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abstract: We introduce a new faster King-Werner-type derivative-free method for solving nonlinear equa-
tions. The local as well as semi-local convergence analysis is presented under weak center Lipschitz and
Lipschitz conditions. The convergence order as well as the convergence radii are also provided. The radii are
compared to the corresponding ones from similar methods. Numerical examples further validate the theoretical
results.
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1. Introduction

The study of many physical phenomena often leads to finding a locally unique solution x∗ of the
equation

F (x) = 0, (1.1)

where F : D ⊂ X → Y is Fréchet differentiable operator, X and Y are Banach spaces, and D is a
nonempty subset of X . One prefers the solutions to be found in closed form but this can be achieved
only in special cases. That is why most solution methods for such equations are iterative. There is a
plethora of iterative methods for generating a sequence {xn} approximating x∗, see, for example [1,2,3,4,
5,6,7,8,9,10,11,12,13,14,15,16,17,18] and references therein. High convergence order methods that do not
involve the usage of the Fréchet derivative are of particular importance, since many equations contain a
non differentiable term.

In the present study, based on the King-Werner-type method (KWTM) defined for each n = 0, 1, 2, . . .
by

xn+1 =xn −A−1
n F (xn)

yn+1 =xn+1 −A−1
n F (xn+1), (1.2)

where x0, y0 ∈ D are initial points and An = [xn, yn; F ] is a divided difference of order one on D [1],
we shall derive a modified King-Werner-type method. The order of convergence of KWTM is 1 +

√
2.

KWTM has been studied extensively in [19,20,21,22,23]. We shall show that modified method is of
convergence order 3 > 1 +

√
2 under the same hypotheses of convergence. Then, we compare the radius

of convergence with the corresponding ones of Secant and Newton’s method under common hypotheses.
The study of convergence of iterative methods is usually centered into two categories: semi-local and

local convergence analysis. The semi-local convergence is based on the information around an initial
point, to obtain conditions ensuring the convergence of these algorithms, while the local convergence is
based on the information around a solution to find estimates of the computed radii of the convergence
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balls. Local results are important since they provide the degree of difficulty in choosing initial points.
Moreover, we present the largest radius of convergence among these methods. Furthermore, the semi-local
convergence of method (2.10) is presented. Finally, the paper is concluded with numerical examples.

2. Derivation and local convergence

The motivation for new modified method is taken from the real case X = Y = R and then rewritten
in Banach space form as it is usually the case. Consider the method defined on R for each n = 0, 1, 2, . . .
by

xn+1 = xn − [xn, yn; f ]
−1f(xn)

yn+1 = xn+1 − P ′(xn+1)
−1f(xn+1), (2.1)

where polynomial P is defined by P (t) = at2 + bt+ c for solving the equation f(t) = 0. We shall impose
the conditions

P (xn) = f(xn), P (yn) = f(yn) and P (xn+1) = f(xn+1). (2.2)

Then, we have that

ax2n + bxn + c = f(xn)

ay2n + byn + c = f(yn)

ax2n+1 + bxn+1 + c = f(xn+1),

so

a(x2n − y2n) + b(xn − yn) = f(xn)− f(yn)

a(x2n+1 − x2n) + b(xn+1 − xn) = f(xn+1)− f(xn),

or

a(xn + yn) + b = [xn, yn; f ]

a(xn+1 + xn) + b = [xn+1, xn; f ] (2.3)

and
a(xn+1 − yn) = [xn+1, xn; f ]− [xn, yn; f ]. (2.4)

Estimate (2.4) motivates us to choose

a = [xn+1, xn, yn; f ]. (2.5)

Then, by substituting (2.5) in (2.3), we get

b = [xn, yn; f ]− [xn+1, xn, yn; f ](xn + yn) (2.6)

so

P ′(xn+1) = 2axn+1 + b

= [xn, yn; f ] + [xn+1, yn; f ]− [xn, yn; f ]

+ [xn+1, xn; f ]− [yn, xn; f ]. (2.7)

Therefore, in view of (2.7) method (2.1) can be written as

xn+1 = xn − [xn, yn; f ]
−1f(xn) (2.8)

and
yn+1 = xn+1 − ([xn+1, yn; f ] + [xn+1, xn; f ]− [yn, xn; f ])

−1f(xn+1). (2.9)
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In a Banach space setting the method (2.9) can be expressed as

xn+1 = xn −A−1
n F (xn)

yn+1 = xn+1 −B−1
n+1F (xn+1), (2.10)

where Bn+1 = [xn+1, yn; F ] + [xn+1, xn; F ] − [yn, xn; F ]. Here onwards we denote this method by
MKWTM. The local convergence analysis that follows uses some parameters and scalars functions. Let
l0, l and l1 be given parameters. Define parameters r0 and rA by

r0 =
1

l0 + l + 2l1
and rA =

1

2l0 + l
.

Notice that r0 < rA for l0 ≤ l. Define functions φ and ψ on the interval [0, r0) by

φ(t) =

(

l1 + l2 +
l2t

1−(l0+l)t

)

t

1− (l0 + l + 2l1)t

and
ψ(t) = φ(t)− 1.

We have ψ(0) = −1 < 0 and ψ(t) → +∞ as t→ r−0 . It follows from the intermediate value theorem that
equation ψ(t) = 0 has solution in the interval (0, r0). Denote by r the smallest such solution. Then, we
have that for each t ∈ [0, r)

(l0 + l + 2l1)t < 1

and
0 ≤ φ(t) < 1.

Notice that the convergence radius r can be given in closed form by the positive solution of the quadratic
equation

q(t) = 0,

where
q(t) = λ2t

2 + λ1t+ 1,

since q(t) = 0 is equivalent to ψ(t) = 0 provided that (l0 + l)t 6= 1 and (l0 + l + 2l1)t 6= 1. Here,
λ2 = (l0 + l)(l0 + l + 3l1 + l2)− l2 and λ1 = −(2l0 + 2l+ 3l1 + l2).

Let B(x, ̺) and B̄(x, ̺) stand, respectively for the open and closed balls in X with center x ∈ X and
of radius ̺ > 0.

Next, we present the local convergence analysis of method (2.10) using the preceding notation and
conditions whereas and X , Y are Banach spaces until otherwise specified.

Theorem 2.1. Let F : D ⊂ X → Y be a Fréchet differentiable operator and [·, ·;F ] : D2 → L(X,Y ) be
a divided difference of order one. Suppose : there exists x∗ ∈ D such that F (x∗) = 0 and F ′(x∗)−1 ∈
L(Y,X), there exist l0, l > 0 such that for each x, y ∈ D

‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ l0‖x− x∗‖+ l‖y − x∗‖. (2.11)

Let D0 = D ∩B(x∗, 1
l0+l

). There exist l1, l2 > 0 such that for each x, y, u, v ∈ D0

‖F ′(x∗)−1([x, y;F ]− [u, v;F ])‖ ≤ l1‖x− u‖+ l2‖y − v‖. (2.12)

and
B̄(x∗, r) ⊆ D, (2.13)

where the radius of convergence is defined previously. Then, sequences {xn}, {yn} generated by method
(2.10) for x0, y0 ∈ B(x∗, r)−{x∗} are well defined in B(x∗, r), remain in B(x∗, r) for each n = 0, 1, 2, . . .
and converge to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, . . .

‖xn+1 − x∗‖ ≤ l2‖yn − x∗‖‖xn − x∗‖
1− (l0‖xn − x∗‖+ l‖yn − x∗‖) ≤ ‖yn − x∗‖ < r, (2.14)
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‖yn+1 − x∗‖ ≤
(

(l1 + l2)‖yn − x∗‖+ l2‖xn+1 − x∗‖
)

‖xn+1 − x∗‖
1−

(

(l0 + l1)‖xn+1 − x∗‖+ (l + l1)‖yn − x∗‖
)

≤ ‖xn+1 − x∗‖ < r (2.15)

and
en+4 ≤ C1e

2
n+3en+2en+1 + C2e

2
n+3e

2
n+2 + C3e

3
n+3, (2.16)

where en = ‖xn − x∗‖, C1 > 0, C2 > 0, and C3 > 0. Furthermore, for R ∈ [r, 1
l0
) the vector x∗ is the

only solution of equation F (x) = 0 in D1 = D ∩B(x∗, R).

Proof: We shall show estimates (2.14) and (2.15) using induction on k. By hypotheses x0, y0 ∈ B(x∗, r)−
{x∗}, the definition of r and (2.11), we have in turn that

‖F ′(x∗)−1([xk, yk;F ]− F ′(x∗))‖ ≤ (l0‖xk − x∗‖+ l‖yk − x∗‖) < (l0 + l)r < 1. (2.17)

It follows from (2.17) and the Banach lemma on invertible operators [2] that
[xk, yk;F ]

−1 ∈ L(Y,X) and

‖[xk, yk;F ]−1F ′(x∗)‖ ≤ 1

1− (l0‖xk − x∗‖+ l‖yk − x∗‖)

<
1

1− (l0 + l)r
. (2.18)

Then, xk+1 is well defined by the first substep of method (2.10) and we can write

xk+1 − x∗ = xk − x∗ − [xk, yk;F ]
−1[xk, x

∗;F ](xk − x∗)

= [xk, yk;F ]
−1([xk, yk;F ]− [xk, x

∗;F ])(xk − x∗). (2.19)

In view of (2.12), (2.18) and (2.19), we get in turn that

‖xk+1 − x∗‖ ≤ l2‖yk − x∗‖‖xk − x∗‖
1− (l0‖xk − x∗‖+ l‖yk − x∗‖)

≤‖yk − x∗‖ < r, (2.20)

which shows (2.14) for n = k and xk+1 ∈ B(x∗, r) − {x∗}. By the second sub-step of method (2.10) we
can write

yk+1 − x∗ = xk+1 − x∗ −B−1
k+1F (xk+1)

= B−1
k+1

(

Bk+1 − [xk+1, x
∗;F ]

)

(xk+1 − x∗). (2.21)

Using (2.11), (2.12) and (2.21), we obtain in turn that

‖F ′(x∗)−1(Bk+1 − F ′(x∗))‖ ≤‖F ′(x∗)−1([x∗, x∗;F ]− [xk+1, yk;F ])‖
+ ‖F ′(x∗)−1([yk, xk;F ]− [xk+1, xk;F ])‖

≤l0‖xk+1 − x∗‖+ l‖yk − x∗‖
+ l1‖xk+1 − x∗ + x∗ − yk‖

≤(l0 + l1)‖xk+1 − x∗‖+ (l + l1)‖yk − x∗‖
≤(l0 + l + 2l1)r < 1, (2.22)

so B−1
k+1 ∈ L(Y,X) and

‖B−1
k+1F

′(x∗)‖ ≤ 1

1− ((l0 + l1)‖xk+1 − x∗‖+ (l + l1)‖yk − x∗‖)

≤ 1

1− (l0 + l + 2l1)r
. (2.23)



Design and Analysis of a Faster King-Werner-type... 5

In view of (2.12), (2.21), (2.23) and the definition of r, we get in turn that

‖yk+1 − x∗‖ ≤ (l1‖yk − x∗‖+ l2‖xk+1 − yk‖)‖xk+1 − x∗‖
1− ((l0 + l1)‖xk+1 − x∗‖+ (l + l1)‖yk − x∗‖)

≤ ((l1 + l2)‖yk − x∗‖+ l2‖xk+1 − x∗‖)‖xk+1 − x∗‖
1− (l0 + l+ 2l1)r

≤φ(r)‖xk+1 − x∗‖ ≤ ‖xk+1 − x∗‖ < r, (2.24)

which shows (2.15) for n = k and yk+1 ∈ B(x∗, r). The induction for (2.14) and (2.15) is completed. By
(2.20) and (2.24), we get the estimate

‖yk+1 − x∗‖ ≤ c‖yk − x∗‖ < r,

where

c =
l2‖x0 − x∗‖

1− (l0‖x0 − x∗‖+ l‖y0 − x∗‖) ∈ [0, 1),

so lim
k→∞

yk = x∗ and consequently by (2.20) lim
k→∞

xk = x∗. We can write by (2.14) and (2.15) in turn that

‖xk+2 − x∗‖ ≤ l2‖yk+1 − x∗‖‖xk+1 − x∗‖
1− (l0 + l)r

,

‖xk+3 − x∗‖ ≤ l2‖yk+2 − x∗‖‖xk+2 − x∗‖
1− (l0 + l)r

≤ l2((l1 + l2)‖yk+1 − x∗‖+ l2‖xk+2 − x∗‖)‖xk+2 − x∗‖2
(1− (l0 + l)r)(1 − (l0 + l + 2l1)r)

,

so

‖xk+4 − x∗‖

≤
l2
(

(l1 + l2)‖yk+2 − x∗‖+ l2‖xk+3 − x∗‖
)

‖xk+3 − x∗‖2
(1− (l0 + l)r)(1 − (l0 + l + 2l1)r)

≤
l2

(

(l1+l2)
(

(l1+l2)‖xk+1−x
∗‖+l2‖xk+2−x

∗‖
)

‖xk+2−x
∗‖

1−(l0+l+2l1)r
+ l2‖xk+3 − x∗‖

)

‖xk+3 − x∗‖2

(1 − (l0 + l + 2l1)r)(1 − (l0 + l)r)
,

which shows (2.16) for

C1 = 4a1a
2
2 > 0

C2 = 2a1a
2
2 > 0

and
C3 = a1a2,

where a1 = l
1−2l0̺

and a2 = l
1−2(l0+l)r . To show the uniqueness part, let Q = [x∗, y∗;F ], where y∗ ∈ D1

with F (y∗) = 0. By the definition of R and (2.11), we obtain that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ l0‖x∗ − y∗‖ ≤ l0R < 1,

so Q−1 ∈ L(Y,X). Then, from the identity

0 = F (x∗)− F (y∗) = [x∗, y∗;F ](x∗ − y∗) = Q(x∗ − y∗),

we conclude that x∗ = y∗. �

Next, we shall present the local convergence for Secant methods

xn+1 = xn − [xn, xn−1;F ]
−1F (xn) (2.25)
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and
xn+1 = xn − [xn−1, xn;F ]

−1F (xn), (2.26)

under conditions (2.11) and (2.12), so we can compare the radii with r. Using the approximations

xn+1 − x∗ = [xn, xn−1;F ]
−1

(

[xn, xn−1;F ]− [xn, x
∗;F ]

)

(xn − x∗) (2.27)

and
xn+1 − x∗ = [xn−1, xn;F ]

−1
(

[xn−1, xn;F ]− [xn, x
∗;F ]

)

(xn − x∗), (2.28)

respectively as in the proof of Theorem 2.1, we arrive at:

Proposition 2.2. Suppose that the hypotheses of Theorem 2.1 until (2.12) and

B̄(x∗, r∗) ⊆ D (2.29)

hold, where

r∗ =
1

l0 + l + l2
(2.30)

hold. Then, sequence {xn} generated by Secant method (2.25) for x−1, x0 ∈ B(x∗, r∗)-{x∗} is well defined
in B(x∗, r∗), remains in B(x∗, r∗) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following
estimates hold for each n = 0, 1, 2, . . .

‖xn+1 − x∗‖ ≤ l2‖xn−1 − x∗‖‖xn − x∗‖
1− (l0‖xn − x∗‖+ l‖xn − x∗‖) . (2.31)

Furthermore, for R ∈ [r∗, 1
l0
) the vector x∗ is the only solution of equation F (x) = 0 in D1 = D∩B(x∗, R).

Remark 2.3. Condition (2.12) can be replaced for Secant method (2.25) by

‖F ′(x∗)−1([x, y;F ]− [x, z;F ])‖ ≤ l3‖y − z‖, (2.32)

for some l3 > 0. Then, r∗, l2, (2.31) can be replaced by r∗1, l3, (2.34), respectively in Proposition (2.1)

r∗1 =
1

l0 + l + l3
, (2.33)

‖xn+1 − x∗‖ ≤ l3‖xn−1 − x∗‖‖xn − x∗‖
1− (l0‖xn − x∗‖+ l‖xn − x∗‖) . (2.34)

Notice that
l3 ≤ l2, (2.35)

so
r∗ ≤ r∗1 (2.36)

and (2.35) is a more precise estimate than (2.31).

Proposition 2.4. Suppose that the hypotheses of Theorem 2.1 and

B̄(x∗, r∗∗) ⊆ D (2.37)

hold, where

r∗∗ =
1

l0 + l + 2l1 + l2
. (2.38)

Then, sequence {xn} generated by Secant method (2.26) for x−1, x0 ∈ B(x∗, r∗∗) − {x∗} is well defined
in B(x∗, r∗∗), remains in B(x∗, r∗∗) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following
estimates hold for each n = 0, 1, 2, . . .

‖xn+1 − x∗‖ ≤ l1‖xn−1 − x∗‖+ (l1 + l2)‖xn − x∗‖
1− (l0‖xn−1 − x∗‖+ l‖xn − x∗‖) ‖xn − x∗‖. (2.39)

Furthermore, for R ∈ [r∗∗, 1
l0
) the vector x∗ is the only solution of equation F (x) = 0 in D1 = D ∩

B(x∗, R).
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Proposition 2.5. It was shown in [1,2] that under conditions (2.11) and (2.12) the radius of convergence
for Newton’s method

xn+1 = xn − F ′(xn)
−1F (xn) (2.40)

is given by

r∗A =
1

2(l0 + l) + l1 + l2
. (2.41)

Then, it follows from the preceding definitions of the convergence radii that r∗1 is the largest convergence
radius among methods (2.10), (2.25), (2.26), and (2.40).

We present the local convergence analysis of KWTM based on scalar parameters and functions. Let
α ≥ 0, β ≥ 0 and b > 0 with α + β 6= 0. Define parameters ̺0, ̺1 and functions f and hf on interval
[0, ̺0) by

̺0 =
1

α+ β
, ̺1 =

1

α+ β + b
,

f(t) =
(

b+
αbt

1− (α+ β)t
+ β

)

t

and

hf (t) = f(t)− 1.

We have that hf (0) = −1 and hf (t) → +∞ as t → ̺−0 . The intermediate value theorem assures that
equation hf(t) = 0 has solutions on the interval (0, ̺0). Denote by ̺∗ the smallest such solution. Notice
that hf (̺1) = 0, so ̺∗ ≤ ̺1. Then, we have for each t ∈ [0, ̺∗)

0 ≤ bt

1− (α+ β)t
< 1.

and

0 ≤ f(t) < 1.

The local convergence analysis of KWTM is based on the hypotheses (H):

(h1) F : D ⊆ X → Y is a continuously Fréchet-differentiable operator and [·, ·; F ] : D ×D → L(X,Y )
is a divided difference operator of order one.

(h2) There exists parameters α ≥ 0, β ≥ 0 with α + β 6= 0, x∗ ∈ D such that F (x∗) = 0 and
F ′(x∗)−1 ∈ L(Y,X) and for each x, y ∈ D

‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ α‖x− x∗‖+ β‖y − x∗‖.

Set: D0 = D ∩ Ū(x∗, ̺0), where ̺0 is defined previously.

(h3) There exists b > 0 such that for each x, y ∈ D0

‖F ′(x∗)−1([x, y;F ]− [x, x∗;F ])‖ ≤ b‖y − x∗‖.

(h4) Ū(x∗, ̺∗) ⊆ D, where ̺∗ is defined previously.

(h5) There exists R∗ ≥ ̺∗ such that

R∗ <
1

β
, β 6= 0.

Set D1 = D ∩ Ū(x∗, R∗).
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Theorem 2.6. Suppose that the hypotheses (H) hold. Then, sequences {xn}, {yn} starting from x0,

y0 ∈ U(x∗, ̺∗)− {x∗} and generated by KWTM are well defined in U(x∗, ̺∗) for each n = 0, 1, 2, . . . and
remain in U(x∗, ̺∗) converge to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, . . .

‖xn+1 − x∗‖ ≤ b‖yn − x∗‖
1− (α‖xn − x∗‖+ b‖yn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ̺∗ (2.42)

and

‖yn+1 − x∗‖ ≤ b‖yn − x∗‖
1− (α‖xn+1 − x∗‖+ b‖yn − x∗‖)‖xn+1 − x∗‖. (2.43)

Furthermore, the limit point x∗ is the only solution of equation F (x) = 0 in D1, where D1 is defined in
(h5).

Proof: Let x, y ∈ U(x∗, ̺∗). Using (h2), we have in turn that

‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ α‖x− x∗‖+ β‖y − x∗‖
< (α + β)̺∗ < 1. (2.44)

In view of (2.44) and the Banach lemma on invertible operators [24] [x, y;F ]−1 ∈ L(Y,X) and

‖[x, y;F ]−1F ′(x∗)‖ ≤ 1

1− (α‖x− x∗‖+ β‖y − x∗‖) . (2.45)

In particular [x0, y0;F ]
−1 ∈ L(Y,X), since x0, y0 ∈ U(x∗, ̺∗). We can write by the first substep of

method KWTM

x1 − x∗ =x0 − x∗ − [x0, y0;F ]
−1F (x0)

= [x0, y0;F ]
−1

(

[x0, y0;F ]− [x0, x
∗;F ]

)

(x0 − x∗) (2.46)

By (h3), (2.45) for x = x0, y = y0 and (2.46), we get in turn

‖x1 − x∗‖ = ‖[x0, y0;F ]−1F ′(x∗)‖‖F ′(x∗)−1
(

[x0, y0;F ]− [x0, x
∗;F ]

)

(x0 − x∗)‖

≤ b‖y0 − x∗‖
1− (α‖x0 − x∗‖+ β‖y0 − x∗‖)‖x0 − x∗‖

≤‖x0 − x∗‖ < ̺∗, (2.47)

so (2.42) holds for n = 0 and x1 ∈ U(x∗, ̺∗) and [x1, y0;F ]
−1 ∈ L(Y,X). We also have by (2.45) that

‖[x1, y0;F ]−1F ′(x∗)‖ ≤ 1

1− (α‖x1 − x∗‖+ β‖y0 − x∗‖) . (2.48)

Moreover, we can write by the second substep of KWTM that

y1 − x∗ =x1 − x∗ − [x1, y0;F ]
−1F (x1)

=[x1, y0;F ]
−1

(

[x1, y0;F ]− [x1, x
∗;F ]

)

(x1 − x∗), (2.49)

so

‖y1 − x∗‖ ≤ b‖y0 − x∗‖‖x1 − x∗‖
1− (α‖x1 − x∗‖+ β‖y0 − x∗‖)

≤ b̺∗

1− (α+ β̺∗)̺∗
‖x1 − x∗‖ < ̺∗,

which shows (2.43) for n = 0 and y1 ∈ U(x∗, ̺∗). The induction for (2.42) and (2.43) is completed
analysis if x0, y0, x1, y1 are replaced by xm, ym, xm+1, ym+1 in the preceding estimates, respectively.
Then, from the estimates
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‖xm+1 − x∗‖ ≤ µ1‖xm − x∗‖ < ̺∗

and
‖ym+1 − x∗‖ ≤ µ2‖xm+1 − x∗‖ < ̺∗,

where µ1 = b̺∗

1−(α+β)̺∗
∈ [0, 1), and µ2 = f(̺∗) ∈ [0, 1), we deduce that lim

m→∞
xm = lim

m→∞
ym = x∗,

xm+1 ∈ U(x∗, ̺∗) and ym+1 ∈ U(x∗, ̺∗). The uniqueness part is shown by letting T = [x∗, y∗;F ] for
some y∗ ∈ D1 with F (y∗) = 0. Using (h2) and (h5), we obtain in turn that

‖F ′(x∗)−1([x∗, y∗;F ]− F ′(x∗))‖ ≤ β‖y∗ − x∗‖ ≤ βR < 1,

so T−1 ∈ L(Y,X). Finally, from the identity

0 = F (x∗)− F (y∗) = [x∗, y∗;F ](x∗ − y∗),

we conclude that x∗ = y∗. �

Remark 2.7. Define the computational order of convergence (COC) [25] by

COC = log
∥

∥

∥

wn+2 − x∗

wn+1 − x∗

∥

∥

∥

/

log
∥

∥

∥

wn+1 − x∗

wn − x∗

∥

∥

∥
, for each n = 1, 2, .... (2.50)

and the approximate computational order of convergence (ACOC) [26], by

ACOC = log
∥

∥

∥

wn+2 − wn+1

wn+1 − wn

∥

∥

∥

/

log
∥

∥

∥

wn+1 − wn

wn − wn−1

∥

∥

∥
, for each n = 1, 2, .... (2.51)

This way we obtain a practical order of convergence.

3. Semi-local convergence analysis

The semi-local convergence analysis of method (2.10) is based on some scalars sequences and pa-
rameters. Let L0 > 0, L > 0, L1 > 0, L2 > 0, η0 ≥ 0 and η ≥ 0 be given parameters. Define
sequences {tn}, {sn} for each n = 0, 1, 2, . . . by t0 = 0, s0 = η0, t1 = η, s1 =

(

1 + L0t1+Ls0
1−((L0+L1)t1+L1s0)

)

t1,

t2 = (1 + L0t1+Ls0
1−(L0t1+L(s1+s0))

)t1,

sn+1 = tn+1 +

(

L1(tn+1 − tn) + L2(sn − tn)
)

(tn+1 − tn)

1−
(

L0tn+1 + L(sn + s0) + L1((tn+1 − tn) + (sn − tn))
) , (3.1)

tn+2 = tn+1 +

(

L1(tn+1 − tn) + L2(sn − tn)
)

(tn+1 − tn)

1−
(

L0tn+1 + L(sn+1 + s0)
) .

Moreover, define polynomials g and h by

g(t) = (L0 + L+ 2L1)t
2 + (L2 − L1)t− (L1 + L2)

and
h(t) = Lt3 + L0t

2 + (L1 + L2)t− (L1 + L2).

We have that g(0) = h(0) = −(L1 + L2) < 0 and g(1) = h(1) = L0 + L1 > 0. Denote by αg and αh the
unique solutions (by Descartes rule of sign) of equations g(t) = 0 and h(t) = 0, respectively.

We have that
h(αg) = Lα3

g + L0α
2
g + (L1 + L2)αg − (L1 + L2)− g(αg),

since g(αg) = 0.

Case(I) : Lαg ≥ 2L1 ⇒ h(αg) ≤ 0 ⇒ αg ≤ αh,
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Case(II) : Lαg ≤ 2L1 ⇒ h(αg) ≥ 0 ⇒ αh ≤ αg.

Then, define parameters α by

α =

{

αh, Lαg ≥ 2L1,

αg, Lαg ≤ 2L1.
(3.2)

Next, we present a convergence result for sequences {tn}, {sn} using the preceding notation.

Lemma 3.1. Let parameter α be defined as in (3.2) if t0 ≤ s0, L0η+L(s1+η0) < 1, (L0+L)η+L1η0 < 1,

(L0t1 + Ls0)max
{ 1

1− (L0η + L(s1 + η0))
,

1

1− ((L0 + L1)η + L1η0)

}

≤ α (3.3)

and

α ≤ 1− (L0 + L)η

1− Lη0
,

then the sequences {tn}, {sn} are non-decreasing, bounded from above by t∗∗ = t1
1−α

and converge to
the unique least upper bound t∗ satisfying t1 ≤ t∗ ≤ t∗∗. Moreover, for each n = 1, 2, . . . , we have the
estimates

0 ≤ sn+1 − tn+1 ≤ α(tn+1 − tn), (3.4)

0 ≤ tn+2 − tn+1 ≤ α(tn+1 − tn)

and

0 ≤ tn ≤ sn.

Proof: Estimates (3.4) shall be shown using mathematical induction. If t1 = 0, tk = sk = 0 follows from
(3.1) and (3.4) holds for each k = 1, 2, . . .. For other values of t1 = η > 0, (3.4) is satisfied for each k
provided that

0 ≤ L1(tk+1 − tk) + L2(sk − tk)

1− (L0tk+1 + L(sk + s0) + L1(tk+1 − tk) + L1(sk − tk))
≤ α, (3.5)

0 ≤ L1(tk+1 − yk) + L2(sk − tk)

1− (L0tk+1 + L(sk+1 + s0))
≤ α (3.6)

and

0 ≤ tk ≤ sk. (3.7)

By (3.1), (3.5)–(3.7), we have that

0 ≤ sk − tk ≤ αk(t1 − t0), (3.8)

0 ≤ tk+1 − tk ≤ αk(t1 − t0), (3.9)

so

sk ≤tk + αk(t1 − t0) ≤ tk−1 + αk−1(t1 − t0) + αk(t1 − t0)

≤t1 + α(t1 − t0) + · · ·+ αk(t1 − t0) =
1− αk+1

1− α
(t1 − t0) < t∗∗ (3.10)

and analogously

tk+1 ≤ 1− αk+1

1− α
(t1 − t0) < t∗∗. (3.11)

Evidently (3.5)–(3.7) hold by the definition of t0, s0, t0 ≤ s0 and the left hand side inequality in (3.3).
In view of (3.8)–(3.11), estimate (3.5) holds, if

(L1 + L2)α
kt1 + αL0

1− αk+1

1− α
t1 + αL

1− αk+1

1− α
t1 + 2αL1α

kt1 − α+ αs0 ≤ 0. (3.12)



Design and Analysis of a Faster King-Werner-type... 11

Estimate (3.12) motivates us to define recurrent functions on the interval [0, 1) by

φk(t) =
(

(L1 + L2)t
k−1 + (L0 + L1)(1 + t+ · · ·+ tk) + 2L1t

k
)

t1 + Ls0 − 1. (3.13)

A relationship is needed between two consecutive function φk and φk+1. We have in turn by (3.3)

φk+1(t) =(L1 + L2)t
kt1 + (L0 + L1)(1 + t+ · · ·+ tk+1)t1 + 2L1t

k+1t1 + Ls0 − 1

− (L1 + L2)t
k−1t1 − (L0 + L)(1 + t+ · · ·+ tk)t1 − 2L1t

kt1

− Ls0 + 1 + φk(t)

=φk(t) + g(t)tk−1t1. (3.14)

In particular by (3.13), estimate (3.12) holds, if

φk(α) ≤ 0 for each k = 0, 1, 2, . . . . (3.15)

Define function φ∞ on [0, 1) by

φ∞(t) = lim
k→∞

φk(t) =
L0 + L

1− t
t1 + L0s− 1. (3.16)

Using (3.2), (3.14) and (3.16) we get that

φk(α) ≤ φk+1(α) ≤ . . . φ∞(α), (3.17)

so (3.15) holds, if
φ∞(α) ≤ 0, (3.18)

which is true by right hand-side inequality in condition (3.3). Hence, the induction for (3.5) is completed.
Similarly, to show (3.6), it suffices to have

(L1 + L2)α
kt1 + αL0

1− αk+1

1− α
t1 + αL

1− αk+2

1− α
t1 + αLs0 − α ≤ 0. (3.19)

Then, again define recurrent functions ψk on [0, 1) by

ψk(t) =
(

(L1 + L2)t
k−1 + L0(1 + t+ · · ·+ tk) + L(1 + t+ · · ·+ tk+1)

)

t1 + Ls0 − 1.

Then, we get in turn that

φk+1(t) = (L1 + L2)t
kt1 + L0(1 + t+ · · ·+ tk+1)t1 + L(1 + t+ · · ·+ tk+2)t1 + Ls0

− 1− (L1 + L2)t
k−1t1 − L0(1 + t+ · · ·+ tk)t1

− L(1 + t+ · · ·+ tk+1)t1

− Ls0 + 1 + ψk(t)

=ψk(t) + h(t)tk−1t1. (3.20)

Then, (3.19) is satisfied, if
ψk(α) ≤ 0, for each k = 1, 2, . . . . (3.21)

Define function ψ∞ on [0, 1) by

ψ∞(t) = lim
k→∞

ψk(t) =
(L0 + L

1− t

)

t1 + Ls0 − 1. (3.22)

Using (3.2), (3.20) and (3.22) we obtain that

ψk(α) ≤ ψk+1(α) ≤ . . . ψ∞(α), (3.23)



12 J. R. Sharma, I. K. Argyros and D. Kumar

so (3.21) holds, if
ψ∞(α) ≤ 0, (3.24)

which is true by the right hand side inequality in condition (3.3). Hence, the induction for (3.6) is
completed. Then, the induction for (3.7) is completed by (3.1), (3.5) and (3.6). Moreover, estimates (3.4)
hold. Hence, sequences {tk}, {sk} are nondecreasing, bounded above by t∗∗ and such they converge to
their unique least upper bound t∗. �

The following definition is useful for the semi-local convergence analysis of method (3.3) that follows.

Definition 3.2. Let L0 > 0, L > 0, L1 > 0, L2 > 0, η0 ≥ 0 and η ≥ 0 be given parameters. The triplet
(F, x0, y0) belongs to the τ (L0, L, L1, L2, η0, η), if

A−1
0 ∈ L(Y,X) for some x0, y0 ∈ D, (3.25)

‖A−1
0 F (x0)‖ ≤ η, ‖x0 − y0‖ ≤ η0 for some η ≥ 0, η0 ≥ 0, (3.26)

for each x, y ∈ D

‖A−1
0 ([x, y;F ]− [x0, y0;F ])‖ ≤ L0‖x− x0‖+ L‖y − y0‖. (3.27)

Set D0 = D ∩B(x0,
1

L0+L
). For each x, y, z, w,∈ D0

‖A−1
0 ([x, y;F ]− [z, w;F ])‖ ≤ L1‖x− z‖+ L2‖y − w‖, (3.28)

L0t
∗ + L(r + η0) < 1, for some R ≥ t∗, (3.29)

B(x0, t
∗) ⊂ D (3.30)

and conditions of Lemma 3.1 hold, where t∗ is given in Lemma 3.1.

Next, we present the semi-local convergence analysis of method (2.10).

Theorem 3.3. Let F ∈ τ . Then, sequences {xn}, {yn} starting from some x0, y0 ∈ D and generated by
method (2.10) are well defined in B(x0, t

∗), remain in B(x0, t
∗) for each n = 0, 1, 2, . . . and converge to

a unique solution x∗ of equation F (x) = 0 in B(x0, t
∗). Moreover, the following estimates holds for each

n = 0, 1, 2, . . .
‖yn+1 − xn+1‖ ≤ sn+1 − tn+1, (3.31)

‖xn+1 − xn‖ ≤ tn+1 − tn (3.32)

and
‖xn − x∗‖ ≤ t∗ − tn. (3.33)

Furthermore, x∗ is the only solution of equation F (x) = 0 in D1 = D ∩ Ū(x0, R).

Proof: The result is shown using mathematical induction. If k = 0, estimates (3.31) and (3.32) hold by
the definition of τ and y0, x1 ∈ B̄(x0, t

∗). For k = 1, using (2.10), (3.1), (3.3), (3.27) and (3.28) we have
in turn that

‖y1 − x1‖ = ‖A−1
0 F (x1)‖ = ‖A−1

0

(

[x1, x0;F ](x1 − x0)− [x0, y0;F ](x1 − x0)
)

‖
= ‖A−1

0

(

[x1, x0;F ]− [x0, y0;F ]
)

(x1 − x0)‖
≤
(

L0‖x1 − x0‖+ L‖x0 − y0‖
)

‖x1 − x0‖
≤(L0η + Lη0)η = s1 − t1 (3.34)

and

‖A−1
0 (A1 −A0)‖ ≤

(

L0‖x1 − x0‖+ L‖y1 − y0‖
)

≤ L0‖x1 − x0‖+ L(‖y1 − x1‖+ ‖x1 − x0‖+ ‖x0 − y0‖)
≤L0η + L(s1 − t1 + t1 − t0 + s0 − t0)

= L0η + L(s1 + η0) < 1. (3.35)
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It follows from (3.34) that (3.31) holds for k = 1 and by (3.35) and the Banach lemma on invertible
operators A−1

1 ∈ L(Y,X) and

‖A−1
1 A0‖ ≤ 1

1− (L0t1 + L(s1 + s0))
(3.36)

By first substep of method (2.10) for k = 1, (3.1), (3.27) and (3.36), we get in turn that

‖x2 − x1‖ ≤‖A−1
1 A0‖‖A−1

0 (F (x1)− F (x0) + F (x0))‖

≤ ‖A−1
0 ([x1, x0;F ]− [x0, y0;F ])(x1 − x0)‖

1− (L0t1 + L(s1 + s0))

≤ L0t1 + Ls0

1− (L0t1 + L(s1 + s0))
t1 = t2 − t1,

which shows (3.32) for k = 1. Similarly for k = 2, 3, . . .

‖A−1
k A0‖ ≤ 1

1− (L0tk + L(sk + s0))

and

‖xk+1 − xk‖ = ‖A−1
k F (xk)‖

≤ ‖A−1
k A0‖‖A−1

0 (F (xk)− F (xk−1) + F (xk−1))‖

≤ ‖A−1
0 ([xk, xk−1;F ]− [xk−1, yk−1;F ])(xk − xk−1)‖

1− (L0tk + L(sk + s0))

≤L1(tk − tk−1) + L2(sk−1 − tk−1)

1− (L0tk + L(sk + s0))
(tk − tk−1) = tk+1 − tk,

which shows (3.32) for n = k. Similarly, we have

‖A−1
0 (B1 −A0)‖ = ‖A−1

0

(

([x1, y0;F ]− [x0, y0;F ]) + ([x1, x0;F ]− [y0, x0;F ])
)

‖
≤ L0‖x1 − x0‖+ L‖y0 − y0‖+ L1‖x1 − y0‖
≤L0‖x1 − x0‖+ L1(‖x1 − x0‖+ ‖x0 − y0‖)
≤ (L0 + L1)‖x1 − x0‖+ L1‖x0 − y0‖
≤ (L0 + L1)t1 + L1s0 < 1,

then, B−1
1 ∈ L(Y,X) and

‖B−1
0 A0‖ ≤ 1

1− ((L0 + L1)t1 + L1s0)
,

so

‖y1 − x1‖ = ‖B−1
1 F (x1)‖

≤‖B−1
1 A0‖‖A−1

0 F (x1)‖

≤ ‖A−1
0 (F (x1)− F (x0) + F (x0)‖
1− ((L0 + L1)t1 + L1s0)

≤ ‖A−1
0 ([x1, x0;F ]− [x0, y0;F ])(x1 − x0)‖

1− ((L0 + L1)t1 + L1s0)

≤L1(t1 − t0) + L2(s0 − t0)

1− ((L0 + L1)t1 + L1s0)
(t1 − t0) = s1 − t1,
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which shows (3.31) for n = 1. Similarly, we have for k = 1, 2, . . .

‖A−1
0 (Bk+1 −A0)‖

≤ ‖A−1
0

(

([xk+1, yk;F ]− [x0, y0;F ]
)

‖+ ‖A−1
0

(

([xk+1, xk;F ]− [yk, xk;F ])
)

‖
≤ L0‖xk+1 − x0‖+ L‖yk − y0‖+ L1‖xk+1 − yk‖
≤ L0(tk+1 − t0) + L(‖yk − x0‖+ ‖x0 − y0‖) + L1(‖xk+1 − xk‖+ ‖yk − xk‖)
≤L0tk+1 + L(sk + η0) + L1(tk+1 − tk + sk − tk) < 1,

so B−1
k+1 ∈ L(Y,X) and

‖B−1
k+1A0‖ ≤ 1

1− (L0tk+1 + L(sk + η0) + L1(tk+1 − tk + sk − tk))

and

‖yk+1 − xk+1‖ ≤‖B−1
k+1A0‖‖A−1

0 ([xk+1, xk;F ]− [xk, yk;F ])(xk+1 − xk)‖

≤ (L1(tk+1 − tk) + L2(sk − tk))(tk+1 − tk)

1− (L0tk+1 + L(sk + η0) + L1(tk+1 − tk + sk − tk))

= sk+1 − tk+1,

which shows (3.31), where we have also used xk, yk ∈ U(x0, t
∗). Then,

‖xk+1 − x0‖ ≤‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖
≤ tk+1 − tk + · · ·+ t1 − t0

= tk+1 < t∗

and

‖yk+1 − x0‖ ≤‖yk+1 − xk+1‖+ ‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖
≤ sk+1 − tk+1 + tk+1 − tk + · · ·+ t1 − t0

= tk+1 < t∗,

so xk+1, yk+1 ∈ U(x0, t
∗).

We have

‖A−1
0 F (xk+1)‖ ≤ (L1(tk+1 − tk) + L2(sk − tk))(tk+1 − tk),

so by the continuity of F , we get F (x∗) = 0.

Finally, to show the uniqueness part, let y∗ ∈ D1 such that F (y∗). Set H = [x∗, y∗;F ]. Then, using
(3.27) and (3.29), we obtain in turn

‖A−1
0 (H −A0)‖ ≤ L0‖x∗ − x0‖+ L‖y∗ − y0‖

≤ L0‖x∗ − x0‖+ L(‖y∗ − x0‖+ ‖x0 − y0‖)
≤L0t

∗ + LR+ Ls0 < 1,

so H−1 ∈ L(Y,X). In view of the identity

0 = F (x∗)− F (y∗) = H(x∗ − y∗),

so x∗ = y∗.

�
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4. Numerical examples

We present some numerical examples in this section.
Example 1. Let X = Y = R, D = (−1, 1) and define F on D by

F (x) = ex − 1.

Then, x∗ = 0 is a solution of (1.1) and F ′(x∗) = 1. Note that for any x, y, u, v ∈ D, we have

|F ′(x∗)−1
(

[x, y;F ]− [u, v;F ]
)

|

=
∣

∣

∣

∫ 1

0

(

F ′(tx+ (1 − t)y)− F ′(tu+ (1− t)v))dt
)

∣

∣

∣

=
∣

∣

∣

∫ 1

0

∫ 1

0

(

F ′′(θ(tx+ (1− t)y) + (1− θ)(tu+ (1 − t)v)
)

× (tx+ (1− t)y − (tu+ (1− t)v)
)

dθdt
∣

∣

∣

=
∣

∣

∣

∫ 1

0

∫ 1

0

e(θ(tx+(1−t)y)+(1−θ)(tu+(1−t)v)(tx+ (1 − t)y − (tu+ (1 − t)v)dθdt
∣

∣

∣

≤
∫ 1

0

e|t(x− u) + (1 − t)(y − v)|dt

≤ e

2
(|x− u|+ |y − v|)

and

|F ′(x∗)−1
(

[x, y;F ]− F ′(x∗)
)

|

=
∣

∣

∣

∫ 1

0

F ′(tx + (1− t)y)dt− F ′(x∗))
∣

∣

∣

=
∣

∣

∣

∫ 1

0

(etx+(1−t)y − 1)dt
∣

∣

∣

=
∣

∣

∣

∫ 1

0

(tx+ (1− t)y)
(

1 +
tx+ (1− t)y

2!
+

(tx+ (1− t)y)2

3!
+ · · ·

)

dt
∣

∣

∣

≤
∣

∣

∣

∫ 1

0

(tx+ (1− t)y)
(

1 +
1

2!
+

1

3!
+ · · ·

)

dt
∣

∣

∣

≤ e− 1

2
(|x− x∗|+ |y − x∗|).

That is to say, the center Lipschitz condition (2.11) and Lipschitz condition (2.12) are true for l0 = l =
e−1
2 and l1 = l2 = e

2 , respectively. The parameter values are given as r0 = 0.2254, rA = 0.387985,
r = 0.135239, r∗ = r∗1 = 0.324948, r∗∗ = 0.172542 and r∗A = 0.0630374.
Example 2. Let X = Y = C[0, 1], the space of continuous functions defined on the interval [0, 1],
equipped with the max norm and D = Ū(0, 1). Define function F on D, given by

F (x)(s) = x(s)− 5

∫ 1

0

stx3(t)dt.

and divided difference of F is defined by

[x, y;F ] =

∫ 1

0

F ′(tx+ (1 − t)y)dt.

Then, we have

[F ′(x)y](s) = y(s)− 15

∫ 1

0

stx2(t)y(t)dt, for each y ∈ D.
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We have x∗ = 0 for all s ∈ [0, 1], l0 = l = 3.75 and l1 = l2 = 7.5. The parameter values are given as
r0 = 0.04444, rA = 0.08888, r = 0.026491, r∗ = r∗1 = 0.06666, r∗∗ = 0.03333 and r∗A = 0.00296296.
Example 3. Let X = Y = C[0, 1] equipped with max norm and D = U(0, r) for some r > 1. Define F
on D by

F (x)(s) = x(s)− y(s)− µ

∫ 1

0

G(s, t)x3(t)dt, x, y ∈ C[0, 1], s ∈ [0, 1],

where µ is a real parameter and the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1]
by

G(s, t) =

{

(1− s)t, t ≤ s,

(1− t)s, s ≤ t.

Then, the Fréchet derivative of F is defined by

(F ′(x)(w))(s) = w(s) − 3µ

∫ 1

0

G(s, t)x2(t)w(t)dt, w ∈ C[0, 1], s ∈ [0, 1].

Let us choose x0(s) = y0(s) = y(s) = 1 and |µ| < 8
3 . Then, we have that

‖I −A0‖ ≤ 3

8
µ, A−1

0 ∈ L(Y,X),

‖A−1
0 ‖ ≤ 8

8− 3|µ| , s0 = 0, t1 =
|µ|

8− 3|µ| , L0 = L =
3(1 + r)|µ|
2(8− 3|µ|) ,

L1 = L2 =
3r|µ|

(8− 3|µ|) .

Let us choose r = 3 and µ = 1
2 . Then, we have that

t1 = 0.07692307, L0 = L = 0.461538462, L1 = L2 = 0.692307692.

and

(L0t1 + Ls0) max
{ 1

1− (L0η + L(s1 + η0))
,

1

1− ((L0 + L)η + L1η0)

}

≈ 0.038961,

x∗ ≈ 0.711345739, 1− (L0 + L)η

1− Lη0
≈ 0.928994.

That is, condition (3.3) is satisfied and Theorem 3.1 applies.
Example 4. This example is intended to verify the third order of convergence of the MKWTM. Consider
a system of two equations

x1 + ex2 − cosx2 =0,

3x1 − sinx1 − x2 =0.

With the initial approximations x0 = { 1
2 ,

3
10}T and y0 = { 1

4 , 1}T , we obtain the zero x∗ = {0, 0}T . The
number of iterations (n) needed to converge to the solution using the stopping criterion (‖xn+1 − xn‖+
‖F (xn)‖) < 10−200 is 6. Then, using the last three approximations xn+1, xn, xn−1 in (2.51), we get
ACOC = 3.0000.
Example 5. Here also we confirm order of convergence by considering a system of three equations [16]:

2x1 + x2 + x3 =4,

2x2 + x3 + x1 =4,

x1x2x3 =1.

The zero x∗ = {1, 1, 1}T is obtained by assuming the initial approximations x0 = {1, 2, 3}T and y0 =
{ 1
10 ,

1
2 ,

1
2}T , The number of iterations (n) needed to converge to the solution applying the stopping

criterion (‖xn+1 − xn‖ + ‖F (xn)‖) < 10−200 is 10. Then, using the last three approximations xn+1, xn,
xn−1 in (2.51), we get ACOC = 3.0000.



Design and Analysis of a Faster King-Werner-type... 17

References

1. Argyros, I.K., Computational Theory of Iterative Methods. Series; Studies in Computational Mathematics. 15, Editors:
C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, 2007.

2. Argyros, I.K., Covergence and Applications of Newton-type Iterations, Springer-Verlag, New York, 2008.

3. King, R.F., Tangent methods for nonlinear equations, Numer. Math. 18, 298–304, (1972).

4. Gutiérrez, J.M., Hernández, M.A., A family of Chebyshev-Halley type methods in Banach spaces, Bull. Aust. Math.
Soc. 55, 113–130, (1997).

5. Hernández, M.A., Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41, 433–455, (2001).

6. Babajee, D.K.R., Dauhoo, M.Z., Darvishi, M.T., A. Karami and A. Barati, Analysis of two Chebyshev-like third
order methods free from second derivatives for solving systems of nonlinear equations, J. Comput. Appl. Math. 233,
2002–2012, (2010).
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