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abstract: In this paper we introduce and study the classes VMp,η(λ, α, β) and VNp,η(λ, α, β) of multivalent
functions with varying arguments of coefficients. We obtain coefficients inequalities, distortion theorems and
extreme points for functions in these classes. Also, we investigate several distortion inequalities involving
fractional calculus. Finally, results on partial sums are considerd.
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1. Introduction

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞
∑

n=1

ap+nz
p+n(p ∈ N = {1, 2, ...}), (1.1)

which are analytic and multivalent in the open unit disc U = {z : z ∈ C and |z| < 1}. We note that
A(1) = A.

We recall some definitions which will be used in our paper.

Definition 1.1. [1]. (i) A function f(z) of the form (1.1) is said to be in the class of β−uniformly
multivalent starlike functions, denoted by USTp(α, β), if it satisfies the following condition:

ℜ

{

zf ′(z)

f(z)
− α

}

> β

∣

∣

∣

∣

zf ′(z)

f(z)
− p

∣

∣

∣

∣

(0 ≤ α < p; β ≥ 0; z ∈ U) .

(ii) A function f(z) of the form (1.1) is said to be in the class of β−uniformly multivalent convex
functions, denoted by UCVp(α, β), if it satisfies the following condition:

ℜ

{

1 +
zf ′′(z)

f ′(z)
− α

}

> β

∣

∣

∣

∣

1 +
zf ′′(z)

f ′(z)
− p

∣

∣

∣

∣

(0 ≤ α < p; β ≥ 0; z ∈ U) .
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Many essentially equivalent definitions of fractional calculus (that is, fractional derivatives and fractional
integrals) have been given in the literature (cf., e.g. [2], [3], [5], [6], [7], [15], [16] and [18]). We find
it to be convenient to recall here the following definitions which were used recently by Owa [8] and by
Srivastava and Owa [17].

Definition 1.2. The fractional integral of order λ is defined, for a function f(z), by

D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ
dζ (λ > 0),

where f(z) is an analytic function in a simply-connected region of the complex z−plane containing the
origin and the multiplicity of (z − ζ)λ−1 is removed by requiring log(z − ζ) to be real when z − ζ > 0.

Definition 1.3. The fractional derivative of order λ is defined, for a function f(z), by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1),

where f(z) is an analytic function in a simply-connected region of the complex z−plane containing the
origin and the multiplicity of (z − t)−λ is removed by requiring log(z − ζ) to be real when z − ζ > 0.

Definition 1.4. Under the hypotheses of Definition 1.3, the fractional derivative of order n+λ is defined
by

Dk+λ
z f(z) =

dk

dzk
Dλ

z f(z) (0 ≤ λ < 1; k ∈ N0 = N ∪ {0}).

In this paper, we define the following subclass of A(p)

Definition 1.5. A function f(z) ∈ A(p) is said to be in the class Mp(λ, α, β) if

ℜ

{

Ψ
(λ,p)
z

f(z)
− α

}

> β

∣

∣

∣

∣

∣

Ψ
(λ,p)
z

f(z)
− p

∣

∣

∣

∣

∣

(0 ≤ α < p; β ≥ 0; 0 ≤ λ < 1; z ∈ U) , (1.2)

where

Ψ(λ,p)
z =

Γ(p− λ+ 1)

Γ(p)
zλDλ

z f(z). (1.3)

Also, a function f(z) ∈ A(p) is said to be in the class Np(λ, α, β) if and only if

Γ(p− λ+ 1)

Γ(p+ 1)
zλDλ

z f(z) ∈ Mp(λ, α, β).

We note that:
(i)M1(λ, α, 0) = S∗λ(α) and N1(λ, α, 0) = Kλ(α) (see Owa [9]);
(ii)Mp(1, α, β) = USTp(α, β) and VNp(1, α, β) = UCVp(α, β) (see Al-Kharsani [1]).

Also, we note that:

M1(λ, α, β) = M(λ, α, β) =

{

f(z) ∈ A : ℜ

(

Γ(2− λ)zλDλ
z f(z)

f(z)
− α

)

> β

∣

∣

∣

∣

Γ(2− λ)zλDλ
z f(z)

f(z)
− 1

∣

∣

∣

∣

}

;

and N1(λ, α, β) = N(λ, α, β) =
{

f(z) ∈ A : Γ(2− λ)zλDλ
z f(z) ∈ M(λ, α, β)

}

.

In [12], Silverman introduced and studied the univalent functions with varying arguments, as follows:
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Definition 1.6. [12]. We say that a function f(z) of the form f(z) = z +
∞
∑

n=2
anz

n is in the class

V(θn) if f(z) ∈ S (the class of analytic and univalent functions in U) and arg(an) = θn for all n (n ≥ 2) .
Further, if there exists a real number η such that

θn + (n− 1)η ≡ π (mod 2π) ,

then f(z) is said to be in the class V(θn, η). The union of V(θn, η) taken over all possible sequences {θn}
and all possible real numbers η is denoted by V.

Silverman [12] used the concept of varying arguments of the coefficients to introduce and study the class
V∗(α), which is a subclass of V consisting of starlike functions of order α. For η = 0, we obtain the class
Tn consisting of functions f(z) with negative coefficients.

In [4], Aouf et al. introduced a subclass of multivalent functions with varying arguments of coefficients
as follows.

Definition 1.7. [4]. We say that a function f(z) of the form (1.1) is in the class Vp(θp+n) if f(z) ∈ A(p)
and arg(ap+n) = θp+n for all n (n ≥ 1) . Further, if there exists a real number η such that

θp+n + nη ≡ π (mod 2π) ,

then f(z) is said to be in the class Vp(θp+n, η). The union of Vp(θp+n, η) taken over all possible sequences
{θp+n} and all possible real numbers η is denoted by Vp.

Let VUSTp(α, β) denote the subclass of Vp consisting of functions f(z) ∈ USTp(α, β) and VUCVp(α, β)
denote the subclass of Vp consisting of functions f(z) ∈ UCVp(α, β) which are the subclasses of multivalent
uniformly starlike functions with varying arguments of coefficients and multivalent uniformly convex
functions with varying arguments, respectively.

Using the concept of varying arguments in multivalent functions, we introduce the following subclasses.

Definition 1.8. Let VMp,η(λ, α, β) denote the subclass of Vp consisting of functions f(z) ∈ Mp(λ, α, β)
and VNp,η(λ, α, β) denote the subclass of Vp consisting of functions f(z) ∈ Np(λ, α, β).

We note that:

(i)VMp,η(1, α, 0) = Vp(α) and VNp,η(1, α, 0) =
−

Vp(α) (see Aouf et al. [4]);

(ii)VMp,0(1, α, 0) = T
∗(p, α) and VNp,0(1, α, 0) = C(p, α) (see Owa [10]);

(iii)VMp,0(1, α, β) = USTp(α, β) and VNp,0(1, α, β) = UCVp(α, β) (see Al-Kharsani [1]);

(iv)VM1,η(λ, α, 0) = V∗
λ(α) and VN1,η(λ, α, 0) = W∗

λ(α) (see Owa [9]);

(v)VM1,η(1, α, 0) = V
∗(α) and VN1,η(1, α, 0) = VK(α) (see Silverman [12]);

(vi)VM1,0(1, α, 0) = T∗(α) and VM1,0(1, α, 0) = K(α) (see Silverman [13]).

Also, we note that:

VM1(λ, α, β) = VM(λ, α, β) =

{

f(z) ∈ V : ℜ

(

Γ(2− λ)zλDλ
z f(z)

f(z)
− α

)

> β

∣

∣

∣

∣

Γ(2− λ)zλDλ
z f(z)

f(z)
− 1

∣

∣

∣

∣

}

;

and VN1(λ, α, β) = VN(λ, α, β) =
{

f(z) ∈ V : Γ(2− λ)zλDλ
z f(z) ∈ VMp(λ, α, β)

}

.
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2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this paper that

0 ≤ α < p, β ≥ 0, 0 ≤ λ < 1, p ∈ N, z ∈ U and φλ
p,n = Γ(p+n+1)Γ(p−λ+1)

Γ(p+n−λ+1)Γ(p) (n ∈ N) .

Theorem 2.1. Let f(z) be given by (1.1). Then f(z) ∈ VMp,η(λ, α, β) if and only if

∞
∑

n=1

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n| ≤ p− α. (2.1)

Proof. Assume that the condition (2.1) holds, then it is sufficient to show the inequality (1.2) holds.
Hence, it suffices to show that

β

∣

∣

∣

∣

∣

Ψ
(λ,p)
z

f(z)
− p

∣

∣

∣

∣

∣

−ℜ

{

Ψ
(λ,p)
z

f(z)
− p

}

< p− α,

where Ψ
(λ,p)
z is defined by (1.3). Thus

β

∣

∣

∣

∣

∣

Ψ
(λ,p)
z

f(z)
− p

∣

∣

∣

∣

∣

−ℜ

{

Ψ
(λ,p)
z

f(z)
− p

}

≤ (1 + β)

∣

∣

∣

∣

∣

Ψ
(λ,p)
z

f(z)
− p

∣

∣

∣

∣

∣

≤

(1 + β)
∞
∑

n=1

[

φλ
p,n − p

]

|ap+n|

1−
∞
∑

n=1
|ap+n|

.

This last expression is bounded above by (p− α) if (2.1) holds. Conversely, assume that

ℜ

{

Ψ
(λ,p)
z

f(z)
− α

}

> β

∣

∣

∣

∣

∣

Ψ
(λ,p)
z

f(z)
− p

∣

∣

∣

∣

∣

,

or, equivalently

ℜ















(p− α) +
∞
∑

n=1

[

φλ
p,n − α

]

ap+nz
n

1 +
∞
∑

n=1
ap+nzn















> β

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=1

[

φλ
p,n − p

]

ap+nz
n

1 +
∞
∑

n=1
ap+nzn

∣

∣

∣

∣

∣

∣

∣

∣

.

Since f(z) ∈ Vp, then f(z) ∈ Vp(θp+n, η) for some sequence {θp+n} and a real numbers η such that

θp+n + nη ≡ π (mod 2π) .

Let z = reiη , we have









(p− α) +
∞
∑

n=1

[

φλ
p,n − α

]

|ap+n| e
i[θp+n+nη]rn

1 +
∞
∑

n=1
|ap+n| ei[θp+n+nη]rn









>









β
∞
∑

n=1

[

φλ
p,n − p

]

|ap+n| e
i[θp+n+nη]rn

1 +
∞
∑

n=1
|ap+n| ei[θp+n+nη]rn









.

Letting r → 1−, we obtain the required result and hence the proof of the inequality (2.1) is completed.
Further, we consider a function f(z) given by

f(z) = zp +

∞
∑

n=1

(p− α)eiθp+n

n (n+ 1)
[

(1 + β)φλ
p,n − (pβ + α)

]zp+n.
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Then, writing

ap+n =
(p− α)eiθp+n

n (n+ 1)
[

(1 + β)φλ
p,n − (pβ + α)

] (n ∈ N) .

We have
∞
∑

n=1

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n| =

∞
∑

n=1

p− α

n (n+ 1)
= p− α.

Therefore, f(z) ∈ VMp,η(λ, α, β) satisfies the equality in (2.1). �

Corollary 2.2. Let f(z) defined by (1.1) be in the class VMp,η(λ, α, β). Then

|ap+n| ≤
(p− α)

[

(1 + β)φλ
p,n − (pβ + α)

] .

The result is sharp for the function

f(z) = zp +
(p− α)eiθp+n

[

(1 + β)φλ
p,n − (pβ + α)

]zp+n.

Theorem 2.3. Let f(z) be given by (1.1). Then f(z) ∈ VNp,η(λ, α, β) if and only if

∞
∑

n=1

φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n| ≤ p(p− α). (2.2)

Proof. Since f(z) ∈ VNp(λ, α, β) if and only if

Γ(p− λ+ 1)

Γ(p+ 1)
zλDλ

z f(z) ∈ VMp(λ, α, β).

It follows that f(z) ∈ VNp(λ, α, β) if and only if (2.2) holds. Moreover, the equality in (2.2) holds true
for

f(z) = zp +

∞
∑

n=1

p(p− α)eiθp+n

n (n+ 1)φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]zp+n.

This completes the proof of Theorem 2.3. �

Corollary 2.4. Let f(z) defined by (1.1) be in the class VNp,η(λ, α, β). Then

|ap+n| ≤
p(p− α)

φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

] .

The result is sharp for the function

f(z) = zp +
p(p− α)

φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]eiθp+nzp+n.
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3. Distortion theorems

Theorem 3.1. Let f(z) defined by (1.1) be in the class VMp,η(λ, α, β), then for z ∈ U, we have

|z|p −
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|p+1

≤ |f(z)| ≤

|z|
p
+

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
. (3.1)

The result is sharp for the function f(z) given by

f(z) = zp +
(p− α)eiθp+1

[

(1 + β)φλ
p,1

− (pβ + α)
]zp+1. (3.2)

Proof. It is easy to see from Theorem 2.1 that

[

(1 + β)φλ
p,1

− (pβ + α)
]

∞
∑

n=1

|ap+n| ≤

∞
∑

n=1

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n| ≤ p− α,

because φλ
p,n < φλ

p,n+1 for n ≥ 1. This gives us that

∞
∑

n=1

|ap+n| ≤
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] . (3.3)

Making use of (3.3), we have

|f(z)| ≥ |z|
p
−

∞
∑

n=1

|ap+n| |z|
p+1

≥ |z|
p
−

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
,

and

|f(z)| ≤ |z|
p
+

∞
∑

n=1

|ap+n| |z|
p+1

≤ |z|
p
+

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
,

which proves the assertion (3.1). Since the equality in (3.1) is satisfied by f(z) given by (3.2), the proof
is thus completed. �

Using similar arguments to those in the proof of the Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Let f(z) defined by (1.1) be in the class VNp,η(λ, α, β), then for z ∈ U, we have

|z|
p
−

p(p− α)

φλ
p,1

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1

≤ |f(z)| ≤
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|z|
p
+

p(p− α)

φλ
p,1

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
.

The result is sharp for the function f(z) given by

f(z) = zp +
p(p− α)eiθp+1

φλ
p,1

[

(1 + β)φλ
p,1

− (pβ + α)
]zp+1.

4. Extreme points

Theorem 4.1. Let f(z) defined by (1.1) belongs to the class VMp,η(λ, α, β) with arg(ap+n) = θp+n and
θp+n + nη ≡ π (mod 2π) for all n. Also, let fp(z) = zp and

fp+n(z) = zp +
(p− α) eiθp+n

[

(1 + β)φλ
p,n − (pβ + α)

]zp+n.

Then f(z) is in the class VMp,η(λ, α, β) if and only if can be expressed in the form

f(z) =
∞
∑

n=0

µp+nfp+n(z),

where µp+n ≥ 0 and
∞
∑

n=0
µp+n = 1.

Proof. Assume that

f(z) =

∞
∑

n=0

µp+nfp+n(z)

= zp +

∞
∑

n=1

(p− α) eiθp+nµp+n
[

(1 + β)φλ
p,n − (pβ + α)

]zp+n. (4.1)

Then it follows that

∞
∑

n=1

[

(1 + β)φλ
p,n − (pβ + α)

]

(p− α)

(p− α)
[

(1 + β)φλ
p,n − (pβ + α)

]µp+n =
∞
∑

n=1

µp+n = 1− µp ≤ 1,

which implies that f(z) ∈ VMp,η(λ, α, β). Conversely, assume that the function f(z) defined by (1.1) be
in the class VMp,η(λ, α, β). Then Corollary 2.2 gives that

|ap+n| ≤
(p− α)

[

(1 + β)φλ
p,n − (pβ + α)

] (n ∈ N).

Defining µp+n by

µp+n =

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n|

(p− α)
(n ∈ N),

and

µp = 1−

∞
∑

n=1

µp+n,

we write

ap+n =
(p− α)µp+ne

iθp+n

[

(1 + β)φλ
p,n − (pβ + α)

] (n ∈ N).
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This shows that

f(z) = zp +

∞
∑

n=1

ap+nz
p+n

=

(

∞
∑

n=0

µp+n

)

zp +
∞
∑

n=1

(p− α)eiθp+n

[

(1 + β)φλ
p,n − (pβ + α)

]µp+nz
p+n

=

∞
∑

n=0

µp+nfp+n(z).

This completes the proof of Theorem 4.1. �

By using similar arguments and analysis to those in the proof of Theorem 4.1, we can derive the following
theorem.

Theorem 4.2. Let f(z) defined by (1.1) belongs to the class VNp,η(λ, α, β) with arg(ap+n) = θp+n and
θp+n + nη ≡ π (mod 2π) for all n. Also, let fp(z) = zp and

fp+n(z) = zp +
p (p− α) eiθp+n

φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]zp+n.

Then f(z) is in the class VNp,η(λ, α, β) if and only if can be expressed in the form

f(z) =
∞
∑

n=0

µp+nfp+n(z),

where µp+n ≥ 0 and
∞
∑

n=0
µp+n = 1.

5. Applications of Fractional Calculus

Theorem 5.1. Let f(z) defined by (1.1) be in the class VMp,η(λ, α, β). Then we have

∣

∣D−λ
z f(z)

∣

∣ ≤
Γ(p+ 1)

Γ(p+ λ+ 1)
|z|

p+λ







1 +
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







, (5.1)

and

∣

∣D−λ
z f(z)

∣

∣ ≥
Γ(p+ 1)

Γ(p+ λ+ 1)
|z|

p+λ







1−
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







, (5.2)

for λ > 0 and z ∈ U. Further

∣

∣

∣
D

λ
z f(z)

∣

∣

∣
≤

Γ(p+ 1)

Γ(p− λ+ 1)
|z|p−λ

{

1 +
(p+ 1)(p− α)

p [(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
|z|

}

, (5.3)

and
∣

∣

∣
D

λ
z f(z)

∣

∣

∣
≥

Γ(p+ 1)

Γ(p− λ+ 1)
|z|p−λ

{

1−
(p+ 1)(p− α)

p [(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
|z|

}

, (5.4)

for 0 ≤ λ < 1 and z ∈ U. The result is sharp.
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Proof. Let

F (z) =
Γ(p+ λ+ 1)

Γ(p+ 1)
z−λD−λ

z f(z)

= zp +

∞
∑

n=1

Γ(p+ n+ 1)Γ(p+ λ+ 1)

Γ(p+ 1)Γ(p+ n+ λ+ 1)
ap+nz

p+n.

Then

F (z) = zp +

∞
∑

n=1

Ωλ
p,nap+nz

p+n,

where

Ωλ
p,n =

Γ(p+ n+ 1)Γ(p+ λ+ 1)

Γ(p+ 1)Γ(p+ n+ λ+ 1)
(λ > 0).

We see that

0 < Ωλ
p,n ≤

p+ 1

p+ λ+ 1
.

Then

|F (z)| ≤

∣

∣

∣

∣

∣

zp +

∞
∑

n=1

Ωλ
p,nap+nz

p+n

∣

∣

∣

∣

∣

≤ |z|
p
+

∞
∑

n=1

Ωλ
p,n |ap+n| |z|

p+1

≤ |z|
p
+

∞
∑

n=1

Ωλ
p,n

(p− α)
[

(1 + β)φλ
p,n

− (pβ + α)
] |z|

p+n

≤ |z|
p
+

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
,

and

|F (z)| ≥ |z|
p
−

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] |z|

p+1
,

which proves the inequalities (5.1) and (5.2). Now, Since

(

p+ 1− λ

p+ 1

)

Γ(p+ n+ 1)Γ(p− λ+ 1)

Γ(p+ n+ 1− λ)

[

(1 + β)

(

p+ 1

p+ 1− λ

)

− (pβ + α)

]

≤

[

(1 + β)
Γ(p+ n+ 1)Γ(p− λ+ 1)

Γ(p+ n+ 1− λ)
− (pβ + α)Γ(p)

]

,

it follows that

∞
∑

n=1

(

p+ 1− λ

p+ 1

)

Γ(p+ n+ 1)Γ(p− λ+ 1)

Γ(p+ n+ 1− λ)

[

(1 + β)

(

p+ 1

p+ 1− λ

)

− (pβ + α)

]

|ap+n|

≤

∞
∑

n=1

[

(1 + β)
Γ(p+ n+ 1)Γ(p− λ+ 1)

Γ(p+ n+ 1− λ)
− (pβ + α)Γ(p)

]

|ap+n| ,

that is,
∞
∑

n=1

φλ
p,n |ap+n| ≤

(p+ 1)(p− α)

[(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
.
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Let

G(z) =
Γ(p− λ+ 1)

Γ(p+ 1)
zλDλ

z f(z)

= zp +

∞
∑

n=1

Γ(p+ n+ 1)Γ(p− λ+ 1)

Γ(p+ 1)Γ(p+ n− λ+ 1)
ap+nz

p+n.

Then

|G(z)| ≤

∣

∣

∣

∣

∣

zp +

∞
∑

n=1

φλ
p,n

p
ap+nz

p+n

∣

∣

∣

∣

∣

≤ |z|
p
+

∞
∑

n=1

φλ
p,n

p
|ap+n| |z|

p+1

≤ |z|
p
+

(p+ 1)(p− α)

p [(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
|z|

p+1
,

and

|G(z)| ≥ |z|
p
−

(p+ 1)(p− α)

p [(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
|z|

p+1
.

Further equalities in (5.1) and (5.2) are attained for the function

f(z) = zp +
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
]eiθp+1zp+1, (5.5)

and equalities in (5.3) and (5.4) are attained for the function

f(z) = zp +
(p+ 1)(p− α)

p [(p+ 1)(1 + β)− (pβ + α)(p+ 1− λ)]
eiθp+1zp+1.

This completes the proof of Theorem 5.1. �

Theorem 5.2. Let f(z) defined by (1.1) be in the class VNp,η(λ, α, β). Then we have

∣

∣D−λ
z f(z)

∣

∣ ≤
Γ(p+ 1)

Γ(p+ λ+ 1)
|z|

p+λ







1 +
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







,

and

∣

∣D−λ
z f(z)

∣

∣ ≥
Γ(p+ 1)

Γ(p+ λ+ 1)
|z|p+λ







1−
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







,

for λ > 0 and z ∈ U. Further

∣

∣Dλ
z f(z)

∣

∣ ≤
Γ(p+ 1)

Γ(p− λ+ 1)
|z|

p−λ







1 +
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







,

and

∣

∣Dλ
z f(z)

∣

∣ ≥
Γ(p+ 1)

Γ(p− λ+ 1)
|z|

p−λ







1−
(p− α)

[

(1 + β)φλ
p,1

− (pβ + α)
] |z|







,

for 0 ≤ λ < 1 and z ∈ U. The result is sharp for the functions f(z) given by (5.5).
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Proof. Since

0 < Ωλ
p,n < Ω−λ

p,n <
p+ 1

p− λ+ 1
.

and
∞
∑

n=1

φ−λ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]

|ap+n| ≤ p(p− α).

It follows that
∞
∑

n=1

1

p
φλ
p,n |ap+n| ≤

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] ,

and
∞
∑

n=1

1

p
φ−λ
p,n |ap+n| ≤

(p− α)
[

(1 + β)φλ
p,1

− (pβ + α)
] .

Thus, we obtain the required result. �

6. Partial sums

Following the earlier works by Silverman [11] and Silvia [14] on partial sums for univalent functions,
we consider partial sums of functions in the class VMp,η(λ, α, β) and obtain sharp lower bound for real
part of the ratio of f(z) to fm(z).

Theorem 6.1. Let f(z) ∈ VMp,η(λ, α, β) of the form (1.1) and define the partial sums of fp(z) and
fm(z) by

fp(z) = zp and fm(z) = zp +

m
∑

n=1

ap+nz
p+n (m ∈ N). (6.1)

Also, let
∞
∑

n=1

cp+n |ap+n| ≤ 1,

where

cp+n =

[

(1 + β)φλ
p,n − (pβ + α)

]

(p− α)
. (6.2)

Then

ℜ

{

f(z)

fm(z)

}

≥ 1−
1

cp+m+1
, (6.3)

and

ℜ

{

fm(z)

f(z)

}

≥
cp+m+1

1 + cp+m+1
. (6.4)

Proof. For the coefficients cp+n+1 defined by (6.2), it is easy to verify that

cp+n+1 > cp+n > 1,

and so
m
∑

n=1

|ap+n|+ cp+m+1

∞
∑

n=m+1

|ap+n| ≤

∞
∑

n=1

cp+n |ap+n| ≤ 1.
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Let

g1(z) = cp+m+1

{

f(z)

fm(z)
−

(

1−
1

cp+m+1

)}

= 1 +

cp+m+1

∞
∑

n=m+1
ap+nz

n

1 +
m
∑

n=1
ap+nzn

,

which is analytic in U and g1(0) = 1. To prove (6.3), it suffices to prove that ℜ{g1(z)} ≥ 0, or equivalently
|g1(z)− 1| ≤ |g1(z) + 1| since

ℜ{w} ≥ µ if and only if |w − 1− µ| ≤ |w + 1− µ| .

Thus

∣

∣

∣

∣

g1(z)− 1

g1(z) + 1

∣

∣

∣

∣

≤

cp+m+1

∞
∑

n=m+1
|ap+n|

2− 2
m
∑

n=1
|ap+n| − cp+m+1

∞
∑

n=m+1
|ap+n|

≤ 1,

which readily the assertion (6.3) of Theorem 6.1. To show that

f(z) = zp +
zp+m+1

cp+m+1
, (6.5)

gives sharp result, we note that for z = re
iπ
n ,

f(z)

fm(z)
= 1 +

zm+1

cp+m+1
→ 1−

1

cp+m+1
as z → 1−.

Similary, let

g2(z) = (1 + cp+m+1)

{

fm(z)

f(z)
−

cp+m+1

1 + cp+m+1

}

= 1−

(1 + cp+m+1)
∞
∑

n=m+1
ap+nz

n

1 +
∞
∑

n=1
ap+nzn

. (6.6)

Making use of (6.6), we have

∣

∣

∣

∣

g2(z)− 1

g2(z) + 1

∣

∣

∣

∣

≤

(1 + cp+m+1)
∞
∑

n=m+1
|ap+n|

2− 2
∞
∑

n=1
|ap+n| − (cp+m+1 − 1)

∞
∑

n=m+1
|ap+n|

≤ 1,

which implies to the assertion (6.4) of Theorem 6.1. The bound in (6.4) is sharp for each m ∈ N with
the extremal function f(z) given by (6.5). �

We can obtain the following theorem by using similar arguments to those in the proof of the Theorem
6.1.
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Theorem 6.2. Let f(z) ∈ VNp,η(λ, α, β) of the form (1.1) and the partial sums of fp(z) and fm(z)
defined by (6.1). Also, let

∞
∑

n=1

dp+n |ap+n| ≤ 1,

where

dp+n =
φλ
p,n

[

(1 + β)φλ
p,n − (pβ + α)

]

p (p− α)
.

Then

ℜ

{

f(z)

fm(z)

}

≥ 1−
1

dp+m+1
,

and

ℜ

{

f(z)

fm(z)

}

≥
dp+m+1

1 + dp+m+1
.

Remark 6.3. (i) For different choices of λ, p, β in the above results, we obtain some analogous results
for Aouf et al. [4], Owa [9], Silverman [11] and Silverman [12];
(ii) For p = 1 in the above results, we will obtain new results fot the classes VM(λ, α, β) and VN(λ, α, β)
mentioned in the introduction.

Conclusion

In our present investigation, we have introduced and studied the classes VMp,η(λ, α, β) and
VNp,η(λ, α, β) of multivalent functions with varying arguments of coefficients. We have successfully
obtained coefficients inequalities, distortion theorems and extreme points for functions in these classes.
Also, we have investigated several distortion inequalities involving fractional calculus. Finally, results on
partial sums have been considerd.
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