and see how the definition of renormalized solution does not depend on
the decomposition (not uniquely determined) of the regular part of p we mentioned above and to the
statement of standard approximation argument we will use later. In Section 4 we establish (Theorem
4.1) the existence of such a solution.

2. Preliminaries on parabolic capacity

We recall the notion of p-capacity associated to our problem. Let @ = Q x (0,7") for any fixed T' > 0
and let us recall that V = W, ?(Q) N L2(£2), endowed with its natural norm H.||W01,p(ﬂ) + |-l 22(0) and

W= {u e LP(0,T:V),uy € L¥ (0, T; V’)},
endowed with its natural norm ||| zs0,7;v) + |-l L' (0,717 remark that W is continuously embedded in

C([0,T],L?(£2)), and if 1 < p < oo, then C2°(2 x [0,T1]) is dense in W.
Let U C @ be an open set, we define the parabolic p-capacity of U as

capy(U) = inf {||u||w cu € W,u> xy ae. in Q},
where as usual we set inf{}} = 400, then for any Borel set B C ) we define
capp(B) = inf {capp(U) : U open set of Q, B C U}.
We define the space 8 by
s = {ue 120, T W™ (@), ue € 17 (0,7, W7 (2) + L(Q)),
endowed with its natural norm H'||LP(O,T;W[)1”’(Q)) + e 00w =107 () 411 (@)
We will denote by M(Q) the set of all Radon measures with bounded total variation on Q, while My (Q) is

the set of all measures with bounded total variation over @) that do not charge the sets of zero p-capacity,
that is if © € Mo(Q), then u(E) =0, for all E C @ such that cap,(E) = 0.

Theorem 2.1. Let p be a bounded measure in Q. If p € Mo(Q) then there exists (f, g1, g2) such that
feLYQ), g1 €LP (0, T; WP (Q)), g2 € LP(0,T3V) and

T T
/Q¢du=/Qf¢ dodi+ [ o) di= [ (o) &t veCT@x0.T),

Such a triplet (f,g1,92) will called the decomposition of .
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Proof. See [39]. O

By a well known decomposition result (see for instance [27]), every p in M(Q), can be written as a
sum (uniquely determined) of its absolutely continuous part u, with respect to p-capacity and its singular
part p, concentrated on a set E of zero p-capacity; we will say that pu, L cap,. Hence, if p € M(Q),
thanks to Theorem 2.1, we have

p=f—div(G) + g + ui — py,

in the sense of distributions, for f € L'(Q), G € (L”(Q))N, g € LP(0,T;V), where pf and u are
respectively the positive and the negative part of p ; note that the decomposition of the absolutely
continuous part of p according to Theorem 2.1 is not uniquely determined. Let us state the following
result that will be very useful in the sequel; its proof relies on an easy application of Egorov and Dunford-
Pettis theorems.

Proposition 2.1. Let p_ be a sequence of L'(Q) functions that converges to p weakly in L'(Q), and let
0. be sequence of functions in L>(Q) that is bounded in L*°(Q) and converges to o almost everywhere
on Q. Then

lim [ p. 0. dzdl = / p o dxdt.
Q Q

e—0

Here are some notations we will use throughout this paper. For any non negative real number k we
denote by Ty (r) = min(k, maz(r, —k)) the truncation function at level k. By (.,.) we mean the duality
between suitable spaces in which functions are involved, in particular we will consider both the duality
between W, *(Q) and W7 (Q) and the duality between W, *(Q) N L>°(Q) and W17 (Q) + L'(1).

3. Assumptions on the data and definition of a renormalized solution

Throughout the paper, we assume that the following assumptions hold true: €2 is a bounded open set
on RY (N > 1), T > 0 is given and we set Q = Q x (0,T)

ob
b, 75 QxR —Rand V,b: QxR — RY are Carathéodory functions (3.1)

such that for almost every x € €, b(x,.) is a strictly increasing C!-function with b(z,0) = 0. For all
s €R, b(.,s) is in WHP(Q), and there exist v, A > 0 such that

ob(x, s)

TS =5, <A, (3.2)
for almost every = € Q, for every s € R. There exists a function B in LP(2) such that
|Vab(a,s)| < Bla), (3.3)
for almost every = € €, for every s € R.
a:Q xRN - RN isa Carathéodory function (3.4)
a(x,t,€).& = algl?, (3.5)

for almost every (z,t) € Q, for every ¢ € R, where o > 0 given real number.

la(z,t,€)] < B(L(x,t) + ), (3.6)
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for almost every (x,t) € Q, for every £ € RV, where 3 > 0 given real number, L is a non negative function

in L' (Q).

la(z,t,€) — a(z,t,)][€ - €] >0, (3.7)

for any (&,¢&") € R2Y with ¢ # ¢ and for almost every (z,t) € Q.
r € M(Q), (3.8)
ug € L1(Q). (3.9)

To simplify notation, let us also define v = b(z,u) — g, the definition of a renormalized solution for
Problem (1.1)-(1.3) is given below.

Definition 3.1. A measurable function u defined on Q) is a renormalized solution of Problem (1.1)-(1.3)
if
Ti(v) € LP(0,T; Wy P(Q)) Yk >0, v e L=(0,T; LY(Q)), (3.10)

and, for every function S in W2 (R), which is piecewise C* and such that S’ has a compact support
and S(0) =0, we have

S() — div (S'(v)a(x,t, W)) + 8"(v)a(z, t, Vu)Vo (3.11)

— £5'(v) — div (GS/(U)) +GS" ()Y in D'(Q),

S(v)(t =0) = S(b(x,up)) in L' (Q). (3.12)
For every ¢ € C(Q), we have

1
lim —/ a(zx,t, Vu)Vv¢dxdt:/ Ydul, (3.13)
0N J{(2,t)eQ ; n<v<2n} o

1
lim —

/ a(z,t, Vu)Vou i dx dt :/ dus . (3.14)
n—oo N {(z,t)eQ ; —2n<v<—n} o

Remark 3.2. Note that, all terms in (3.11) are well defined, indeed, let k > 0 such that supp(S’) C
[—k, k], we have VS(v) = S (Tx(v))VTi(v) € (LP(Q))N, then S(v) € LP(0,T;WyP(Q)). The term
S’ (v)a(z, t, Vu) identifies with

S’(Tk(v))a(x, t, (ab(gs’ “))_1 (VTk(v) + Vg — V,b(z, u)))

a.e. in Q. Using assumptions (3.2) and (3.6) we have

S’ (v)a(z, t, Vu)‘ (3.15)

p—1
<p HS/HLOO(]R) [L(x, t) + 7_(”_1)‘VT;€(U) + Vg — V.b(z,u) ] a.e. i Q,

and by (3.3) and (3.10) we deduce that S'(v)a(x,t, Vu) € (L (Q))N.
The term S” (v)a(x,t, Vu)Vov identifies with

Ob(x,u)
0

S

S"(Tk(v))a(x,t, ( )_1 (VTk(v) + Vg — Vmb(x,u)))VTk(v) a.e. in Q.

In view of (3.2), (3.3), (3.10), (3.15) and by Hélder inequality we conclude that S” (v)a(x,t, Vu)Vv in
1'(Q).
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Finally, fS'(v), S"()GVov are in LY(Q) and GS'(v) is in (L (Q))N. We also have S(v), €
LY (0, T; W12 () + LYQ) and S(v) € LP(0,T; Wy"(2)), which implies that S(v) € C([0,T], L}(Q))
(see [34]) and (3.12) makes a weak sense.

Remark that, since py € Mo(Q) and it is defined on the o-algebra of the borelian of the open set Q,
then o does not charge set at t = 0, which implies, in the weak sense, that g(z,0) = 0 for any g such
that (f,div(QG),g) is a decomposition of g, this explains (3.12), (see [39]).

Furthermore, since S(v); € LP (0, T; W=7 (Q)) + LY(Q), we can use, as test functions in (3.11) not
only functions in C°(Q) but also functions in LP(0,T; Wy P (Q)) N L(Q).

Now we give the following property of renormalized solutions; throughout the paper C' will indicate
any positive constant whose value may change from line to line.

Proposition 3.1. Let v = b(z,u) — g be a renormalized solution of problem (1.1)-(1.3). Then, for every
k>0, we have

/ VT3 (0)|P dadt < C(k + 1), (3.16)
Q

where C' is a positive constant not depending on k.

Proof. Using assumptions (3.2) and (3.3), following the same arguments as in [33], yield (3.16). O

Here, we give two results which show that the renormalized solution does not depend on the decom-
position of the regular part of p.

Lemma 3.3. Let iy € Mo(Q), and let (f,g1,92) and (f,71,92) to be two different decomposition of u

according to Theorem 2.1. Then we have (g2 —92)t = [ — [ + 71 — g1 in distribution sense, go — gz €
C([0,T],L(2)) and (g2 — 52)(0) = 0.

Proof. See [39], Lemma 2.29. O

The following result shows that the definition of renormalized solution does not depend on the de-
composition of the absolutely continuous part of p under the condition of bounded perturbations of time
derivative part of y, and thanks to the estimate (3.16).

Proposition 3.2. Let u be a renormalized solution of problem (1.1)-(1.3). Then, u satisfies the definition
3.1 for every decomposition (f, g1, ge) such that go — gz € LP(0,T} Wol’p(Q)) NL>®(Q).

Proof. See [33], Proposition 3 and Remark 6. O

4. Existence result
This section is devoted to establish the following existence theorem.

Theorem 4.1. Under assumptions (3.1)-(3.9), there exists at least a remormalized solution w of the
Problem (1.1)-(1.3).

Proof. We will obtain the existence result by an approximation process, we approximate the measure
€ M(Q) by a sequence defined by
€ € 3 € 8\96 £ €

ut=f —le(G)+E+)\+—/\7 (4.1)
where f¢ € C2°(Q) is a sequence of functions which converges to f weakly in L1(Q), G¢ € (C*(Q))V is a
sequence of functions which converges to G strongly in (LP (Q))", ¢° € C2°(Q) is a sequence of functions
which converges to g strongly in L?(0,T; W, ?(Q)), and A5 € C2(Q) (respectively A°) is a sequence
of non negatives functions that converges to uj (respectively p ) in the narrow topology of measures.
Moreover let u§ € C2°(€2) such that

u§ € C°(Q) : bz, us) — b(w,up) in L'(Q) as e — 0. (4.2)
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We also assume

I8Nz @) < Cliaei) and bz, ud)llzg) < ClIb(e, uo) |11 (0)-
Let us now consider the following regularized problem:

u® € LP(0,T; Wy P(2)), (4.3)
T ove
/ <—,<p>dt—|—/ a(x,t,VuE)chdxdtz/ fﬂpdxdt—!—/ GEVLpdxdt—i—/ cpd)\fr—/ pd)\® (4.4)
o Ot Q Q Q Q Q
Vg € LP(0,T; Wy P (2)) N L(Q),

b(z,u®)(t =0) = b(z,ug) in €, (4.5)

where v = b(x, u®) — ¢°.
As a consequence, proving existence of a weak solution u® € LP(0,T; Wy P ()) of (4.3)-(4.5) is an easy
task (see [5] and [28]).

Now we prove the following proposition which gives some compactness results.

Proposition 4.1. Let u® and v¢ be defined as before. Then

lu®| o< 0,7501(0)) < C, (4.6)
/ VT3 (u) P dadt < C, (47)

Q

e - 1,q N
u® is bounded in LU0, T;Wy9(Q)) V1i<g<p———, (4.8)
N+1
1] Los (0,721 (02)) < C, (4.9)
/ VT (v%)P dedt < C(k+ 1), (4.10)
Q
and, up to a subsequence, for any k > 0 we have

u® = u a.e. on Q weakly in LY(0,T; Wol’q(Q)) and strongly in L'(Q), (4.11)
0" = v a.e. on Q weakly in LI(0,T; Wy () and strongly in L*(Q), (4.12)
Ty (uf) = Ty(u) weakly in LP(0,T; W, P(Q)) and a.e. on Q, (4.13)
a(@, t, VU)X (o |<py — ok in (P (Q))Y, (4.14)
Ty, (v°) — Ty (v) weakly in LP(0,T; Wy P(Q)) and a.e. on Q, (4.15)

V.ob(z,u®) — Vb(x,u) strongly in (LP(Q))N. (4.16)
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Proof. We prove (4.6) and (4.7), using Tj(u) as a test function in (4.4) and we integrate in ]0, t[ we get

/QBk(x,uE)(t) dx—f—/ot/ga(x,t, Vus)VTk(uE)ddeZ/Ot/QusTk(us)dxds+/§2Bk(x,u8) do, (4.17)

ob(x, )
0 57‘
Using assumption (3.5) and since By (z,u®) > 0, (4.7) derives from (4.17). By (3.2) we have

Bi(z,s) > ’y/( Ti(r)dr VseR,
0

for almost every t € (0,T), and where By(x,s) = / Tk (r) dr.

and since / Ty(r)dr > |s| —1 Vs € R, we obtain
0

1
/Qlus(t)ldw <~ (b wd)llzr@ + lelae@) + meas(Q).

Hence v is bounded in L>(0,T; L*(€2)), which yields (4.6). Moreover, the estimate (4.6) and (4.7) imply
also that u® is bounded in L(0, T; Wy (Q)) V1< g < p— NLH, according to the results in [14,16,26,24].

Taking Ty (v°) as test function in (4.4) and we integrate in ]0,¢[, by assumptions (3.3), (3.5), (3.6),
and by means of Young’s inequality one obtains

€
/ T (v5)(t)dz + & / 0@ | G (4.18)
Q 2 {|U€‘<k} 88
ep P’ eqp
< CUG N Lo ) F I Lo gy + IV I Ln ) + IBI%» ()

+k(||fs||L1(Q)+||b(xvu(€))||L1(Q)+”/\E—HLl )+ A @),

where Ty (s) = / Ti(r)dr Vs € R. So that (4.9) and (4.10) hold true.
0

Now, by (4.38) and since A5, A% are bounded in L'(Q), one obtains that z.w7) is hounded in

LY0,T;W~=11(Q)). Moreover, by assumptions (3.2) and (3.3) we have that b(z,u°) is bounded in
L9(0,T; W U(Q)) for every 1 < q < p — NL_H, so that using compactness arguments (see [42]) yield
(4.11), and (4.12). Using (4.7) and (4.11) yield (4.13), while (4.14) and (4.15) derives from (4.10) and
(4.12). Finally (3.1), (3.3), (4.11) and Lebesgue’s convergence theorem give (4.16). O

Let us introduce for k > 0 fixed, the time regularization of the function T} (u) in order to perform the
monotonicity method. This kind of regularization has been first introduced by R. Landes. More recently,
it has been exploited to solve a few nonlinear evolution problems with L' or measure data. This specific
time regularization of Ty (u) (for fixed k > 0) is defined as follows. Let (v§), in L>(Q) N WyP(€2) such
that [|vf|| =) <k, for all v > 0, and v — Ty (uo) a.e. in Q with L||v¥||1r) — 0 as v — +o0.

For fixed k > 0 and v > 0, let us consider the unique solution Ty(u), € L>(Q) N LP(0,T, Wy *(€)) of

the monotone problem:
0Ty (u),

5 T v(Te(w)y = Ti(w)) = 0 in D'(Q),

Ti(u),(t =0) = v§ in Q.
The behavior of Ty (u), as v — 400 is investigated in [29] (see also [22]) and we just recall here that:
Ti(u)y, — T (u) strongly in LP(0,T, Wol’p(Q)) a.e. in @ as v — 400

with [[T3(u), || =0y < k for any v > 0, and 20w e 120, T, Wy P (Q2)).
Here and in the rest of paper w(e,n,d, 1) will indicate any quantity that vanishes as the parameters go
to their limit point with in the same order in which they appear, that is, for example

lim lim lim lim |w(e, n,d,v)| = 0.
v—00 §—0 n—o0 0

Now we give the basic result about approximate capacitary potential.
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Lemma 4.2. Let py = pt —p; € M(Q) where pf and p; are concentrated respectively, on two disjoint
ET and E~ of zero p-capacity. Then, for every § > 0, there exist two compact sets Kgr C ET and
Ky C E™ such that

pt (B\KS) <6, s (EN\K;) <6, (4.19)
and there exist w}', Yy € CHQ), such that
w; =1 and 5 =1 respectively on Kgr and Ky, (4.20)
0<¢y, ¥5 <1, (4.21)
supp(v§) N supp(ih;) = 0. (4.22)
Moreover
e lls <8, s lls <. (4.23)

and in particular, there exists a decomposition of (@[13‘),5 and a decomposition of (g )¢ such that

(4.24)

Wil < (4.25)

Both wg' and 5 converges to zero weakly-* in L>=(Q), in LY(Q), and up to subsequences, almost every-
where as § vanishes. Moreover, if X% and X° are as in (4.1) we have

gv
_ 1)
(%5 )%HLP’(O,T;W*LP’(Q)) < 3

[ w5 axi —wie). [ vrdut <o, (4.26)
Q Q
[utax =), [ vfdu <o, (427)
Q Q
/ (1 =45 0y) dA} = w(e, 8,7), / (L= ¢gu)dud <o+, (4.28)
Q Q
Ja-vrunad —wedn, [ 0-vivg)dg <sn (1.29)
Q Q
Proof. See [33], Lemma 5. O

In what follows we will always refer to subsequences of both w} and 15 that satisfy all the convergence
results stated in Lemma 4.2.
Now we will prove the following theorem

Theorem 4.3. Let v° and v be as before. Then, for every k > 0
Ty (v°) — Ti(v) strongly in LP(0,T; W, P(Q)).

Proof. Let us first introduce the following function that we will use in the proof of Theorem 4.3.

1 if |s| <,
Iy —
(5) n-s if n<s<2n,
H,(s) = .
n 2
nts if —2n<s< —n,
n
0 it |s| > 2n.

Let also introduce another auxiliary function in terms of H,, by B, (s) =1 — H,(s). Our aim is to prove
the following asymptotic estimate:

Tr% a(x,t, Vu®)VT,(v°) dedt < / a(x,t, Vu)VTy(v) dx dt. (4.30)
E—r Q Q
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In order to prove (4.30), we shall follow several steps.
* Step 1.
For every 6,17 > 0, let w;, ;'7’, Y5 and 1, as in lemma 4.2 and let Et and E~ be the sets where,

respectively, ut and u; are concentrated. Setting @y, = ¢j{¢:{ + 151, , we can write

/Q a(x,t, Vu®)V (T (v) — T(v), ) Hp (v°) dz dt (4.31)

- /Q o, t, V)V (T (v5) — To(v)y) Ho (o) D5y dadt

+/ a(x, t, Vu®)V (T (v°) — Tk(v), ) Hn (v°)(1 — ®s5,5y) dacdt.
Q

Now, if n > k, since a(z,t, VusX{jpe|<20}) VI (v)y is weakly compact in LY(Q) as € goes to zero, H, (v°)
converges to Hy,(v) *-weakly in L*>°(Q), and almost everywhere in @, by proposition 2.1 we have

li—II(l) a(z,t, Vu® )V (T (v°) — Tk (v), ) Hn (v°) D5 5, dadt (4.32)
E—r Q

:H[/ a(x,t,VuE)VTk(vsybg_ndxdt} —/ 0o VTi(v), Hy(v)®s,,y dudt
e—0 Q ’ Q ’

= M[/ a(x,t, Vu®) VT (v°)Ps. dxdt} - / 02, VT (0)Ps y dadt + w(v).
Q

e—0 Q

Since @5, converges to zero - weakly in L°°(Q) as 6 goes to zero,
/ 02, VT (V) Ps .,y dxdt = w(9).
Q
Therefore, if we prove that

Tim lim lim [ a(z,t, Vu®)VT(v%)®s,, dzdt < 0, (4.33)

n—0 §—0 e—=0 Q

then we can conclude from (4.32) that

T T T e e\ e <0. .
71]1_% }ILI(IJ gl_l;r(l) Qa(x,t,Vu )V (Tk(v7) — T (v)y ) Hy (v°) P55,y ddt < 0 (4.34)

* Step 2. Near to F.
Before proving (4.33), we first show the following result

Lemma 4.4. Let u® be a solution of (4.3)-(4.5). Letn be a positive real number, and let '] and ¢ be
two non negative functions in C°(Q) such that

0<¢l <1, 0<e? <1,

and
OS/ ¢ duy <, OS/widus‘gn, (4.35)
Q Q
we then have ) o 6
- / Ma(x, t, Vu®)Vuse!l dxdt = w(e,n,n), (4.36)
n {—2n<ve<—n} Js

£
E / Ma(x, t, Vu®)Vus " dadt = w(e,n,n). (4.37)
n J{n<ve<2n} s
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Proof. Let us prove (4.37); let (8,,(s) = B,(sT), we can choose 3,,(v°)p" as test function in (4.4) and
rearranging conveniently all terms we have

1
—/ b, u’) a(z,t, Vu®)Vusp? dxdt+/ﬁ Yl dAE
{n<ve<2n} ds

1
= —/ a(z,t, Vu®)Vg ! dxdt
{n<ve<2n}

- l/ a(z,t, Vu®)Vb(x,u®)" dxdt
{n<ve<2n}
/B —dxdt—/ a(z,t, Vu® )V B, (v dxdt—i—/ 128, (v ddt
Q
—/ (@iv(GF), B, dt+/ B (09" dAS,
0
where S, ( / B,,(r)dr. Using the fact that / B,(v%)p" dX\° > 0 and by assumptions (3.2), (3.3),

(3.5), (3. 6) and Young’s inequality we obtain

1 g
—/ Ma(x,t, Vu)Vusp_ dxdt
{n<ve<2n} ds

< 9/|w%+@ﬁ+@ﬂma
/B —dxdt—/a(x,t,Vua).VapZBn(ve)dxdt
Q
/fﬁ Yo" da dt
—/ (div(G®), B,,( dt+/ B (v7)p™" dAT.
0

By (3.6) and (4.8) we have a(x,t, Vue) converges weakly in (L9 (Q))N as ¢ goes to 0 for every ¢ <

14 W’ since " belongs to C°(Q) and S,,(v¢) converges to 3,,(v) a.e. in @ and *-weakly in

L>(Q) as e goes to zero and §,,(v) converges to 0 a.e. in @ and *weakly in L>°(Q) as n goes to +0o0,
thanks to proposition 2.1, we obtain

/ a(z,t, Vu® )V B, (v°) dx dt = w(e, n).
Q

Since f3,,(v¥) converges to 3,,(v) in L'(Q) as € goes to 0, and f3,,(v) converges to 0 in L(Q) as n goes to
400, we obtain

/6 —dxdt—w(a n).

Moreover, the weak L'(Q) convergence of f¢ to f and thanks to proposition 2.1 we obtain
/fﬁ Yo dedt = w(e,n).

Due the strong convergence of div(G¢) to div(G) in L¥' (0,7, W~1#'(Q)) and the weak convergence in
LP(0,T, Wy P(Q)) of 8, (v°) to B, (v) and B,,(v) to 0 strongly in LP(0, T, W, *(Q)) (this facts is an easy
consequence of the estimate on the truncates of u® in Proposition 4.1), we obtain

T
/0 (div(G®), B,,(v°)¢" ) dzdt = w(e, n).
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Finally, by (4.35) and since 3,,(v®) is non negative and bounded and ¢" is continuous, we have

/ B (v) dAS < / " duf +w(e) = wle,n).
Q

Putting together all these facts lead to (4.37), while (4.36) can be obtained in the same way choosing
B,(s) = Bn(s™) and 3, (v)¢ as test function in (4.4). O

Now let us check (4.33). For fixed k > 0, we choose (k — Ty (v®))Hy (v)hs ;r as test function in

(4.4), defining Ty, x(s) = /S(k — Ti(r))H, (r) dr, and integrating by parts, we obtain
0
— [ PastR) G 0T 0 dede (1.39)
Q
+ /Q (k — To(w*) Ha (v°)ala, 1, Vo)V (g ) dadt
+ /Q a(z,t, Vu®)VH, (v°)(k — T (v°)) 03 ¥} dadt
- / a(z,t, Vu )V T (v°) Hn (v )05 o)} dadt
Q
T
/ (0 ) = T 0 et = [ (v (GF), B (o) = Tl 5

/ H0) = TN 07— [ Halw) = Telo?)i g i
For n > k, we have
Hy (v)a(z, t, Vu)xqjpe <ky = a(,t, VUT)X{jpe|<ky A€ in Q,

then rearranging all terms of (4.38), we obtain
/Q a(z,t, Vu ) VT (v° ) ot dxdt+/ Hp (v°)(k = T(v¥))bg b dAS,

:—/r k(v ) (¢5¢+)dxdt+2—k a(x,t, Vu ) Vo) dodt
Q {—2n<v<—n}

+ /Q(k — T (v) Hy (v9)a(z, t, Vus)V (b 1&?{) dzdt
- /Q £ (k — T(0®)) Ho (0° W o
T
- / (div(G®), Ho (v°)(k — To(0"))0F ) dt + /Q (k — T (%)) Ho (0" W07 dXS (4.39)

Let us analyze term by term the right hand side of (4.39). Due to Proposition 4.1 we have I',, 1 (v%)
converges to T, 1 (v) weakly in LP(0, T; Wy (), and since T, x(v) € LP(0,T; WyP()) N L=(Q), we
deduce

d
/ Pn,k(v‘f)%wm;) dadt
Q

gy iy
= / F"vk(v)wwn dxdt+/ ka(v)wwé dxdt + w(e) = w(e, ).
Q Q
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Since (k — Ty (v®))H,, (v°) converges to (k — Ty (v))H,(v) a.e. and *- weakly in L>°(Q), thanks to Propo-
sition 2.1, Proposition 4.1 and Lemma 4.2, we deduce

/Q(k — T (V%)) Hy (v°)a(z, t, Vu)V (Y .} ddt

= /Q(k = T3 (v)) Hn (v)0 2, V(5 ) ddt + w(e) = w(e, 6).

Moreover, (k — Tk(va))Hn(va)w[}"@[J;r weakly converges to (k — Tk(v))Hn(v)w;;"@b;;r in LP(0, T; Wy P (Q)),
and *- weakly in L°°(Q), thanks again to Lemma 4.2, we have

T
A<&Wﬁ%®—ﬂ@%Habeﬁwﬁ=Ma&

and

/fak Ty, (v°) Hn (v )Y p;F dadt = w(e, 6).

Using assumptions (3.2), (3.3), (3.6), Young’s inequality, and since 0 < wé <1 we obtain

1
’—/ a(x,t,VuﬂVv%bé%ﬂf{ dxdt’
{—2n<ve<—-n}

£
< l/ Ma(x,t,VUE)VUE@[J;',r dx dt
{—2n<ve<—n} s

C /
+—/ (IVg€|p+|L|” +|B|P) dxdt,
nJqg

+

applying Lemma 4.4 for ¢l =1, , we obtain

1
— / a(x,t, Vus)Vvsw;r de dt = w(e,n,n).
{—2n<ve<-—n}

Using (4.27) in Lemma 4.2, we have

VH )k — T (0F)) o X

<2k / Py dA
Q

_ 2k/ BEUtdps +w(e) = w(e,0).
Q
Collecting all we have shown above, we get

/ Ho(0F) ( — T (o)) dXS + /Q ale,t, Vus )V Tk (o Yod o dedt = w(e, 6,m,7).
Since / H,, (v%)(k — Tp(v%))05 b;F dA} > 0, we obtain
/Qa(x,t, VuE)VTk(vs)mJ{w;r dzdt < w(e,d,n).
On the other hand, reasoning as before with (k + T} (v®)) Hy(v°)5 1, as test function we can obtain

/ a(x,t, Vu) VT (v )5, dzdt < wl(e,d,1).
Q

Therefore, we obtain (4.33) which yields (4.34).
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Remark 4.5. As we have shown above we have

R Ob(z, u® R R
/H Y(k — Ty (v ))¢§r¢f{d)\++/Q%a(x,t,Vu X {10z <k VUTUF ,F dasdt

+/ a(x,t, Vua)x{we‘gk}vrb(x,u€)¢j{w:§ dzdt
Q

—/ a(x,t,VuE)X{‘UEKk}Vgsw:{ f;dmdt =w(e, d,n,n),
o <

by assumptions (3.2), (3.5), thanks to proposition 4.1 and Lemma 4.2 one obtains
| B = T X =l 0.

Analogously we obtain

L Hn )0+ o v a5 = e b,

The two last results above show an interesting property of approximating renormalized, they expresse the
fact that v¢ (and so the solution u®) is very large (greater than any k > 0 ) on the set where the singular
measure pt is concentrated, and small (smaller than any k < 0) on the set where the singular measure
Ly s concentrated.

* Step 3. Far from FE.
We first prove a result that will be essential to deal with the second term on the right hand side of (4.31).

Lemma 4.6. Let k > 0 be fized. Let S be an increasing C*(R)-function such that S(r) =r for |r| <k
and supp S’ is compact. Then

(V%) = Ti(v)u)(1 — @5,4,)) dsdt > w(e,v).

Proof. The proof of the above Lemma follows the arguments in [8], Lemma 1 and we just sketch the

proof of it.
Let k£ > 0 be fixed. Since S is increasing and S(r) = r for |r| < k,

Ti(S(v%)) = T (v°) and Tk (S(v)) = Tk (v) a.e. in Q.

As a consequence Ty (S(v)), = Tk(v), a.e. in @, for any v > 0.
It follows that under the notation z° = S(v®) and z = S(v), and thanks to properties of Tj(z), we have

V) = Ti(v),)(1 — ®s.,)) dsdt (4.40)

/ / = Ti(2)0)(1 = @5,,)) dsdt

:/ /(W,(K—Tk(z)»(l—%m» dsdt
0 0

Tt 920
_/ / <E’ (25 = T(2%))(1 — s,)) dsdt

/ aTk = Ti(2)0)(1 = @5,,)) dsdt,
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integrating by parts we have

Ty (v°) — T(v),)(1 — Bs,))) dsdt (4.41)

—%Aif/@aqumfﬁﬂdmwpééjéw—n@wﬁ%ﬁm%ﬁ
/ / 5 T(2))? dadi — g/g(z T(2)0)2(t = 0) da
__/ /(zs — Ty (2%))? dwdt + g/ﬂ(zs — T3, (2%))*(t = 0) da

/ / / 8Tk = Tk(2),)(1 — ®5.,)) dx ds dt,

bince/ (s = Ti(s))ds = = (r—Tk( )2

Using the definition of 2°¢ and z, the fact that S is bounded and v® converges to v a.e. on ), we have 2°¢
converges to z strongly in L? (Q) and in L*°(Q) *— weakly, the strong convergence of b(x, uf) to b(z,uo)
in L*(Q) implies that 2°(t = 0) converges to S(b(z,up)) strongly in L?().

Passing to the limit as € tends to zero in (4.41) leads to

(v5) = Ti(v),)(1 — Bs.,))) dsdt (4.42)

/ /z_Tk mddt / /z— Qddi”ddt
+§/0 /Q(Z—Tk(z)y)? dxdt—E/Q(Z—Tk(z)u)z(t:O) dx
_E/T/(Z_Tk(z))dedHg/ﬂ(z—Tk(z))Q(hO)dw

/ / / aTk —Ti(2),)(1 — @5,) da ds dt + w(e),

by rewriting the definition of Tk (u), in terms of T (z) we have

0Tk (2)y
ot

+u(Ti(z), — Tu(2)) = 0 in D'(Q),

Tr(2),(t =0) = vy in .

By properties of Tj(2), we obtain that Ty(z), converges to Tk (z) strongly in L?(Q) and Tk(2),(t = 0)
converges to Ty (S(b(x, up))) strongly in L?(2) as v tends to oo. Passing to the limit-inf as v tends to oo

n (4.42) leads to
lim hm/ /
v—00e—0

N V/ / /(Tk(z) = Ti(2)u)(z = Ti(2)u) (1 — @s.,y) dadsdt.
o Jo Ja

Thanks to definition of Tj(z), we have

T
/ / / (Ti(2) — Ti(2)) (2 — Ti(2),)(1 — ®s,py) dadsdt
o Jo Ja

Ty (v°) = Ti(v), ) (1 — ®5.,)) dsdlt
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_ / (2 = Th(2)0) (2 = To(2))(1 — Ds.y) dadsdt

(=1<k)
—|—/ (k—=Tk(2)u)(z — Ti(2),)(1 — <I>5,,,) dxdsdt

{z>k}

—|—/ (—k —Tx(2))(z — Ti(2),) (1 — ®s,)) dadsdt,
{z<—k}

and the three terms are all non negatives, then

T ot -
/ / <as;: ) (Ti(v°) = Ti(v),)(1 — ®5.0)) dt > w(e, v)
0 0
O

Now, let us multiply by H,(v®)(Tk(v®) — Ti(v),)(1 — ®s,,,) the equation solved by u® and integrate
to obtain

T e
/0 <8ait’ Hy (v (Ti (v°) — Tio(v),) (1 — q>57,7)> dt (4.43)
+/ a2, £, V).V (Th(6F) — To(0)) Ha (0°) (1 — B5.,) davdt
Q
+/ a2, £, V).V Hyy(0°) (T (%) — T (0),) (1 — Bs.) davdt
Q
_ /Q a(,t, V).V Dy Ho(0°) (T (0°) — T (v),) dadt

= ; FEH, (v)(Th(v®) — T (v)0)(1 — B5 ) dadt

T
—/0 (div(GT), Hn (0°)(Th(v%) = Th(0)w ) (1 = ®5,9)) di

+ 0 Hy (07)(Th (0%) = Tio(0)w ) (1 = @5.) dAT,

- [ Ha)@ ) = T (1~ s d
Q
Let us analyze term by term the identity (4.43), by Lemma 4.6 we have
T ove . R
/ <E’Hn(v VT (v°) = Tr(v),)(1 — <I>57n)> dt > w(e,v).
0

The almost everywhere and *-weak convergence of H,, (v°)(T)(v¢) — Tk (v),) to Hy(v)(Tk(v) — Tk(v),) in
L>(Q), the properties of T} (v), and thanks to Propositions 2.1 and 4.1 we have

/Q a(x, t, Vu).VOs n Hy (v°)(Ti (v°) — T(v),) dzdt = w(e, v).

Due the strong convergence of div(G?) to div(G) in L¥' (0, T, W~1#'(Q)), Proposition 4.1 and the prop-
erties of Ty (v), one obtains

T
/0 (div(GE), Hy, (v )(Th(v%) — T (0),)(1 — Bs.,)) dt = w(e, v).
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The weak convergence of f° to f in L'(Q), the almost everywhere and *— weak convergence of

H, (v¥) (T (v®) — Tk(v),) to Hy,(v)(Tk(v) — Ti(v),) in L>®(Q), Propositions 2.1, the properties of Tj(v),
and the Lebesgue’s dominated convergence theorem leads to

/QfEHn(vs)(Tk(vs) —Ti(v),)(1 = ®5,p)) dadt = w(e, v).

By Lemma 4.2 and the fact that |H,, (v¢)(Tk(v¢) — Tk(v),)| < 2k we obtain

| ) Th(0) = Ti0)) 1~ ) 5

<2k [ - wpuhan + 2k [ vruyax,
Q Q

and
/Q Ho (o) (T (v°) — Ti(0),)(1 — B5.) dA5, = w(e, 6, 7),

and similarly we get
/QHTL(UE)(T]C(’UE) —Ti(0),)(1 — @s,5)) dXE = w(e, 6, m).
It remains to prove that
/Qa(x, t,Vu©).VH, (v°)(Tk(v°) — Ti(v),)(1 — ®5.) dadt = w(e,n,d,n).

We have )
= ol t, Vi)V (Ty(0%) = T(w),) (1 — By ) do dit
I J{n<|vs|<2n}

2 13
< 2k Ma(x, t, Vu®)Vus (1 — ®5,,) da dt
n Jin<jor|<on} 03

+§/ (|Vg€|P + |L|P' + |B|”) dadt = I + I,
n.JQ

we have Iy = w(n), and we rewrite I; as follows:

_ 2k Ob(x, u®)

L = — ) YVuE (1 — T
YT v cony 05 a(z,t, Vu®)Vus (1 — g5 o)) de dt,
2k 8b($,us) o
I ———=a(z,t, Vu®)Vus 1, drdt,
N J{n<ve<2n} ds ( ) Vs n
2k Ob(x, u®) o
T ———a(x,t, VuF)Vu(1 — da dt.
n Ji—on<ve<—ny  Os ( ) (1 =v5¢y)

2k Ob(x, u®)
-= —La(x,t, Vut)Vusy ! da dt.
N J{—2n<ve<—n} s ( ) o

We can apply Lemma 4.4 for every term above. Indeed, if we define 905_’77 =1- ’@[J(—;’_ ,';, we have by Lemma
4.2,

/w‘i"dgj <N+,
Q
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then ¢ satisfies (4.33), thanks to Lemma 4.4 we obtain

2k Ma(x,t,Vua)Vue(l — Yy y)drdt < w(En) 4040
n J{n<ve<2n} s
- w(&n,éﬂ?)'

In analogous way we obtain the same result for the others terms. Therefore, we obtain our estimate far

from FE
/ a1, V)V (T (v%) — To(0)o) Ha (0°) (1 — B5.) dvdt < (e, v,m,5,7). (4.44)
Q
O
* Step 4. Strong convergence of truncates.
Collecting together (4.31), (4.34) and (4.44), we have by taking again n > k,
lim [ a(z,t, Vu®)VT(v°) dedt < / ok VT (v) dadt. (4.45)
e—0 Q Q
Now, we prove that
. ob(x, u®
lim 0 % [a(%“, t, VusXqjoe<iy) — al@,t, Vuxgo<iy) (4.46)
X [VUEX{‘,UE'SIC} - VU‘X{\MSI@} dr dt = 0.
We set
ob(x, u®
A = /Q % [a(x,t,vus)x{\mgk} —a(z,t, Vu)Xqjo|<k}
X[VUSX{‘Uglgk} - VU’X{\MSk}] dxdt.
We split (4.38), into A° = A + A5 + A5, where
ob(x, u®
Ai = /Q %a(x,t,VUE)VUE){{‘UEEk} dl‘dt,
ob(x, u®
A5 = —/Q %a(x,t, Vu)Vux e <k} X o)<k} dTdl,
ob(x, u®
A§ = —/Q %a(x,t, VU)(V’U,EX{‘UslSk}) - VU'X{\MSIC})) dxdt.
Ob(x, u®)
R e

We pass to the limit as € tends to 0 in AJ, A5 and A§. Let us remark that we have
VT (v%) = Vab(z,u®) X fjve|<ky + VI X{joe|<k} a-€ in Q, and we have also x{j,c|<x; almost everywhere

converges t0 Xj,<x} in Q (see [14]), we obtain:
lim A (4.47)

a(x, t, VUE)X{‘UqSk}ng dx dt

=lim [ a(z,t, Vu)VT(v°) dedt + lim
e—0 Q e—0 Q

S/ akVTk(v)dxdt—/ 0k Vb(T, w) X fjv)<k) dxdt—i—/ oKV IX{ o)<k} dT dt.
Q Q B Q B
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As a consequence of Proposition 4.1, we deduce that

lm%A = —/ 0, (VTi(v) — Vib(z,u) + Vg) dz dt, (4.48)
E—r Q
and

lim A5 = — lim ) alz,t, Vu) (VTk(UE) — (Vab(@, u%) + V)X {joe | <k} (4.49)

_(%(g;us) (ab(gs, u))—l (ka(v) — (Vb(z,u) + vg)x{lv‘gk}» dadt — 0.

Therefore collecting (4.47), (4.48) and (4.49) yield (4.46). Using (4.45), (4.46) and the usual Minty’s
argument we deduce that, o = a(x,t, V)X, <k} Through the monotonicity argument which relies on
(3.7) (see [17], Lemma 5), we can deduce from (4.46) that

VUSX{‘UﬂSk} - V’U’X{lv\gk} a.e. in Q,

and since a(x,t, Vu©)Vux e <y converges to a(z,t, Vu)Vuxy, <y weakly in LY(Q), by coercivity
argument we have that |Vu®|Px {lve|<k} 1S equi-integrable, as a consequence of Vitali’s theorem and since
g¢ strongly converges in LP(0,T; Wol’p(ﬂ)) yields

Ty (v°) — Ty (v) strongly in LP(0, T; Wy (),
the proof of Theorem 4.3, is complete. O

Proof.  (Proof of Theorem 4.1). Now we are able to prove that Problem (1.1)-(1.3) has a renormalized
solutions.

Let S in W2°°(R), such that S’ has a compact support as in Definition 3.1, and let ¢ € C2°(Q), then
the approximating solutions u® (and v¢) satisfy

—/ (¢4, S dt+/ S'(v)a(z,t, Vu® )Vgodmdt+/ S" (v¥)a(z,t, Vu®) Vo dzdt (4.50)
0

/f S'( gpdxdt—!—/ G*S Vgadxdt—F/ S" (v)GEVv® o dadt

/S Yo dA\s — /S Y d\°..

Thanks to Theorem 4.3, all terms in (4.50) easily pass to the limit on € except the last two terms that
give some problem. We can write following the arguments in [33] we have

| S0 0 = [ 80 )eut ax + [ 8000l - w)axs (451)
Q Q Q

Let @[Jj{ be defined as in Lemma 4.2, then we have

| [swrea-vhax]<c [ a-i)ax =wes.
Q Q

while choosing S’(v¥)@if in (4.4) one gets,

/S’(vs)gmb;r d)\fr:—/ S (v )bt dxdt—/ GES' (v¥)V (ptpf ) dadt (4.52)
Q Q Q

—/ G=S" (v )V dxdt+/ S’ (v d/\i—/ S()(ppf ) dodt
Q Q Q
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/S" a(z, t, Vu®)V (wj{go)dxdt—i—/ S (v¥)a(z, t, Vu®) VoL o dadt.
Q

Now, thanks to Proposition 4.1 and the properties of ¢;r, we have
/ f28' (v¥) g dadt = w(e, §) and / GES' (v°)V (oo ) dadt = w(e, §).
Q Q

By Lemma 4.2, we deduce

]/ S (0F )it dA° gc/ WA = w(e, ).
Q Q

Again by Lemma 4.2, and since S(v) € LP(0, T; Wy P () N L>(Q),
/Q S(oF) (ot )s dadt = w(e, 8).
By Theorem 4.3 and Lemma 4.2, we have
/ S’ (v%)a(w, t, Vu)V (¥ ¢) dodt = w(e,d),

and
/ S (v)a(z, t, Vu®) Vo o dzdt = w(e, ).
Q

Therefore, from (4.52) we deduce
/ S (v%)pdAS = w(e). (4.53)
Similarly, we can prove that

/ S (v%)pd\® = w(e). (4.54)
Q

As a consequence of the above convergence results, we are in a position to pass to the limit as € tends to
0 in (4.50) and to conclude that u satisfies (3.11).

It remains to show that S(v) satisfies the initial condition (3.12). To this end, firstly remark that
S(v®) being bounded in L*>*(Q), secondly, (4.50) and the above considerations on the behavior of the

€
terms of this equation show that 86;: ) is bounded in L'(Q)+ L¥' (0,T; W1 (Q)).

As a consequence, an Aubin’s type lemma (see e.g., [42], Corollary 4) implies that S(v®) lies in a
compact set of C([0,T]; W~15(Q)) for any s < inf(p/, 25 ). It follows that, on one hand, S(v¥)(t = 0)
converges to S(v)(t = 0) strongly in W~1%(Q), On the other hand, the smoothness of S imply that
S(v®)(t = 0) converges to S(b(x,u))(t = 0) strongly in LI(Q) for all ¢ < co. Due to (4.2), we conclude
that S(ve)(t = 0) = S(b(x,uf)) converges to S(b(x,u)(t = 0) strongly in L%(£2). Then v satisfies (3.12).

Now choosing 3,,(v°) as test function in (4.4) where ¢ € C°(Q), we obtain

_/ (o0 B dt+/ B, (v%)a(x,t, Vu)Vip ddt (4.55)
0

1

+ / a(x,t, Vu®)Vo© e dedt
{n<ve<2n}

T
/f B, (v dxdt — / (div(G*), B,,(v°) ) dadt

/ NpdX\ — / B, (v%)pd)\ .
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Reasoning as before (in particular as in the proof of Lemma 4.4) we obtain

T PR
/ (o0 Ba(v%)) dt = w(e,n), / B, (v)a(w,t, Vo). Vo dadt = w(e,n),
0

/ 128, (%) pdxdt = w(e,n), / (div(G*), B8,,(v%)p) dedt = w(e,n).
Q

0
Thanks to Theorem 4.3 we have

1 1
—/ a(x,t, Vu®)VoFp dedt = —/ a(xz,t,Vu)Vuv ¢ dzxdt + w(e).
{n<ve<2n} {n<v<2n}

Now we deal with the two last terms in the right hand side of (4.55) we can write

/6 pd) = /h e dAy + /god/\i,

where h,,(s) = H,(s"). By construction of A\ we have

/Qapd)\s :/Qapduj—i—w(a).

Following the same argument as in (4.50) and (4.51) by taking h, (v°) = S’(v°) we obtain

/ b (v) @ dAS = w(e).
If we prove that
| e = ie) (456)
then, we obtain for every ¢ € C°(Q)
1
lim —/ a(xz,t,Vu)Vuv pdxdt = / odut (4.57)
n=oo N Jin<v<2n} Q

We can write

/ﬁ YpdAe = /6 Yy dAT + /ﬁ (1= 47) X",
by Lemma 4.2, we obtain

/ﬁ o1 —5) NS = wi(z, 8).

Choosing 3, (v®)p15 as a test function in the formulation of u®

T
/Q B (v )ty dA° = / (o3 Yo B (%)) dt — / B, (v%)ale, t, Vi)V (i) dudt

1
—— / a(z, t, Vu®) Vo ey dedt + / feB, (v )y dxdt
{n<ve<2n}

1
+/QG€ﬁn(v )WV (pyy ) dedt + — / GV dxdt—i—/ B, (V%) pthy dAL.

{n<ve<2n}
Using again Proposition 2.1, Proposition 4.1, Lemma 4.2 and Lemma 4.4 yields (4.56), and therefore we
obtain (4.57) for every ¢ € C°(Q). Now if ¢ € C*°(Q)), we can split

1 1
—/ a(xz,t,Vu)Vv pdzdt = —/ a(z,t, Vu)Vu ppf dzdt (4.58)
{n<v<2n} {n<v<2n}
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1
+— / a(z,t, Vu)Vv o(1 —F) dedt, .
n J{n<v<2n}
Thanks to (4.57), we have
1
lim —/ a(z,t, Vu)Vo ppf dadt :/ odut + w(d),
N0 N Jin<v<2n} Q

By Lemma 4.4, we obtain

1

- / a(z,t, Vu)Voe o(1 —¢F) dedt = w(e,n,d).
" J{n<ve<2n}

Thanks to Theorem 4.3, we deduce

1

- / a(z,t, Vu)Vo p(1 — i) dedt = w(n, d).
n J{n<v<2n}

Putting together all these facts above, we get (3.13) for every ¢ € C* (Q), and by density argument
(3.13) holds for every ¢ € C(Q). To obtain (3.14) we can reason as before using ¢ in the place of ¥

and viceversa, and this conclude the proof of Theorem 4.1. O
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